天然气地球科学 ›› 2022, Vol. 33 ›› Issue (7): 1175–1188.doi: 10.11764/j.issn.1672-1926.2022.01.003

• 综述与评述 • 上一篇    下一篇

白云岩储层成因研究进展及发展趋势

苏中堂1,2(),佘伟1,廖慧鸿1,胡孙龙1,刘国庆1,马慧1   

  1. 1.成都理工大学沉积地质研究院,四川 成都 610059
    2.油气藏地质及开发工程国家重点实验室(成都理工大学),四川 成都 610059
  • 收稿日期:2021-06-06 修回日期:2021-12-30 出版日期:2022-07-10 发布日期:2022-07-11
  • 作者简介:苏中堂(1981-),男,甘肃靖远人,副教授,博士,主要从事沉积地质学研究和教学工作. E-mail:suzhongtang2012@cdut.edu.cn.
  • 基金资助:
    国家自然科学基金项目(41302087)

Research progress and development trend of the genesis of dolomite reservoirs

Zhongtang SU1,2(),Wei SHE1,Huihong LIAO1,Sunlong HU1,Guoqing LIU1,Hui MA1   

  1. 1.Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology),Chengdu 610059,China
  • Received:2021-06-06 Revised:2021-12-30 Online:2022-07-10 Published:2022-07-11
  • Supported by:
    The National Natural Science Foundation of China(41302087)

摘要:

白云岩储层占全球油气储层近1/4,因深埋条件下更易保持孔隙而成为石油地质学家关注重点。白云岩储层有效孔隙可源于前驱灰岩、封闭体系白云岩化作用和成岩溶蚀改造;白云岩化作用可以增加、保持、减少孔隙,并非一定形成储层,却能提高岩石渗透率;早期白云岩化作用和适度重结晶作用有利于形成储层。白云岩抗压性、脆性更优,且易于发育裂缝,深埋条件更易保存孔隙;白云岩成因模式反映白云岩化作用方式与水文条件,有助于预测储层分布规律。稀土元素、Mg同位素成为示踪白云岩化流体新技术,碳酸盐岩U?Pb定年技术、二元同位素测温技术使储层成因认识更精准,实验与数值模拟推动储层表征向动态化发展,地质大数据有助于揭示白云岩储层成因更多规律性认识。

关键词: 孔隙成因, 白云岩化模式, 重结晶作用, 数值模拟, 二元同位素, 碳酸盐岩定年

Abstract:

Dolomite reservoirs account for nearly a quarter of the global oil and gas reservoirs, and they have become the focus of petroleum geologists because of their pores in depth. The effective pores of dolomite reservoirs can originate from precursor limestone, dolomitization in the closed system, and diagenetic dissolution reformation. Dolomitization can increase, maintain, and reduce pores, but does not necessarily form a reservoir. Dolomitization can increase the permeability of the rock, enhance the compressive performance of the rock, and easily form cracks. Early dolomitization and moderate recrystallization are conducive to the formation of reservoirs. The dolomite genetic model reflects the method of dolomitization and hydrological conditions, and the genetic model of dolomite is helpful to predict the distribution of reservoirs. Rare earth elements and Mg isotopes have become new technologies for tracing dolomitization fluids. In-situ U-Pb dating technology of carbonate and cluster isotope technology have promoted more accurate genetic research, and experiments and numerical simulations have promoted dynamic reservoir characterization. Geological big data will reveal more laws of reservoir development.

Key words: Pore origin, Dolomitization model, Recrystallization, Numerical simulation, Cluster isotope, U-Pb dating of carbonate

中图分类号: 

