天然气地球科学 ›› 2022, Vol. 33 ›› Issue (4): 512–519.doi: 10.11764/j.issn.1672-1926.2021.11.005

• 天然气开发 • 上一篇    下一篇

页岩气平台式井组井间干扰影响因素分析及井距优化

樊怀才(),张鉴,岳圣杰,胡浩然   

  1. 中国石油西南油气田分公司页岩气研究院,四川 成都 610051
  • 收稿日期:2021-08-06 修回日期:2021-11-11 出版日期:2022-04-10 发布日期:2022-04-22
  • 作者简介:樊怀才(1983-),男,安徽亳州人,高级工程师,博士,主要从事页岩气气藏工程及渗流理论研究. E-mail:fanhuaicai@163.com.
  • 基金资助:
    中国石油西南油气田分公司2021年科研项目“页岩气井水平段长度技术经济一体化研究”(20210304-14)

Analysis of influencing factors of interwell interference in shale gas well groups and well spacing optimization

Huaicai FAN(),Jian ZHANG,Shengjie YUE,Haoran HU   

  1. Shale Gas Research Institute of Southwest Oil & Gasfield Company,PetroChina,Chengdu 610051,China
  • Received:2021-08-06 Revised:2021-11-11 Online:2022-04-10 Published:2022-04-22
  • Supported by:
    The 2021 Scientific Research Project of PetroChina Southwest Oil and Gasfield Company(20210304-14)

摘要:

以页岩气平台井组井间干扰影响因素为研究对象,利用数值试井分析技术,研究了不同储层基质渗透率、压裂改造参数、井间距、激动强度等参数对井间干扰的影响程度。在此基础上,掌握了页岩气水平井不同生产时间的压力分布特征,明确了井间干扰对气井最终可采储量(EUR)的影响程度,形成了综合考虑气井EUR和井控地质储量采收率的井距优化分析方法。结果表明:在天然裂缝不发育、井间人工缝网未沟通的情况下,压力波在改造区外传播范围有限,页岩气平台井组井间干扰强度一般较弱,在改造区及其附近压降程度最大,优化井距时不仅要考虑井间是否有压力干扰响应,更要考虑压力干扰的强度;天然裂缝越发育、压裂改造范围越大,则井间干扰越明显,优化井距要综合考虑天然裂缝发育程度及压裂改造范围的影响;受井间干扰影响,气井EUR随井距增加而增加、但增加幅度逐渐变小,采收率则随井距增加而下降、下降幅度逐渐增大;需要根据平台井组地质工程特征,综合考虑气井EUR和井控地质储量采收率优化井距。

关键词: 页岩气, 平台式井组, 井间干扰测试, 激动强度, 井距优化

Abstract:

Taking shale gas platform well groups inter-well interference factors as the research object, using numerical well test analysis technology, the degree of impact of different reservoir matrix permeability, fracturing parameters, well spacing, activation intensity and other parameters on inter-well interference are studied. On this basis, the pressure distribution characteristics of shale gas horizontal wells at different production times were grasped, and the degree of impact of inter-well interference on gas wells’ EUR was clarified, and well spacing optimization was formed that comprehensively considered gas wells’ EUR and well-controlled geological reserve recovery factor analytical method. The results show that when the natural fractures are not developed and the artificial fracture network between wells is not communicated, the propagation range of pressure waves outside the reconstruction area is limited, and the interference intensity between well groups of shale gas platform well groups is generally weak. The pressure drop degree is the largest in the fractured zone and around. When optimizing well spacing, it is necessary to consider not only whether there is pressure interference response between wells, but also the intensity of pressure interference; the more natural fractures develop and the greater the range of fracturing reformation, the more obvious the interference between wells, and optimization well spacing should take into account the development of natural fractures and the impact of fracturing reconstruction range; affected by inter-well interference, the EUR of gas wells increases with the increase in well spacing, but the increase gradually decreases, and the recovery rate decreases with the increasing well spacing. It is necessary to optimize the well spacing based on the geological engineering characteristics of the platform well group, comprehensively considering the gas wells’ EUR and the well-controlled geological reserves recovery factor.

