天然气地球科学 ›› 2022, Vol. 33 ›› Issue (7): 1189–1202.doi: 10.11764/j.issn.1672-1926.2022.01.005

• 综述与评述 • 上一篇    下一篇

碳酸盐岩气田开发阶段储集层裂缝描述现状及展望

蔡珺君(),王蓓,彭先   

  1. 中国石油西南油气田公司勘探开发研究院,四川 成都 610041
  • 收稿日期:2021-11-12 修回日期:2022-01-04 出版日期:2022-07-10 发布日期:2022-07-11
  • 作者简介:蔡珺君(1987-),男,四川南充人,工程师,博士,主要从事天然气开发和气藏描述研究.E-mail:swadings@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“四川盆地大型碳酸盐岩气田开发示范工程”(2016ZX05052);中国石油天然气股份有限公司重大科技专项“西南油气田天然气上产300亿立方米关键技术研究与应用”(2016E-06)

Present situation and prospect of reservoir fracture description in carbonate gas field development stage

Junjun CAI(),Bei WANG,Xian PENG   

  1. Exploration and Development Research Institute,PetroChina Southwest Oil & Gasfield Company,Chengdu 610041,China
  • Received:2021-11-12 Revised:2022-01-04 Online:2022-07-10 Published:2022-07-11
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05052);the Major Science and Technology Project of PetroChina(2016E-06)

摘要:

碳酸盐岩气田将是中国“十四五”期间天然气上产的重要领域,裂缝作为碳酸盐岩储集层的主要渗流通道,对其描述是气田开发过程中的重要研究内容。针对碳酸盐岩气田开发阶段“井点裂缝结构描述基本清楚,井间裂缝描述困难”的特点以及借助多项资料进行裂缝间接描述与反复对比验证的矿场需求,在系统总结和挖掘裂缝描述概念的基础上,提出了以“裂缝成因、裂缝结构,裂缝功能”为核心的系统描述新理念,围绕上述3个方面分别论述了目前各单项描述方法的应用现状和存在问题。明确了碳酸盐岩气田开发阶段裂缝系统描述的思路、原则和实施建议:即在不同的开发阶段建立每一轮静动态资料的裂缝成因、结构及功能之间的对应关系,并由井点、气井泄气区、逐步拓展至井间和整个气田。具体描述方法包括由井眼裂缝结构至泄气半径内的裂缝功能、裂缝结构—裂缝功能、裂缝成因—裂缝结构和基于新井资料补充的系统验证4个方面。建议在裂缝系统描述实施过程中,避免多学科、静动态资料的罗列和堆砌,强化学科、静动态资料之间的渗透、融合和实践—认识—再实践—再认识。裂缝系统描述理念、方法可以用于提升气田开发阶段储集层裂缝描述的矿场应用水平,支撑碳酸盐岩气田科学开发。

关键词: 系统描述理念, 裂缝, 开发阶段, 碳酸盐岩气田, 应用现状, 展望

Abstract:

Carbonate gas field will be an important field of natural gas production during the 14th Five Year Plan period in China. Fracture is the main seepage channel of carbonate reservoir, and its description is an important research content in the process of gas field development. In view of the characteristics of “well point fracture structure description is basically clear and inter well fracture description is difficult” in the development stage of carbonate gas field, and the mine demand for indirect fracture description and repeated comparison and verification with the help of a number of data, on the basis of systematically summarizing and excavating the concept of fracture description, this paper put forward “fracture cause, fracture structure and fracture function”, based on the new concept of system description, this paper discussed the application status and existing problems of each single description method around the above three aspects. The ideas, principles and implementation suggestions of fracture system description in carbonate gas field development stage were clarified: That is the corresponding relationship between fracture genesis, structure and function of each round of static and dynamic data was established in different gas field development stages, and gradually expanded from well point, gas well vent area to inter well and the whole gas field. The specific description method includes four aspects: Fracture function from borehole fracture structure to gas release radius, fracture structure-fracture function, fracture cause-fracture structure and system verification based on new well data supplement. It is suggested that during the implementation of fracture system description, the listing and stacking of multi-disciplinary, static and dynamic data should be avoided, and the infiltration, integration and practice cognition re practice recognition between disciplines and static and dynamic data should be strengthened. The concept and method of fracture system description can be used to improve the reservoir fracture description and field application level in the gas field development stage, which support the scientific development of carbonate gas field.