  • TE122.2
1 马锋,杨柳明,顾家裕,等.世界白云岩油气田勘探综述[J].沉积学报,2011,29(5):1010-1021.
MA F, YANG L M, GU J Y, et al. The summary on exploration of the dolomite oilfields in the world[J].Acta Sedimentologica Sinica,2011,29(5):1010-1021.
2 SCHMOKER J W, HALLEY R B. Carbonate porosity versus depth: A predictable relation for South Florida[J].AAPG Bulletin,1982,66:2561-2570.
3 赵文智,沈安江,郑剑锋,等.塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J].中国科学:地球科学,2014,44(9):1925-1939.
ZHAO W Z, SHEN A J, ZHENG J F, et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos Basins and its implication to reservoir prediction[J].Scientia Sinica(Terrae),2014,44(9):1925-1939.
4 黄擎宇,刘伟,张艳秋,等.白云石化作用及白云岩储层研究进展[J].地球科学进展,2015,30(5):539-551.
HUANG Q Y, LIU W, ZHANG Y Q, et al. Progress of research on dolomitization and dolomite reservoir[J].Advances in Earth Science,2015,30(5):539-551.
5 陈代钊,钱一雄.深层—超深层白云岩储集层:机遇与挑战[J].古地理学报,2017,19(2):187-196.
CHEN D Z, QIAN Y X. Deep or super-deep dolostone reservoirs: Opportunities and challenges[J].Journal of Palaeogeography,2017,19(2):187-196.
6 马永生,蔡勋育,赵培荣.深层、超深层碳酸盐岩油气储层形成机理研究综述[J].地学前缘,2011,18(4):181-192.
MA Y S, CAI X Y, ZHAO P R. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J].Earth Science Frontiers,2011,18(4):181-192.
7 马永生,何登发,蔡勋育,等.中国海相碳酸盐岩的分布及油气地质基础问题[J].岩石学报,2017,33(4):1007-1020.
MA Y S, HE D F, CAI X Y, et al. Distribution and fundamental science questions for petroleum geology of marine carbonate in China[J].Acta Petrologica Sinica,2017,33(4):1007-1020.
8 马永生,何治亮,赵培荣.深层—超深层碳酸盐岩储层形成机理新进展[J].石油学报,2019,40(12):1415-1425.
MA Y S, HE Z L, ZHAO P R. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J].Acta Petrolei Sinica,2019,40(12):1415-1425.
9 何治亮,马永生,张军涛,等.中国的白云岩与白云岩储层:分布、成因与控制因素[J].石油与天然气地质,2020,41(1):1-14.
HE Z L, MA Y S, ZHANG J T, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J].Oil & Gas Geology,2020,41(1):1-14.
10 何治亮,马永生,朱东亚,等.深层—超深层碳酸盐岩储层理论技术进展与攻关方向[J].石油与天然气地质,2021,42(3):533-546.
HE Z L,MA Y S,ZHU D Y, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology,2021,42(3):533-546.
11 WEYL P K. Porosity through dolomitization: Conservation of mass requirements[J].Journal of Sedimentary Petrology,1960,30(1):85-90.
12 PURSER B H,BROWN A,AISSAOU D M. Origins and evo-lution of porosity in dolomites[M]// JOHN WILEY & SONS, Dolomites: A Volume in Honour of Dolomieu. Berlin: Springer,1994:281-308.
13 WARREN J. Dolomite: Occurrence, evolution and economically important associations[J].Earth-Science Reviews,2000,52(1-3):1-81.
14 赵文智,沈安江,胡素云,等.中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J].石油勘探与开发,2012,39(1):1-12.
ZHAO W Z, SHEN A J, HU S Y, et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development,2012,39(1):1-12.
15 沈安江,赵文智,胡安平,等.海相碳酸盐岩储集层发育主控因素[J].石油勘探与开发,2015,42(5):545-554.
SHEN A J, ZHAO W Z, HU A P, et al. Major factors controlling the development of marine carbonate reservoirs[J].Petroleum Exploration and Development,2015,42(5):545-554.
16 马永生,郭彤楼,赵雪凤,等.普光气田深部优质白云岩储层形成机制[J].中国科学(D辑:地球科学),2007,37(S2):43-52.
MA Y S, GUO T L, ZHAO X F, et al. Formation mechanism of deep high-quality dolomite reservoir in Puguang Gas Field[J]. Science in China(Series D: Earth Sciences),2007,37(S2):43-52.
17 马永生,蔡勋育,赵培荣.元坝气田长兴组—飞仙关组礁滩相储层特征和形成机理[J]. 石油学报,2014,35(6):1001-1011.
MA Y S, CAI X Y, ZHAO P R. Characteristics and formation mechanisms of reef-shoal carbonate reservoirs of Changxing-Feixianguan formations, Yuanba Gas Field[J].Acta Petrolei Sinica,2014,35(6):1001-1011.
18 陈彦华,刘莺,孙妥.白云岩化过程中岩石孔隙体积的变化[J].石油实验地质,1985,7(1):29-37.
CHEN Y H,LIU Y, SUN T. Changes of pore volume in dolomitization[J]. Petroleum Geology & Experiment,1985,7(1):29-37.
19 张学丰,刘波,蔡忠贤,等.白云岩化作用与碳酸盐岩储层物性[J].地质科技情报,2010,29(3):79-87.
ZHANG X F, LIU B, CAI Z X, et al. Dolomitization and carbonate reservoir formation[J]. Bulletin of Geological Science and Technology,2010,29(3):79-87.
20 HALLEY R B, SCHMOKER J W. High porosity Cenozoic carbonate rocks of South Florida: Progressive loss of porosity with depth[J].AAPG Bulletin,1983,67(2):191-200.
21 LUCIA F J, MAJOR R P. Porosity evolution through hypersaline reflux dolomitization[C]// PURSER B, TUCKER M, ZENGER D. Dolomites: A Volume in Honour of Folomieu. [S.l.]: International Association of Sedimentologists Special Publication,1994,21:325-341.