Key words: Shale gas, Well groups, Interwell interference test, Intensity of excitement, Optimizing well spacing

中图分类号: 

  • TE348

图1

井间干扰压力传播示意"

图2

观测井压力干扰示意"

图3

不同基质渗透率对干扰压力值的影响曲线对比"

图4

改造区不同渗透率条件下观测井压力干扰响应对比曲线"

图5

不同压裂缝半长条件下观测井压力响应对比曲线"

图6

观测井压力响应与裂缝半长关系曲线(生产400 d)"

图7

H3平台压裂微地震事件点分布"

图8

H3平台井间干扰测试曲线"

图9

不同井距相同产量条件下井间干扰压力场模拟"

图10

不同井距观测井压力压降幅度"

图11

不同配产条件下观测井压力干扰响应对比曲线"

图12

不同配产条件下观测井压力压降幅度"

图13

不同生产时间地层压降漏斗分布"

图14

天然裂缝不同发育程度条件下观测井压力变化曲线"

图15

不同压裂缝长度条件下观测井压力变化曲线"

表1

数值模拟机理模型基础参数"

层号起始深度/m终止深度/m厚度/m有效孔隙度/%含水饱和度/%基质渗透率/(10-8 μm2吸附气含量/(m3/t)
24 016.14 028.82.85.146.359.01.8
44 028.84 073.034.24.941.5121.61.8
34 073.04 077.34.34.742.1130.42.2
24 077.34 080.02.74.337.977.72.7
14 080.04 082.82.84.421.252.43.2
WF4 082.84 088.83.04.335.865.92.4

表2

模型储层基本参数"

参数名称取值
原始地层压力/MPa83.27
压力系数/(MPa/100 m)2.04
气体相对密度0.60
地层水密度/(g/cm31.05
在基准压力下水的地层体积系数1.077
水的黏度/(mPa·s)0.64
气藏温度/℃134.7
水平段长度/m1 500
压裂段数/段30
裂缝半长/m80
改造区渗透率/(10-3 μm20.03
Langmuir压力/MPa15

图16

不同井距数值模拟机理模型"

图17

不同井距条件下气井EUR模拟结果对比"

图18

不同井距条件下气井EUR及采收率分布曲线"