Key words: System description concept, Cracks, Development stage, Carbonate gas field, Application present situation, Expectation

中图分类号: 

  • TE122.14

表1

不同开发阶段裂缝描述方法统计(根据文献[14-15,17]修改)"

序号开发阶段时间周期裂缝描述相关工作裂缝描述主要方法
1前期评价数月至数年①提出开发资料录取要求;②部署开发地震、评价井和先导试验区;③评价地质储量、可采储量和动用储量规模;④落实气田产能规模,制订开发技术对策①裂缝发育控制因素;②露头裂缝;③岩心裂缝;④地质录井;⑤铸体薄片、CT扫描、数字岩心;⑥地球物理法;⑦动态资料;⑧地质资料综合预测;⑨储层改造;⑩微裂缝网络模拟;?试井解释;?现代产量递减分析;?地应力预测;?静动态资料综合预测
2产能建设2~3年①新钻井动静态资料分析;②深化认识气藏地质与开发特征;③动态优化气井配产
3开发生产超过10年①评价有效储层分布规律、优选开发富集区;②优化部署开发井位;③开展气井生产动态跟踪;④评价气井产能,优化气井配产

图1

裂缝系统描述示意"

表2

不同裂缝描述方法的优缺点"

分类描述名称优点缺点

结构

描述

野外露头获得感性认识,激发思维空间和灵感,对气藏的静动态认识和生产指导具有一定积极作用野外露头的选择要求与气藏有可类比性,需要满足一定条件
岩心唯一能描述裂缝的直接信息裂缝发育段岩心收获率不高,在取心过程中岩心受到取心工具一定程度的破坏,揭示的裂缝信息具有局限性和随机性
钻录井快速直观分析储集层类型和裂缝发育程度仅反映一定井控范围内的裂缝发育特征
储层改造直观分析改造前储集层类型和裂缝发育程度仅反映改造区一定井控范围内的裂缝发育特征
地震预测大断裂相对准确深埋藏薄储层条件下难以精确预测中小尺度裂缝
测井垂向识别精度高,能够定性、定量地反映裂缝发育情况存在“一孔之见”的局限性,仅能反映井眼附近的储层裂缝信息,横向识别尚有难度
CT扫描定量表征微米级尺度裂缝受限于岩心的局限性和随机性,与气藏实际开发过程中的宏观渗流尺度不易匹配

成因

及预测

古构造应力场法判别裂缝产生的可能性,识别裂缝的相对发育带裂缝参数和现今裂缝参数的存在状态相差甚远,无法直接应用
己知井点约束法在井点上较有把握随机性较强,受井网密度的影响大
分形法输出的分数维值可以作裂缝平面发育度的定量指标分数维值的应用具有一定的局限性,不能反映孔隙度、渗透率等决定性参数
曲率分析法可判断裂缝产生的优势区域并计算裂缝参数仅能预测比例不大的张性缝,预测的裂缝分布与实际分布会有明显的偏差
应力场数值模拟法根据实验从应力场角度能得到裂缝分布预测存在多解性,且井间的裂缝网络无法验证,直接用于数模模拟计算费时费力
古今应力场结合法理论完备,能够准确计算裂缝的参数区域古应力难以准确确定,需要做大量的力学参数测试

功能

描述

岩心实验揭示不同裂缝发育情况下渗流、水侵的渗流规律仅能反映岩心尺度下的裂缝响应,储层改造后的原始裂缝流动将发生变化,大尺度下的裂缝网络渗流与小尺度岩心渗流不宜直接对比
微裂缝网络模拟定量揭示微裂缝网络对岩石渗透率的影响机理描述尺度为岩心尺度,计算有随机性,模拟时间较长,需要构建大量的数字岩心模拟计算结果,
采气曲线产气量、油压、水产量等参数直观反映储层裂缝仅能定性辅助判断储层改造后裂缝网络情况
压力恢复试井以渗透率描述宏观渗流尺度裂缝对储层渗流的影响,精度高需要关井测压,部分含硫深井作业风险高,影响气井生产
现代产量递减方法以渗透率描述反映宏观渗流尺度裂缝对储层渗流的影响,精度较高现场资料精度相对偏低,尤其是井底流压折算会存在一定误差

图2

不同储集层类型漏失模型示意(据文献[34]修改)"

图3

3种裂缝形式的双对数响应"

图4

裂缝系统描述思路示意"

图5

裂缝系统描述方法示意"