22 SALLER A H,HENDERSON N. Distribution of porosity and permeability in platform dolomites: Insight from the Permian of west Texas:Reply[J].AAPG Bulletin,2001,85:530-532.
23 黄思静,吕杰,兰叶芳,等.四川盆地西部中二叠统白云岩/石的主要结构类型——兼论其与川东北上二叠统—三叠系白云岩/石的差异[J].岩石学报,2011,27(8):2253-2262.
HUANG S J, LV J, LAN Y F, et al. The main texture of dolomite of Middle Permian, western Sichuan Basin: Concurrently on the differences with Upper Permian-Triassic, northeast Sichuan Basin[J].Acta Petrologica Sinica,2011,27(8):2253-2262.
24 黄思静,卿海若,胡作维,等.封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J].岩石学报,2007,23(11):2955-2962.
HUANG S J, QING H R, HU Z W, et al. Closed-system dolomitization and the significance for petroleum and economic geology: An example from Feixianguan carbonates, Triassic NE Sichuan Basin of China[J].Acta Petrologica Sinica,2007,23(11):2955-2962.
25 黄思静,张雪花,刘丽红,等.碳酸盐成岩作用研究现状与前瞻[J].地学前缘,2009,16(5):457-464.
HUANG S J,ZHANG X H,LIU L H,et al.Progress of resea-rch on carbonate diagenesis[J]. Earth Science Frontiers,2009,16(5):457-464.
26 LAND L S. The isotopic and trace element geochemistry of dolomite: The state of the art[M]//ZENGER D H, DUNHAM J B, ETHINGTON R L. Concepts and Models of Dolomitization.[S.l.]:Society for Sedimentary Geology Special Publications,1980,28:87-110.
27 WARDIAW N C, TAYLOR R P. Mercury caplillary pressure curves and the interpretion of pore structure and capillary behavior in reservoir rocks[J].Bulletin of Canadian Petroleum Geology,1976,24(2):225-262.
28 WOODY R E, GREGG J M, KOEDERITZ L F. Effect of texture on petrophysical properties of dolomite: Evidence from the Cambrian-Ordovician of southeastern Missouri[J].AAPG Bulletin,1996,80:119-132.
29 朱井泉,吴仕强,王国学,等.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
ZHU J Q, WU S Q, WANG G X, et al. Types and porosity characteristics of the Cambrian-Ordovician dolostones in Tarim Basin[J].Earth Science Frontiers,2008,15(2):67-79.
30 黄擎宇,张哨楠,张斯杨,等.白云岩结构对储集空间发育的控制作用——以塔里木盆地中央隆起区寒武系—奥陶系白云岩为例[J].天然气地球科学,2014,25(3): 341-350,470.
HUANG Q Y, ZHANG S N, ZHANG S Y, et al. Textural control on the development of dolomite reservoir: A study from the Cambrian-Ordovician dolomite, central Tarim Basin, NW China[J].Natural Gas Geoscience,2014,25(3):341-350,470.
31 MURRAY R C. Origin of porosity in carbonate rocks[J].Journal of Sedimentary Petrology,1960,30:59-84.
32 MELIM L A, ANSELMETTI F S, EBERLI G P. The importance of pore type on permeability of Neogene carbonates, great Bahama bank[C]//GINSBURG R N. Subsurface Geology of A Prograding Carbonate Platform Margin, Great Bahama Bank Results of the Bahamas Drilling Project.[S.l.]:SEPM Special Publication,2001:217-238.
33 LUCIA F J. Origin and petrophysics of dolostone pore space[C]//BRAITHWAITE C J R, RIZZI G, DARKE G. The Geometry and Petrogenesis of Dolomite Hydrocarbon.[S.l.]: Geological Society Special Publication,2004:141-155.
34 张涛,闫相宾.塔里木盆地深层碳酸盐岩储层主控因素探讨[J].石油与天然气地质,2007,28(6):745-754.
ZHANG T,YAN X B. A discussion on main factors controlling deep carbonate reservoirs in the Tarim Basin[J].Oil & Gas Geology,2007,28(6):745-754.
35 何江,冯春强,马岚,等.风化壳古岩溶型碳酸盐岩储层成岩作用与成岩相[J].石油实验地质,2015,37(1):8-16.
HE J, FENG C Q, MA L, et al. Diagenesis and diagenetic facies of crust-weathered ancient karst carbonate reservoirs[J].Petroleum Geology & Experiment,2015,37(1):8-16.
36 罗啸泉,郭东晓,蓝江华.威远气田震旦系灯影组古岩溶与成藏探讨[J].沉积与特提斯地质,2001,21(4):54-60.
LUO X Q, GUO D X, LAN J H. An approach to the palaeokarsts and pool accumulation in the Dengying Formation (Sinian) of the Weiyuan Gas Field, Sichuan[J].Sedimentary Geology and Tethyan Geology,2001,21(4):54-60.
37 沈安江,赵文智,胡安平,等.碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J].石油勘探与开发,2021,48(3):476-487.
SHEN A J, ZHAO W Z, HU A P, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J].Petroleum Exploration and Development,2021,48(3):476-487.
38 杨俊杰,张文正,黄思静,等.埋藏成岩作用的温压条件下,白云岩溶解过程的实验模拟研究[J].沉积学报,1995,13(3):83-88.
YANG J J, ZHANG W Z, HUANG S J, et al. Experimental simulation for dolomite dissolution under the conditions of burial temperature and pressure[J].Acta Sedimentologica Sinica,1995,13(3):83-88.
39 范明,胡凯,蒋小琼,等.酸性流体对碳酸盐岩储层的改造作用[J].地球化学,2009,38(1):20-26.
FAN M,HU K,JIANG X Q,et al.Effect of acid fluid on carbo-nate reservoir reconstruction[J]. Geochimica,2009,38(1):20-26.
40 黄康俊,王炜,鲍征宇,等.埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用:溶解动力学实验研究[J].地球化学,2011,40(3):289-300.
HUANG K J, WANG W, BAO Z Y, et al. Dissolution and alteration of Feixianguan Formation in the Sichuan Basin by organic acid fluids under burial condition: Kinetic dissolution experiments[J].Geochimica,2011,40(3): 289-300.
41 佘敏,寿建峰,沈安江,等.从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J].地球化学,2014,43(3):276-286.
SHE M, SHOU J F, SHEN A J, et al. Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigenesis to deep burial environments[J].Geo-chimica,2014,43(3):276-286.
42 蔡春芳,李宏涛.沉积盆地热化学硫酸盐还原作用评述[J].地球科学进展,2005,20(10):1100-1105.
CAI C F, LI H T. Thermochemical sulfate reduction in sedimentary basins:A review[J].Advances in Earth Science,2005,20(10):1100-1105.
43 朱光有,张水昌,梁英波,等.TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J].岩石学报,2006,22(8):2182-2194.
ZHU G Y,ZHANG S C,LIANG Y B,et al.Dissolution and alteration of the deep carbonate reservoirs by TSR:An important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J].Acta Petrologica Sinica,2006,22(8):2182-2194.
44 马永生,蔡勋育,赵培荣,等.深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式——以四川普光气田为例[J].地质学报,2010,84(8):3-10.
MA Y S, CAI X Y, ZHAO P R, et al. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: A case study from the Puguang Oilfield in Sichuan[J].Acta Geologica Sinica,2010,84(8):3-10.
45 黄思静,黄可可,张雪花,等.碳酸盐岩倒退溶解模式的化学热力学基础——与CO2有关的溶解介质[J].成都理工大学学报(自然科学版),2009,36(5):457-464.
HUANG S J, HUANG K K, ZHANG X H, et al. Chemical thermodynamics foundation of retrograde solubility for carbonate: Solution media related to CO2[J].Journal of Chengdu University of Technology(Science & Technology Edition),2009,36(5):457-464.
46 黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社,2010.
HUANG S J. Carbonate Diagenesis[M].Beijing: Geological Publishing House,2010.
47 DAVIES G R, SMITH L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J].AAPG Bulletin,2006,90(11):1641-1690.
48 陈代钊.构造—热液白云岩化作用与白云岩储层[J].石油与天然气地质,2008,29(5):614-622.
CHEN D Z. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J].Oil & Gas Geology,2008,29(5):614-622.
49 杨海军,李开开,潘文庆,等.塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用[J].岩石学报,2012,28(3):783-792.
YANG H J, LI K K, PAN W Q, et al. Burial hydrothermal dissolution fluid activity and its transforming effect on the reservoirs in Ordovician in central Tarim[J].Acta Petrologica Sinica,2012,28(3):783-792.
50 孟祥豪,张哨楠,蔺军,等.塔深1井寒武系白云岩储层同位素流体地球化学示踪[J].矿物岩石,2009,29(4):75-82.
MENG X H, ZHANG S N, LIN J, et al. Geochemical tracing of isotopic fluid of the Cambrian dolomite reservoir in Well Tashen 1[J].Mineralogy and Petrology,2009,29(4):75-82.
51 LUCIA F J. Carbonate Reservoir Characterization(Second Edition)[M].New York: Springer Berlin Heidelberg,2007.
52 王珊,曹颖辉,杜德道,等.塔里木盆地古城地区奥陶系鹰山组白云岩特征及孔隙成因[J].岩石学报,2020,36(11):3477-3492.
WANG S, CAO Y H, DU D D, et al. Characteristics and pore genesis of dolomite in Ordovician Yingshan Formation in Gucheng area, Tarim Basin[J].Acta Petrologica Sinica,2020,36(11):3477-3492.
53 MA Y S, GUO X S, GUO T L, et al. The Puguang Gas Field: New giant discovery in the mature Sichuan Basin, Southwest China[J].AAPG Bulletin,2007,91(5):627-643.
54 MACHEL H G, ANDERSON J H. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta[J].Journal of Sedimentary Petrology,1989,59:891-911.
55 MOORE C H, HEYDARI E. Burial diagenesis and hydrocarbon migration in platform limestones: A conceptual model based on the Upper Jurassic of the Gulf Coast of the USA[J].AAPG Bulletin,1993,77:213-229.
56 NING M, LANG X, HUANG K, et al. Towards understanding the origin of massive dolostones[J].Earth and Planetary Science Letters,2020,545:116-123.
57 SIBLEY D F, DEDOES R E, BARTLETT T R. Kinetics of dolomitization[J].Geology,1987,15(12):327.
58 MACHEL H G. Concepts and models of dolomitization: A critical reappraisal[J].Geological Society London Special Publications,2004,235(1):7-63.
59 WAHLMAN G P. Reflux dolomite crystal size variation in cyclic inner ramp reservoir facies, Bromide Formation(Ordovician), Arkoma Basin, southeastern Oklahoma[J].The Sedimentary Record,2010,8(3):4-9.