1 胡汉舟. 能源保供成效显著能源结构持续优化[EB/OL]. 2022-01-18. http://www.stats.gov.cn/xxgk/jd/sjjd2020/202201/t20220118_1826605.html.
HU H Z. Remarkable achievements have been made in ensuring energy supply, and the energy structure has been continuously optimized[EB/OL]. 2022-01-18. http://www.stats.gov.cn/xxgk/jd/sjjd2020/202201/t20220118_1826605.html.
2 戴金星,倪云燕,董大忠,等. “十四五”是中国天然气工业大发展期——对中国“十四五”天然气勘探开发的一些建议[J].天然气地球科学,2021,32(1):1-16.
DAI J X,NI Y Y,DONG D Z,et al. 2021-2025 is a period of great development of China's natural gas industry:Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China[J].Natural Gas Geoscience,2021,32(1):1-16.
3 贾爱林,何东博,位云生,等 .未来十五年中国天然气发展趋势预测[J].天然气地球科学,2021,32(1):17-27.
JIA A L,HE D B,WEI Y S,et al.Predictions on natural gas development trend in China for the next fifteen years[J].Natural Gas Geoscience,2021,32(1):17-27.
4 方飞飞,李熙喆,高树生,等. 边、底水气藏水侵规律可视化实验研究[J]. 天然气地球科学,2016,27(12):2246-2252.
FANG F F,LI X Z,GAO S S,et al. Visual simulation experimental study on water in vasion rules of gas reservoir with edge and bottom water[J]. Natural Gas Geoscience,2016,27(12):2246-2252.
5 四川石油管理局. 中国第一个天然气工业基地:四川气田[M].北京:石油工业出版社,2003:106.
Sichuan Petroleum Administration. The First Natural Gas Industrial Base in China: Sichuan Gas Field[M]. Beijing:Petroleum Industry Press,2003:106.
6 孙志道. 裂缝性有水气藏开采特征和开发方式优选[J].石油勘探与开发,2002, 29(4): 69-71.
SUN Z D. Production characteristics and development mode optimization of fractured water bearing gas reservoirs[J]. Petroleum Exploration and Development,2002,29(4): 69-71.
7 夏崇双. 有水气藏提高采收率的途径和方法[J]. 天然气勘探与开发,2000,23 (3): 7-11.
XIA C S. Ways and methods of EOR in water bearing gas reservoirs[J]. Natural Gas Exploration and Development,2000,23(3):7-11.
8 夏崇双. 不同类型有水气藏提高采收率的途径和方法[J]. 天然气工业,2002,22(S1):73-77.
XIA C S. Ways and methods of EOR for different types of gas reservoirs with water[J].Natural Gas Industry,2002,22(S1):73-77.
9 钟孚勋. 四川盆地天然气开发实践与认识[J]. 天然气工业, 2002,22(增刊):8-10.
ZHONG F X. Practice and understanding of natural gas development in Sichuan Basin[J]. Natural Gas Industry, 2002,22 (supplement): 8-10.
10 何术坤, 黄承林, 杨雅和. 四川碳酸盐岩有水气藏水体特征的探讨[J]. 天然气工业, 1983,3(1):2-7.
HE S K, HUANG C L, YANG Y H. Discussion on water body characteristics of water bearing carbonate gas reservoirs in Sichuan[J]. Natural Gas Industry, 1983, 3 (1): 2-7
11 杨雅和, 何术坤, 黄承林. 提高四川活跃水侵气藏开采效益的探讨[J]. 天然气工业, 1984,4(4):1-4.
YANG Y H, HE S K, HUANG C L. Discussion on improving the production efficiency of active water invaded gas reservoirs in Sichuan[J]. Natural Gas Industry, 1984,4(4):1-4.
12 张伦友.活跃边、底水气藏合理开发方式新探[J]. 天然气工业, 1989,9(5):35-39.
ZHANG L Y. New Exploration on reasonable development mode of active edge and bottom water gas reservoir[J]. Natural Gas Industry,1989,9(5):35-39.
13 李骞, 杨雨, 彭先. 四川盆地有水气藏水侵机理及治水对策研究[C].福州:第30届全国天然气学术年会论文集,2018.
LI Q, YANG Y, PENG X. Research on Water Invasion Mechanism and Water Control Countermeasures of Water Bea-ring Gas Reservoirs in Sichuan Basin[C]. Fuzhou:The 30th National Natural Gas Academic Annual Conference,2018.