60 BURNS S J, MCKENZIE J A, VASCONCELOS C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J].Sedimentology,2000,47:49-61.
61 MASTANDRE A,PERRI E,RUSSO F,et al. Microbial primary dolomite from a Norian carbonate platform, northern Calabria,southern Italy[J].Sedimentology,2006,53(3):465-480.
62 MCKENZIE J A, VASCONCELOS C. Dolomite mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives[J].Sedimentology,2009,56(1):205-219.
63 由雪莲,孙枢,朱井泉,等.微生物白云岩模式研究进展[J].地学前缘,2011,18(4):52-64.
YOU X L, SUN S, ZHU J Q, et al. Progress in the study of microbial dolomite model[J].Earth Science Frontiers,2011,18(4):52-64.
64 PETRASH D A, BIALIK O M, BONTOGNNALI T, et al. Microbially catalyzed dolomite formation: From near-surface to burial[J].Earth-Science Reviews,2017,171:558-582.
65 BRAISSTANT O, CAILLEAU G, DUPRAZ C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids[J].Journal of Sedimentary Research,2003,73(3):485-490.
66 RIVADENEYRA M A, PARRAGA J, DELGADO R, et al. Biomineralization of carbonates by Halobacillus Trueperi in solid and liquid media with different salinities[J].FEMS Microbiology Ecology,2004,48(1):39-46.
67 KENWARD P A, FOWLE D A, GOLDSTEIN R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J].AAPG Bulletin,2013,97(11):2113-2125.
68 罗平,王石,李朋威,等.微生物碳酸盐岩油气储层研究现状与展望[J].沉积学报,2013,31(5):807-823.
LUO P, WANG S, LI P W, et al. Review and prospectives of microbial carbonate reservoirs[J].Acta Sedimentologica Sinica,2013,31(5):807-823.
69 MCKENZIE J A, HSU K J, SCHNEIDER J E. Movement of subsurface waters under the Sabkha, Abu Dhabi, UAE, and its relation to evaporative dolostone genesis[J].SEPM Society for Sedimentary Geology,1980,28:11-30.
70 ADAMS J E, RHODES M L. Dolomitization by seepage refluxion[J].AAPG Bulletin,1961,44:1921-1920.
71 BADIOZAMANI K. The dorag dolomitization model, application to the middle Ordovician of Wisconsin[J].Journal of Sedimentary Research,1973,43(4):965-984.
72 MATTES B W, MOUNTJOY E W. Burial dolomitization of the Upper Devonian Miette Buildup, Jasper national park, Alberta[M]//ZENGER D H. DUNHAM J B, ETHINGTON R L, eds. Concepts and Models of Dolomitization. New York: SEPM Special Publications,1980:259-297.
73 JONES G D, ROSTRON B J. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models[J]. Bulletin of Canadian Petroleum Geology,2000,48(3):230-245.
74 JONES G D, SMART P L, WHITAKER F F, et al. Numerical modeling of reflux dolomitization in the Grosmont platform complex(Upper Devonian), western Canada sedimentary basin[J].AAPG Bulletin,2003,87(8):1273-298.
75 LUCZAJ J A. Evidence against the dorag(mixing-zone) model for dolomitization along the Wisconsin arch: A case for hydrothermal diagenesis[J].AAPG Bulletin,2006,90(11):1719-1738.
76 WHITAKER F F, SMART P L, JONES G D. Dolomitization: From conceptual to numerical models[J].Geological Society London,Special Publications,2004,235(1):99-139.
77 LAND L S. The origin of massive dolomite[J].Journal of Geological Education,1985,33:112-125.
78 KUPECZ J A. MONTANEZ I P, GAO G Q. Recrystallization of dolomite with time[M]//REZAK R, et al. Carbonate Microfabrics. Berlin: Springer-Verlag,1993: 87-193.
79 MACHEL H G. Recrystallization versus neomorphism, and the concept of ‘significant recrystallization’ in dolomite research[J].Sedimentary Geology,1997,113:161-168.
80 AlAASM I S. Chemical and isotopic constraints for recrystallization of sedimentary dolomites from the western Canada sedimentary basin[J].Aquatic Geochemistry,2000,6:227-248.
81 LUKOCZKI G, HASS J, GREGG J M, et al. Early dolomitization and partial burial recrystallization: A case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data[J].International Journal of Earth Sciences,2020,109:1051-1070.
82 AMTHOR J E, MOUNTJOY E W, MACHEL H G. Regional-scale porosity and permeability variations in Upper Devonian Leduc buildups: Implications for reservoir development and prediction in carbonates[J].AAPG Bulletin,1994,78(10):1541-1559.
83 J.H.SCHÖN.岩石物理特性手册[M]. 魏新善,曹青,程国建,等译.北京:石油工业出版社,2016.
SCHÖN J H. Physical Properties of Rocks: A workbook[M].WEI X S, CAO Q,CHENG G J, et al. translated. Beijing: Petroleum Industry Press,2016.