14 邹才能,郭建林,贾爱林,等. 中国大气田科学开发的内涵.[J]. 天然气工业,2020,40(3):1-12.
ZOU C N,GUO J L,JIA A L,et al.Connotation of scientifc development for giant gas felds in China[J]. Natural Gas Industry,2020,40(3):1-12.
15 中国石油天然气股份有限公司.天然气开发管理纲要[G].北京:中国石油天然气股份有限公司,2006.
PetroChina Company Limited. Management of Natural Gas Development[G].Beijing:PetroChina Company Limited, 2006.
16 蔡珺君,唐青松,欧家强,等.考虑水侵的异常高压气藏流动物质平衡[J]. 断块油气田,2019,26(5):596-600.
CAI J J,TANG Q S,OU J Q,et al.Flow mass balance in overpressured gas reservoirs considering water influx[J]. Fault-Block Oil & Gas Field,2019,26(5):596-600.
17 中华人民共和国石油天然气行业标准 . SY/T 6110—2002 碳酸盐岩气藏开发地质特征描述[S]. 成都:中国石油西南油气田分公司勘探开发研究院,2002.
People's Republic of China Petroleum and Natural Gas Industry Standard. SY/T 6110-2002 the Description of Exploration Geologic Characteristics for Carbonate Gas Reservoir[S]. Cheng-du:Research Institute of Petroleum Exploration and Development,PetroChina Southwest Oil and Gasfield Company,2002.
18 POLLARD D D,AYDIN A. Progress in understanding jointing over the past century[J]. Geological Society of America Bulletin,1988,100: 1811-1204.
19 童亨茂. 储层裂缝描述与预测研究进展[J]. 新疆石油学院学报,2004,16(2):10-13.
TONG H M. Descripition and prediction of reservoir fractures networks[J]. Journal of Xinjiang Petroleum Institute,2004,16(2):10-13.
20 法拉·梅特里. 人是机器[M]. 北京:商务印书馆,2011.
FA LA MAITRE. Man is Machine[M]. Beijing: Commercial Press, 2011.
21 李长海, 赵伦, 刘波, 等. 微裂缝研究进展、意义及发展趋势[J].天然气地球科学, 2020, 31(3): 402-416.
LI C H, ZHAO L, LIU B, et al. Research status,significance and development trend of microfractures[J]. Natural Gas Geoscience, 2020, 31(3): 402-416.
22 李玮, 孙文峰, 唐鹏, 等. 基于拓扑结构的岩石裂缝网络表征方法[J]. 天然气工业, 2017, 37(6): 22-27.
LI W, SUN W F, TANG P, et al. A method for rock fracture network characterization based on topological structure[J]. Natural Gas Industry, 2017, 37(6): 22-27.
23 BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1985,22(3): 121-140.
24 张戈, 田园, 李英骏. 不同 JRC 粗糙单裂隙的渗流机理数值模拟研究[J]. 中国科学: 物理学, 力学, 天文学, 2019, 49(1): 26-35.
ZHANG G, TIAN Y, LI Y J. Numerical study on the mechanism of fluid flow through single rough fractures with different JRC[J]. Scientia Sinica: Physica,Mechanica & Astronomica, 2019, 49(1): 26-35.
25 曲冠政, 曲占庆, HAZLETT Randy Dalye, 等. 页岩拉张型微裂缝几何特征描述及渗透率计算[J]. 石油勘探与开发, 2016, 43(1): 115-120,152.
QU G Z, QU Z Q, HAZLETT Randy Dalye, et al. Geometrical description and permeability calculation about shale tensile micro-fractures[J]. Petroleum Exploration and Development, 2016,43(1): 115-120, 152.
26 杨米加, 陈明雄, 贺永年. 单裂隙曲折率对流体渗流过程的影响[J]. 岩土力学, 2001, 22(1): 78-82.
YANG M J, CHEN M X, HE Y N. The effect of tortuosity on the flow through a fracture[J]. Rock and Soil Mechanics,2001, 22(1): 78-82.
27 汪必峰. 储集层构造裂缝描述与定量预测[D]. 青岛:中国石油大学(华东), 2007.
WANG B F.Description and Quantitative Predication of Reservoir Tectoclase[D]. Qingdao: China University of Petroleum(East China), 2007.
28 金岳霖.形式逻辑[M].北京:人民出版社,1981.
JIN Y L.Formal Logic[M].Beijing:People's Publishing House, 1981.