84 HUGMAN R H H, FRIEDMAN G M. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks[J].AAPG Bulletin,1979,63(9):1478-1489.
85 EHRENBERG S N, EBERLI G P, KERAMATI M, et al. Porosity-permeability relationships in interlayered limestone-dolostone reservoirs[J].AAPG Bulletin,2006,90(1):91-114.
86 JARDINE D, WILSHART J W. Carbonate reservoir description(in reservoir sedimentology)[J].Society of Economic Paleotologists and Mineralogists,1987,40:129-152.
87 GREEN D G, MOUNTJOY E W. Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta deep basin[J].Bulletin of Canadian Petroleum Geology,2005,53(2):101-129.
88 ALAGARSAMY R, YOU C F, NATH B N, et al. Determination of rare earth, major and trace elements in authigenic fraction of Andaman Sea(northeastern Indian Ocean) sediments by inductively coupled plasma-mass spectrometry[J].Microchemical Journal,2010,94(1):90-97.
89 BANNER J L, HANSON G N, MEYERS W J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis[J].Karnataka Journal of Agricultural Sciences,1988,58(3):415-432.
90 MCLENNAN S M. Archean sedimentary rocks and the archean mantle[M]//ASHWAL L D. Workshop on the Archean Mantle. Houston: Lunar and Planetary Institute,1989: 57.
91 胡文瑄,陈琪,王小林,等.白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J].石油与天然气地质,2010,31(6):810-818.
HU W X,CHEN Q, WANG X L, et al. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs[J].Oil & Gas Geology,2010,31(6):810-818.
92 胡忠贵,郑荣才,胡九珍,等.川东—渝北地区黄龙组白云岩储层稀土元素地球化学特征[J].地质学报,2009,83(6):782-790.
HU Z G, ZHENG R C, HU J Z, et al. Geochemical characteristics of rare earth elements of Huanglong Formation dolomites reservoirs in eastern Sichuan-northern Chongqing area[J].Acta Geologica Sinica,2009,83(6):782-790.
93 吴仕强,朱井泉,胡文瑄,等.塔里木盆地寒武系—奥陶系白云岩稀土元素特征及其成因意义[J].现代地质,2009,23(4):638-647.
WU S Q, ZHU J Q, HU W X, et al. Rare earth element geochemistry characteristics of Cambrian-Ordovician dolostones in the Tarim Basin and their implications for the origin[J].Geoscience,2009,23(4):638-647.
94 韩银学,李忠,韩登林,等.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报,2009,25(10):2405-2416.
HAN Y X, LI Z, HAN D L, et al. REE characteristics of matrix dolomites and its origin of Lower Ordovidan in eastern Tabei area,Tarim Basin[J]. Acta Petrologica Sinica,2009,25(10):2405-2416.
95 苏中堂,陈洪德,徐粉燕,等.鄂尔多斯盆地马家沟组白云岩稀土元素地球化学特征[J].吉林大学学报(地球科学版),2012,42(S2):53-61.
SU Z T, CHEN H D, XU F Y, et al. REE characters of the Majiagou dolomites in Ordos Basin[J].Journal of Jilin University(Earth Science Edition),2012,42(S2):53-61.
96 江文剑,侯明才,邢凤存,等.川东南地区娄山关群白云岩稀土元素特征及其意义[J].石油与天然气地质,2016,37(4):473-482.
JIANG W J, HOU M C, XING F C, et al. Characteristics and indications of rare earth elements in dolomite of the Cambrian Loushanguan Group, SE Sichuan Basin[J]. Oil & Gas Geology,2016,37(4):473-482.
97 GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: Insight from Speleothem Formation[J].Earth and Planetary Science Letters,2002,201(1):105-115.
98 WIMPENNY J, BURTON K W, JAMES R H, et al. The behavior of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland[J].Earth and Planetary Science Letters,2011,304(1-2):260-269.
99 FANTLE M S, HIGGINS J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg[J].Geochimica et Cosmochimica Acta,2014,142:458-481.
100 董爱国,朱祥坤.表生环境中镁同位素的地球化学循环[J].地球科学进展,2016,31(1):43-58.
DONG A G, ZHU X K. Mg isotope geochemical cycle in supergene environment[J].Advances in Earth Science,2016,31(1):43-58.
101 AZMY K, LAVOIE D, WANDG Z R, et al. Magnesium-isotope and REE compositions of Lower Ordovician carbonates from eastern Laurentia: Implications for the origin of dolomites and limestones[J].Chemical Geology,2013,356:64-75.
102 MAVROMATIS V, MEISTERE P, OELKERS E H. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin[J].Chemical Geology,2014,385:84-91.
103 GESKE A, GOLDSTEIN R H, MAVROMATIS V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J].Geochimica et Cosmochimica Acta,2015,149:131-151.
104 HUANG K J, SHEN B, LANG X G, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates[J].Geochimica et Cosmochimica Acta,2015,164:333-351.
105 甯濛,黄康俊,沈冰.镁同位素在“白云岩问题”研究中的应用及进展[J].岩石学报,2018,34(12):3690-3708.
NING M, HUANG K J, SHEN B. Applications and advances of the magnesium isotope on the ‘dolomite problem’[J].Acta Petrologica Sinica,2018,34(12):3690-3708.