29 宁超众,胡素云,李勇,等 .深层与露头碳酸盐岩岩溶洞穴对比及类比——以塔里木盆地哈拉哈塘油田奥陶系良里塔格组古岩溶洞穴与美国德克萨斯州Longhorn 近现代岩溶洞穴为例[J].天然气地球科学,2020,31(12):1700-1716.
NING C Z,HU S Y,LI Y,et al. Comparison and analog of the deep-buried and outcrop carbonate karst cave systems:Case study of the Lianglitage Formation karst cave system,Halahatang Oilfield,Tarim Basin,China and the Longhorn modern karst cave system,Texas,USA[J].Natural Gas Geoscience,2020,31(12):1700-1716.
30 熊钰,刘斯琪,余翔,等.四川盆地自流井区块自2井缝洞系统结构与水侵途径和模式[J]. 天然气地球科学,2019,30(7):925-936.
XIONG Y, LIU S Q, YU X, et al. Fracture cave system structure and water invasion path and mode of Zi 2 Well in Ziliujing block,Sichuan Basin[J]. Natural Gas Geoscience,2019,30(7): 925-936.
31 田兴旺,彭瀚霖,王云龙,等. 川中安岳气田震旦系灯影组四段台缘—台内区储层差异及控制因素[J].天然气地球科学,2020,31(9):1225-1238.
TIAN X W,PENG H L,WANG Y L,et al. Analysis of reservoir difference and controlling factors between the platform margin and the inner area of the fourth member of Sinian Dengying Formation in Anyue Gas Field,central Sichuan [J].Natural Gas Geoscience,2020,31(9):1225-1238.
32 蔡珺君,彭先,李骞,等 .强非均质性碳酸盐岩气藏储集层再划分及不同生产阶段技术对策——以四川盆地磨溪—高石梯地区震旦系为例[J].天然气地球科学,2021,32(6):851-860.
CAI J J,PENG X,LI Q,et al. Subdivision of strongly heterogeneous carbonate gas reservoir and technical countermeasures in different production stages:Case study of Sinian in Sichuan Basin[J].Natural Gas Geoscience,2021,32(6):851-860.
33 蔡珺君,梁锋,占天慧,等 .动静态资料在四川盆地磨溪—高石梯地区震旦系碳酸盐岩储层类型识别中的应用[J]. 天然气地球科学,2020,31(1):132-142.
CAI J J,LIANG F,ZHAN T H,et al.Application of dynamic and static data in recognition of Sinian carbonate reservoir types in the Moxi-Gaoshiti areas,Sichuan Basin[J].Natural Gas Geoscience,2020,31(1):132-142.
34 代飞旭,朱柏宇,邓伯龙,等 . 动静态资料在碳酸盐岩储集层类型识别中的应用——以塔里木盆地哈拉哈塘油田金跃区块奥陶系为例[J].新疆石油地质,2017,38(6):746-753.
DAI F X, ZHU B Y, DENG B L,et al.Application of static and dynamic data in identification of carbonate reservoir type: A case study from Ordovician strata in Jinyue block of Halahatang Oilfield,Tarim Basin[J]. Xinjiang Petroleum Geology,2017,38(6):746-753.
35 兰雪梅,王天琪,王俊杰,等.双鱼石超深碳酸盐岩储层裂缝特征与分布规律[C].合肥:第31届全国天然气学术年会,2019.
LAN X M, WANG T Q, WANG J J, et al. Fracture characteristics and distribution law of shuangyushi ultra deep carbonate reservoir[C].Hefei:The 31st National Natural Gas Academic Annual Conference,2019.
36 戴俊生,冯阵东,刘海磊,等.几种储层裂缝评价方法的适用条件分析[J].地球物理学进展,2011,26(4):1234-1242.
DAI J S,FENG Z D,LIU H L,et al.Analysis for the applicable conditions of several methods of reservoir fracture evaluation[J] . Progress in Geophysics,2011,26(4):1234-1242.
37 不详.你真的知道什么是分形理论吗?[EB/OL].2019-03-04.https://baijiahao.baidu.com/s?id=1627074716175273870&wfr=spider&for=pc.
Do you really know what fractal theory is?[EB/OL].2019-03-04.https://baijiahao.baidu.com/s?id=1627074716175273870 & wfr=spider&for=pc.
38 同登科,葛家理.分形裂缝气藏不稳定渗流问题探讨[J].天然气工业, 1996, 16(2):27-30.
TONG D K,GE J L.Unstable percolation flow associate withfractal fractured pool[J]. Natural Gas Industry, 1996, 16 (2): 27-30.
39 丁明才, 吴明录, 李轩,等.分形裂缝性页岩气藏多段压裂水平井瞬态压力特征[J]. 计算物理, 2019, 36(5):559-568.