106 韩志宇,王菲,师文贝.沉积岩定年及应用:问题与展望[J].沉积学报,2022,40(2): 360-379.
HAN Z Y, WANG F, SHI W B. Dating and application for sedimentary rocks: Problems and prospects[J]. Acta Sedimentologica,2022,40(2): 360-379.
107 LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology,2014,376:76-83.
108 NURIEL P, WEINBERGER R, KYLANDER-CLARK A R C, et al. The onset of the Dead Sea transform based on calcite age-strain analyses[J]. Geology,2017,45(7):587-590.
109 刘恩涛,赵建新,潘松圻,等.盆地流体年代学研究新技术:方解石激光原位U—Pb定年法[J].地球科学,2019,44(3):698-712.
LIU E T, ZHAO J X, PAN S Q, et al. A new technology of basin fluid geochronology: In-situ U-Pb dating of calcite[J].Earth Science,2019,44(3):698-712.
110 沈安江,胡安平,程婷,等.激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J].石油勘探与开发,2019,46(6):1062-1074.
SHEN A J, HU A P, CHENG T, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J].Petroleum Exploration and Development,2019,46(6):1062-1074.
111 EILER J M. ‘Clumped-isotope’ geochemistry: The study of naturally-occurring,multiply-substituted isotopologues[J]. Earth and Planetary Science Letters,2007,262(3-4):309-327.
112 FERRY J M, PASSEY B H, VASCONCELOS C, et al. Formation of dolomite at 40-80℃ in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry[J].Geology,2011,39(6):571-574.
113 HUNTINGTON K W, BUDD D A, WERNICKEB P, et al. Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite[J].Journal of Sedimentary Research,2011,81(9):656-669.
114 李平平,马倩倩,邹华耀,等.团簇同位素的基本原理与地质应用[J].古地理学报,2017,19(4):713-728.
LI P P, MA Q Q, ZOU H Y, et al. Basic principle of clumped isotopes and geological applications[J].Journal of Palaeogeography,2017,19(4):713-728.
115 李平平,王淳,邹华耀,等.团簇同位素在白云岩化流体恢复中的应用与局限性[J].石油与天然气地质,2021,42(3):738-746.
LI P P, WANG C, ZOU H Y, et al. Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J].Oil & Gas Geology,2021,42(3):738-746.
116 胡安平,李秀芝,蒋义敏,等.碳酸盐岩储层微区地球化学分析技术的发展及应用[J].天然气地球科学,2014,25(1):116-123.
HU A P, LI X Z, JIANG Y M, et al. Development and application of microarea geochemistry analysis technology for carbonate reservoirs[J].Natural Gas Geoscience,2014,25(1):116-123.
117 张天付,谢淑云,鲍征宇,等.基于高分辨率CT的孔隙型白云岩储层孔隙系统分形与多重分形研究[J].地质科技情报,2016,35(6):55-62.
ZHANG T F, XIE S Y, BAO Z Y, et al. Fractal and multifractal research on pore system for porous dolomite reservoirs based on high-resolution CT[J].Bulletin of Geological Science and Technology,2016,35(6):55-62.
118 朱可丹,张友,林彤,等.基于CT成像的白云岩储层孔喉非均质性分析——以塔东古城地区奥陶系GC601井鹰三段为例[J].石油与天然气地质,2020,41(4):862-873.
ZHU K D, ZHANG Y, LIN T, et al. Pore-throat heterogeneity in dolomite reservoirs based on CT imaging: A case study of the 3rd Member of the Ordovician Yingshan Formation in Well GC601 in Gucheng area, eastern Tarim Basin[J].Oil & Gas Geology,2020,41(4):862-873.
119 MANYIKA J, CHUI M, BROWN B, et al. Big Data: The Next Frontier For Innovation, Competition, and Productivity[R].New York: McKinsey Global Institute,2011:156.
120 周成虎,王华,王成善,等.大数据时代的地学知识图谱研究展望[J].中国科学:地球科学,2021,51(7):1070-1079.
ZHOU C H, WANG H, WANG C S, et al. Prospects for the research on genscieance knowledge graph in the big data era[J].Scientia Sinica(Terrae),2021,51(7):1070-1079.
121 LI M, WIGNALL P B, DAI X, et al. Phanerozoic variation in dolomite abundance linked to oceanic anoxia[J].Geology,2021,49(6):698-702.
122 黄思静,杨俊杰,张文正,等.去白云化作用机理的实验模拟探讨[J].成都地质学院学报,1993,20(4):81-86.
HUANG S J, YANG J J, ZHANG W Z, et al. Experimental approach to dedolomitization[J].Journal of Chengdu University of Technology,1993,20(4):81-86.
123 黄思静,杨俊杰,张文正,等.石膏对白云岩溶解影响的实验模拟研究[J].沉积学报,1996,14(1):103-109.
HUANG S J, YANG J J, ZHANG W Z, et al. Effects of gypsum(or anhydrite) on dissolution of dolomite under different temperatures and pressures of epigenesis and burial diagenesis[J].Acta Sedimentologica Sinica,1996,14(1):103-109.
124 黄思静,成欣怡,赵杰,等.近地表温压条件下白云岩溶解过程的实验研究[J].中国岩溶,2012,31(4):2253-2262.
HUANG S J, CHENG X Y, ZHAO J, et al. Test on the dolomite dissolution under subaerial temperature and pressure[J].Carsologica Sinica,2012,31(4):2253-2262.
125 POKROVSKY O S, GOLUBV S V, SCHOTT J, et al. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins[J].Chemical Geology,2009,265(1-2):20-32.
126 佘敏,蒋义敏,胡安平,等.碳酸盐岩溶蚀模拟实验技术进展及应用[J].海相油气地质,2020,25(1):12-21.