DING M C, WU M L, LI X, et al. Transient pressure characteristics of multi-stage fractured horizontal wells in fractal fractured shale gas reservoir [J]. Computational Physics, 2019, 36 (5): 559-568.
40 丁明才. 分形裂缝性页岩气藏压裂水平井试井解释模型及产量特征[D]. 青岛:中国石油大学(华东),2018.
DING M C. Well Test Interpretation Model and Production Characteristics of Fractured Horizontal Wells in Fractal Fractured Shale Gas Reservoirs[D]. Qingdao:China University of Petroleum (East China), 2018.
41 刘丽丽, 赵中平, 李亮,等. 变尺度分形技术在裂缝预测和储层评价中的应用[J]. 石油与天然气地质,2008,29(1):31-37.
LIU L L, ZHAO Z P, LI L, et al. Application of the variable scale fractal technique in fracture prediction and reservoir evaluation [J]. Oil and Gas Geology,2008,29(1):31-37.
42 孙尚如.预测储层裂缝的两种曲率方法应用比较[J].地质科技情报,2003,22(4):71-74.
SUN S R.Applieation comparison of two curva ture methods for predicating reservoir fractures[J].Geological Science and Technology Information, 2003,22(4):71-74.
43 戴弹申. 构造曲率是勘探裂缝性气藏的有效方法[J]. 天然气工业, 1982,2(4):21-26.
DAI T S. Structural curvature is an effective method for exploration of fractured gas reservoirs[J]. Natural Gas Industry, 1982, 2(4): 21-26.
44 王仁,丁中一,殷有泉.固体力学基础[M].北京:地质出版社,1979:15-23.
WANG R, DING Z Y, YIN Y Q. Solid Mechanics Foundation[M]. Beijing: Geological Publishing House, 1979:15-23.
45 曾锦光,罗元华,陈太源.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982,2(2):202-206.
ZENG J G, LUO Y H, CHEN T Y. Application of structure main curvature on the fracture study of reservoirs[J].Journal of Mechanics,1982,2 (2): 202-206.
46 丁中一,钱祥麟,霍红,等.构造裂缝定量预测的一种新方法——二元法[J].石油与天然气地质,1998,19(1):1-17,14.
DING Z Y, QIAN X L, HUO H, et al. A new method for quantitative prediction of tectonic fractures-Two factor method[J]. Oil& Gas Geology, 1998,19(1):1-17,14.
47 文世鹏,李德同.储层构造裂缝数值模拟技术[J].石油大学学报,1996,20(5):17-24.
WEN S P, LI D T. Numerical simulation technology for structural fractures of reservoir[J]. Journal of the University of Petroleum, 1996, 20 (5):17-24.
48 宋惠珍.脆性岩储层裂缝定量预测的尝试[J].地质力学学报,1999,5(1):76-84.
SONG H Z. An attempt to quantitative prediction of natural crack on brittle rock reservoir[J]. Journal of Geomechanics, 1999, 5 (1): 76-84.
49 武红岭,王小凤,马寅生,等.油田构造应力场驱动油气运移的理论和方法研究[J].石油学报,1999,20(5):7-12.
WU H L, WANG X F, MA Y S, et al.Theory and method of studying bydrocarbon migration driven by tectonic stress field [J]. Acta Petrolei Sinica, 1999, 20 (5): 7-12.
50 谭成轩,王连捷.三维构造应力场数值模拟在含油气盆地构造裂缝分析中应用初探[J].地球学报,1999,20(4):392-394.
TAN C X, WANG L J. An approach to the application of 3D tectonic stress field numerical simulation in strutural fissure analysis of the oil-gas-bearing basin[J]. Acta Geoscientica Sinica, 1999,20 (4): 392-394.
51 周源, 王容, 王强,等.气藏复杂水侵动态巨量网格精细数值模拟[J]. 天然气勘探与开发,2017,40(4):85-89.
ZHOU Y, WANG R, WANG Q, et al. Massive-grid fine numerical simulation on the complex water invasion performance of gas reservoirs[J].Natural Gas Exploration and Development, 2017,40(4):85-89.
52 YI Z, LIN M, JIANG W, et al. Pore network extraction from pore space images of various porous media systems[J]. Water Resources Research,2017,53(4):3424-3445.
53 李新强, 陈祖煜. 三维裂隙网络渗流计算的边界元法及程序[J].中国水利水电科学研究院学报,2006,4(2):81-87.
LI X Q,CHEN Z Y.Boundary element method for 3-D fractu-re network seepage flow and its programing[J].Journal of China Institute of Water Resources and Hydropower Research, 2006,4(2): 81-87.
54 FAN H, ZHENG H. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks[J]. Science China Technological Sciences, 2013, 56(12): 3115-3122.
55 李滔, 李骞, 胡勇, 等. 不规则微裂缝网络定量表征及其对多孔介质渗流能力的影响[J]. 石油勘探与开发, 2021,48(2): 1-11.
LI T,LI Q,HU Y, et al. Quantitative characterization of irregular micro-fracture network and its effect on the permeability of porous media[J].Petroleum Exploration and Development,2021, 48(2): 1-11.
56 BOURDET D(法). 现代试井解释模型及应用[M].张义堂译. 北京:石油工业出版社,2007.
BOURDET D(France). Well Test Analsis:the Use of Advanced Interpretation Models[M]. ZHANG Y T translated.Beijing:Petroleum Industry Press,2007.
57 孙贺东.油气井现代产量递减分析方法及应用[M].北京:石油工业出版社,2013.
SUN H D. Analysis Method and Application of Modern Production Decline of Oil and Gas Wells[M]. Beijing: Petroleum Industry Press, 2013.
58 郭建春,卢聪,肖勇,等. 四川盆地龙王庙组气藏最大化降低表皮系数的储层改造技术[J]. 天然气工业,2014,34(3):97-102.
GUO J C,LU C,XIAO Y,et al.Reservoir stimulation techniques of minimizing the skin factor of the Longwangmiao Fm gas reservoirs in Sichuan Basin[J].Natural Gas Industry,2014,34(3):97-102.
59 李熙喆, 郭振华, 胡勇, 等. 中国超深层构造型大气田高效开发策略[J]. 石油勘探与开发, 2018, 45(1): 111-118.
LI X Z, GUO Z H, HU Y, et al. Efficient development strategies for large ultra-deep structural gas fields in China[J].Petroleum Exploration and Development, 2018, 45(1): 111-118.
60 裘亦楠. 石油开发地质方法论(二)[J]. 石油勘探与开发, 1996,23(3):48-51.
QIU Y N. The methodology of petroleum development geology(II)[J]. Petroleum Exploration and Development, 1996,23(3):48-51.
61 CAREY M A, MONDAL S,SHARMA M M, et al. Analysis of Water Hammer Signatures for Fracture Diagnostics[C]. Paper Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, September 2015. doi: https://doi.org/10.2118/174866-MS.
62 CAREY M A, MONDAL S, HARMA M M, et al. Correlating Water Hammer Signatures with Production Log and Microseismic Data in Fractured Horizontal Wells[C]. Paper presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2016. doi: https://doi.org/10.2118/179108-MS.
63 PANJAITAN M L, MORIYAMA A, MCMILLAN D, et al. Qualifying Diversion in Multi Clusters Horizontal Well Hydraulic Fracturing in Haynesville Shale Using Water Hammer Analysis, Step-Down Test and Microseismic Data[C]. Paper presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, January 2018. doi: https://doi.org/10.2118/189850-MS.
64 GAO J, XING H. LBM simulation of fluid flow in fractured porous media with permeable matrix[J].Theoretical & Applied Mechanics Letters, 2012, 2(3): 51-54.
65 蔡珺君,彭先,李骞,等 .超深层强非均质性气藏早中期产能主控因素及开发优化技术对策——以四川盆地中部安岳气田震旦系气藏为例[J].天然气地球科学,2021,32(11):1622-1633.
CAI J J,PENG X,LI Q,et al. Controlling factors of productivity in early and middle stage of ultra-deep and highly heterogenous gas reservoir and development strategies optimization:Case study of Sinian gas reservoirs in Anyue gas field,central Sichuan Basin[J].Natural Gas Geoscience,2021,32(11):1622-1633.