SHE M, JIANG Y M, HU A P, et al. The progress and application of dissolution simulation of carbonate rock[J]. Marine Origin Petroleum Geology,2020,25(1):12-21.
127 SHIELDS M J, BRADY P V. Mass balance and fluid flow constraints on regional-scale dolomitization, Late Devonian, western Canada sedimentary basin[J].Bulletin of Canadian Petroleum Geology,1995,43(4):371-392.
128 JONES G D, WHITAKER F F, SMART P L, et al. Fate of reflux brines in carbonate platforms[J].Geology,2002,30(4):371-374.
129 CASPARD E, RUDKIEWICZ J L, EBERLI G P, et al. Massive dolomitization of a Messinian reef in the Great Bahama Bank: A numerical modelling evaluation of Kohout geothermal convection[J].Geofluids,2004,4(1):40-60.
130 JONES G D, XIAO Y. Reflux dolomitization and porosity evolution: Insights from reactive transport models[C]//MCAULEY R.Dolomites-the spectrum:Mechanisms models, reservoir development. Calgary: Canadian Society of Petroleum Geologists, 2004.
131 ABARCA E, IDIART A, GRANDIA F, et al. 3D reactive transport modeling of porosity evolution in a carbonate reservoir through dolomitization[J].Chemical Geology,2019,513:184-199.
132 WANG G W, LI P P, HAO F, et al. Dolomitization process and its implications for porosity development in dolostones: A case study from the Lower Triassic Feixianguan Formation, Jiannan area, eastern Sichuan Basin, China[J].Journal of Petroleum Science and Engineering,2015,131:184-199.
133 LIU C, XIE Q B, WANG W, et al. Dolomite origin and its implication for porosity development of the carbonate gas reservoirs in the Upper Permian Changxing Formation of the eastern Sichuan Basin, South China[J].Journal of Gas Science and Engineering,2016,35:775-797.
134 胡安平,沈安江,陈娅娜,等.基于U-Pb同位素年龄和团簇同位素(△47)温度约束的四川盆地震旦系灯影组构造-埋藏史重建[J].石油实验地质,2021,43(5):896-906.
HU A P, SHEN A J, CHEN Y N, et al. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(△47)[J].Petroleum Geology & Experiment,2021,43(5):896-906.
[1] 赵军, 师执峰, 李元平, 向薪燃, 李杰, 魏纳. 天然气水合物储层导电特性模拟与饱和度计算[J]. 天然气地球科学, 2021, 32(9): 1261-1269.
[2] 熊健, 刘峻杰, 吴俊, 刘向君, 王振林, 梁利喜, 张磊. 致密储层压裂缝扩展规律与可压裂性评价[J]. 天然气地球科学, 2021, 32(10): 1581-1591.
[3] 张瑛堃, 陈尚斌, 李学元, 王慧军. 页岩气储层水力压裂扩展有限元模拟方法及应用[J]. 天然气地球科学, 2021, 32(1): 109-118.
[4] 谭伟, 何胜林, 张海荣, 丁磊, 梁玉楠. 基于自然伽马和电阻率曲线的高温高压气层孔隙度计算方法[J]. 天然气地球科学, 2020, 31(2): 307-316.
[5] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[6] 刘壮,郭建春,马辉运,周长林,苟波,任冀川. 提升高温气井酸压有效缝长方法[J]. 天然气地球科学, 2019, 30(12): 1694-1700.
[7] 胡安平,沈安江,潘立银,王永生,李娴静,韦东晓. 二元同位素在碳酸盐岩储层研究中的作用[J]. 天然气地球科学, 2018, 29(1): 17-27.
[8] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[9] 刘卫群, 王冬妮, 苏强. 基于页岩储层各向异性的双重介质模型和渗流模拟[J]. 天然气地球科学, 2016, 27(8): 1374-1379.
[10] 陈波, 王波, 管斌, 蔡智洪, 孙国强, 史基安. 柴北缘西段古近系优质储层孔隙成因类型及其控制因素[J]. 天然气地球科学, 2016, 27(8): 1454-1465.
[11] 任东, 董家辛, 王志平, 时文. 火山岩气藏气井生产动态规律及预测方法[J]. 天然气地球科学, 2016, 27(11): 2037-2042.
[12] 赵金洲,周莲莲,马建军,李勇明. 考虑解吸扩散的页岩气藏气水两相压裂数值模拟[J]. 天然气地球科学, 2015, 26(9): 1640-1645.
[13] 邵昭媛,宁宁,刘华勋,高树生,赵芳. 压裂水平井生产动态数值模拟研究[J]. 天然气地球科学, 2015, 26(4): 737-743.
[14] 高帅,曾联波,马世忠,何永宏,巩磊,赵向原,许文国,唐小梅. 致密砂岩储层不同方向构造裂缝定量预测[J]. 天然气地球科学, 2015, 26(3): 427-434.
[15] 孙嘉鑫,宁伏龙,郑明明,张凌,刘天乐,周欣,蒋国盛,Chikhotkin V F. 室内沉积物中天然气水合物形成数值模拟研究[J]. 天然气地球科学, 2015, 26(11): 2172-2184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任岚, 吴建军, 林然, 赵金洲, 谭秀成, 吴建发, 宋毅. 基于数值岩心重构模型的页岩渗透率影响机制分析[J]. 天然气地球科学, 2022, 33(4): 495 -511 .
[2] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512 -519 .
[3] 王蓓, 彭先, 李骞, 王娟, 冯曦, 佘娟, 李滔, 蔡珺君. 川西北栖霞组超深层气藏储渗类型及开发响应模式[J]. 天然气地球科学, 2022, 33(4): 520 -532 .
[4] 何海清,梁世君,郭绪杰,罗劝生,王居峰,陈旋,杨帆,肖冬生,张华. 吐哈盆地洼陷区中下侏罗统岩性油气藏风险勘探新发现及勘探前景[J]. 天然气地球科学, 2022, 33(7): 1025 -1035 .
[5] 曲希玉,苗长盛,李瑞磊,朱建峰,徐文,刘英男. 致密碎屑岩储层物性影响因素及优质储层主控因素——以松辽盆地长岭断陷龙凤山次凹营城组为例[J]. 天然气地球科学, 2022, 33(7): 1036 -1048 .
[6] 郭飞飞. 南襄盆地南阳凹陷古近系核桃园组三段储层流体包裹体特征与成藏期次[J]. 天然气地球科学, 2022, 33(7): 1049 -1059 .
[7] 李旋,赵俊峰,王迪,胡超,赵旭东,王科,管斌,张海龙. 柴达木盆地西部地区早—中侏罗世沉积体系与古气候环境探讨[J]. 天然气地球科学, 2022, 33(7): 1060 -1073 .
[8] 杨润泽,刘海涛,李宏军,赵长毅,李传明. 渤海湾盆地黄骅坳陷深部煤系地层油气成藏机理与模式[J]. 天然气地球科学, 2022, 33(7): 1074 -1090 .
[9] 何建华,李勇,邓虎成,唐建明,王园园. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价[J]. 天然气地球科学, 2022, 33(7): 1102 -1116 .
[10] 马军,房大志,张培先,谷红陶,胡春锋,卢比,程轶妍,高全芳,万静雅. 渝东南地区阳春沟构造带五峰组—龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117 -1131 .