66 王蓓,李骞,李滔,等.四川盆地双鱼石区块栖霞组储层裂缝表征技术及其应用[C]. 青岛:2021油气田勘探与开发国际会议论文集,2021.
WANG B,LI Q,LI T,et al.Fracture Characterization Techno-logy and Application of Qixia Formation Reservoir in Shuang Yushi Area of Sichuan Basin[C].Qingdao:International Field Exploration and Development Conference,2021IFECD,2021.
67 胡文瑞.地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1):1-5.
HU W R.Geology-engineering integration-a necessary way to realize proftable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1):1-5.
[1] 马军,房大志,张培先,谷红陶,胡春锋,卢比,程轶妍,高全芳,万静雅. 渝东南地区阳春沟构造带五峰组—龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117-1131.
[2] 陈丽清, 伍秋姿, 范存辉, 钟可塑, 杨雪, 何亮. 四川盆地南部双龙—罗场地区龙马溪组构造裂缝特征及形成期次[J]. 天然气地球科学, 2022, 33(5): 789-798.
[3] 任岚, 吴建军, 林然, 赵金洲, 谭秀成, 吴建发, 宋毅. 基于数值岩心重构模型的页岩渗透率影响机制分析[J]. 天然气地球科学, 2022, 33(4): 495-511.
[4] 王珂, 张荣虎, 王俊鹏, 余朝丰, 杨钊, 唐雁刚. 塔里木盆地库车坳陷侏罗系阿合组与白垩系巴什基奇克组储层特征对比与勘探开发启示[J]. 天然气地球科学, 2022, 33(4): 556-571.
[5] 马许平, 曾庆利. 多射孔压裂对水力裂缝扩展规律的影响[J]. 天然气地球科学, 2022, 33(2): 312-323.
[6] 陈京元, 位云生, 王军磊, 于伟, 齐亚东, 吴建发, 罗万静. 页岩气井间干扰分析及井距优化[J]. 天然气地球科学, 2021, 32(7): 931-940.
[7] 王志荣, 温震洋, 陈玲霞. 水力压裂条件下裂隙性煤储层垂直试验井产能预测[J]. 天然气地球科学, 2021, 32(4): 465-471.
[8] 刘齐, 陈强, 孙中光, 胡千庭. 煤层不同类型裂缝应力敏感性实验——以阜新盆地煤样为例[J]. 天然气地球科学, 2021, 32(3): 437-446.
[9] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2): 215-232.
[10] 卢宇, 赵志恒, 李海涛, 刘畅, 罗红文, 肖晖. 页岩储层多簇限流射孔裂缝扩展规律[J]. 天然气地球科学, 2021, 32(2): 268-273.
[11] 李海涛, 张庆, 于皓, 辛野, 罗红文, 向雨行, 李颖, 叶铠睿. 水平井分段压裂注液过程中温度分布预测[J]. 天然气地球科学, 2021, 32(11): 1601-1609.
[12] 王鹏威, 张亚雄, 刘忠宝, 陈筱, 李飞, 郝景宇, 王濡岳. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学, 2021, 32(11): 1724-1734.
[13] 邵晓州, 王苗苗, 惠潇, 王淑敏, 张晓磊, 齐亚林. 鄂尔多斯盆地盐池地区裂缝特征、形成期次及发育模式[J]. 天然气地球科学, 2021, 32(10): 1501-1513.
[14] 熊健, 刘峻杰, 吴俊, 刘向君, 王振林, 梁利喜, 张磊. 致密储层压裂缝扩展规律与可压裂性评价[J]. 天然气地球科学, 2021, 32(10): 1581-1591.
[15] 刘子雄, 常菁铉, 李新发, 张新臣, 张静, 张庆九. 基于裂缝监测的致密储层压裂裂缝走向预测[J]. 天然气地球科学, 2020, 31(6): 846-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任岚, 吴建军, 林然, 赵金洲, 谭秀成, 吴建发, 宋毅. 基于数值岩心重构模型的页岩渗透率影响机制分析[J]. 天然气地球科学, 2022, 33(4): 495 -511 .
[2] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512 -519 .
[3] 王蓓, 彭先, 李骞, 王娟, 冯曦, 佘娟, 李滔, 蔡珺君. 川西北栖霞组超深层气藏储渗类型及开发响应模式[J]. 天然气地球科学, 2022, 33(4): 520 -532 .
[4] 何海清,梁世君,郭绪杰,罗劝生,王居峰,陈旋,杨帆,肖冬生,张华. 吐哈盆地洼陷区中下侏罗统岩性油气藏风险勘探新发现及勘探前景[J]. 天然气地球科学, 2022, 33(7): 1025 -1035 .
[5] 曲希玉,苗长盛,李瑞磊,朱建峰,徐文,刘英男. 致密碎屑岩储层物性影响因素及优质储层主控因素——以松辽盆地长岭断陷龙凤山次凹营城组为例[J]. 天然气地球科学, 2022, 33(7): 1036 -1048 .
[6] 郭飞飞. 南襄盆地南阳凹陷古近系核桃园组三段储层流体包裹体特征与成藏期次[J]. 天然气地球科学, 2022, 33(7): 1049 -1059 .
[7] 李旋,赵俊峰,王迪,胡超,赵旭东,王科,管斌,张海龙. 柴达木盆地西部地区早—中侏罗世沉积体系与古气候环境探讨[J]. 天然气地球科学, 2022, 33(7): 1060 -1073 .
[8] 杨润泽,刘海涛,李宏军,赵长毅,李传明. 渤海湾盆地黄骅坳陷深部煤系地层油气成藏机理与模式[J]. 天然气地球科学, 2022, 33(7): 1074 -1090 .
[9] 何建华,李勇,邓虎成,唐建明,王园园. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价[J]. 天然气地球科学, 2022, 33(7): 1102 -1116 .
[10] 马军,房大志,张培先,谷红陶,胡春锋,卢比,程轶妍,高全芳,万静雅. 渝东南地区阳春沟构造带五峰组—龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117 -1131 .