1 王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J].天然气地球科学, 2015, 26(9):1666-1678.
WANG S F, DONG D Z, WANG Y M, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J].Natural Gas Geoscience,2015,26(9):1666-1678.
2 杨振恒, 韩志艳, 腾格尔, 等. 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
YANG Z H, HAN Z Y, TENGER, et al. Characteristics of Wufeng-Longmaxi formations shale sweet layer:Case study of Weiyuan-Rongchang block of SINOPEC[J]. Natural Gas Geoscience, 2019,30(7): 1037-1044.
3 陈京元, 位云生, 王军磊, 等. 页岩气井间干扰分析及井距优化[J]. 天然气地球科学, 2021,32 (7): 931-940.
CHEN J Y,WEI Y S,WANG J L, et al. Interwell-production interference and well spacing optimization in shale gas reservoir [J]. Natural Gas Geoscience, 2021,32 (7): 931-940.
4 丁麟, 程峰, 于荣泽, 等. 北美地区页岩气水平井井距现状及发展趋势[J]. 天然气地球科学, 2020,31(4): 559-566.
DING L, CHENG F, YU R Z, et al. Current situation and development trend of horizontal well spacing for shale gas in North America[J].Natural Gas Geoscience,2020,31(4):559-566.
5 万玉金, 何畅, 孙玉平, 等. Haynesville页岩气产区井位部署策略与启示[J]. 天然气地球科学, 2021,32(2): 287-297.
WAN Y J, HE C, SUN Y P, et al. Well deployment strategy and enlightenment of Haynesville shale gas play[J]. Natural Gas Geoscience, 2021,32(2): 287-297.
6 巫芙蓉, 闫媛媛, 尹陈. 页岩气微地震压裂实时监测技术——以四川盆地蜀南地区为例[J]. 天然气工业, 2016,36(11): 46-50.
WU F R, YAN Y Y, YIN C. Real-time microseismic monitoring technology for hydraulic fracturing in shale gas reservoirs: A case study from the southern Sichuan Basin [J]. Natural Gas Industry, 2016,36(11): 46-50.
7 刘尧文, 廖如刚, 张远, 等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016,36(10): 56-62.
LIU Y W, LIAO R G, ZHANG Y, et al. Application of surface-downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment [J]. Natural Gas Industry, 2016,36(10): 56-62.
8 KUMAR A,SETH P, SHRIVASTAVA K,et al.Integrated analysis of tracer and pressure-interference tests to identify well interference[J]. SPE Journal, 2020,25(4):1623-1635.
9 景成, 蒲春生, 何延龙, 等. 裂缝性特低渗油藏井间示踪剂监测等效抛物型解释模型[J]. 大庆石油地质与开发, 2016,35(6): 73-81.
JING C, PU C S, HE Y L, et al. Equivalent parabolic-type interpreting model of the interwell tracer monitoring for fractured low-permeability oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016,35(6): 73-81.
10 文明, 郑国述, 陈芮, 等. 示踪剂检测法在双1井的应用[J]. 天然气工业, 2008,28(1): 110-112.
WEN M, ZHENG G S, CHEN R, et al. Application of tracer detection method in the well Shuang-1[J]. Natural Gas Industry, 2008,28(1): 110-112.
11 黄小青, 王建君, 杜悦, 等. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学,2019,30(4): 557-565.
HUANG X Q, WANG J J, DU Y, et al. Discussion on development mode of smaller well spacing and tridimensional development in the YS108 block Zhaotong National Shale Gas Demonstration area[J]. Natural Gas Geoscience, 2019,30(4): 557-565.
12 雍锐, 常程, 张德良, 等. 地质—工程—经济一体化页岩气水平井井距优化——以国家级页岩气开发示范区宁209井区为例[J]. 天然气工业, 2020,40(7): 42-48.
YONG R, CHANG C, ZHANG D L, et al. Optimization of shale-gas horizontal well spacing based on geology-engineering-economy integration: A case study of Well block Ning 209 in the National Shale Gas Development Demonstration Area[J]. Natural Gas Industry, 2020,40(7): 42-48.
13 ISHANK G, CHANDRA R, DEEPAK D, et al. Haynesville shale: Predicting long-term production and residual analysis to identify well interference and fracture hits[J]. SPE Reservoir Evaluation and Engineering,2020,23(1):132-142.
14 QIN J Z, CHENG S Q, ZHU J, et al. Integrated approach for well interference diagnosis considering complex fracture networks combining pressure and rate transient analysis.[C]. SPE Annual Technical Conference and Exhibition, Denver, Colorado,5-7 October,2020:SPE-201284-MS.
15 HE Y W, GUO J C, TANG Y, et al. Interwell Fracturing Interference Evaluation of Multi-Well Pads in Shale Gas Reservoirs: A Case Study in WY Basin[C]. SPE Annual Technical Conference and Exhibition, Virtual, 2020:SPE-201694-MS.
16 PIYUSH P, PRIYAVRAT S, PAYAM K, et al. Integrated Well Interference Modeling Reveals Optimized Well Completion and Spacing in the Marcellus Shale[C]. Annual Technical Conference and Exhibition, Dallas, 2018:SPE-191393-MS.
17 PHILIPPE V, ERIC P. A New Methodology for Naturally Fractured Reservoir Characterization: Use of Multi-Well Interference Tests Interpretation[C].SPE Europec featured at 82nd EAGE Conference and Exhibition, Virtual, 2020:SPE-200622-MS.
18 李继庆, 刘曰武, 黄灿, 等. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏, 2018,30(6): 138-144.
LI J Q, LIU Y W, HUANG C, et al. Multi-stage fracturing horizontal well interference test model and its application[J]. Lithologic Reservoirs, 2018,30(6): 138-144.
19 孙贺东. 邻井干扰条件下的多井压力恢复试井分析方法[J]. 天然气工业, 2016,36(5): 62-68.
SUN H D. Pressure buildup analysis in multi-well systems under interferences from adjacent wells[J]. Natural Gas Industry, 2016,36(5): 62-68.
20 王志刚, 孙健. 涪陵页岩气田试验井组开发实践与认识[M]. 北京: 中国石化出版社, 2014:168-182.
WANG Z G, SUN J. Practice and Recognition on the Shale Gas Well Group of Fuling Shale Gas Field[M]. Beijing: China Petrochemical Press, 2014:168-182.
21 CHEN T, SALASPORRAS R, MAO D, et al. Use of Interference Tests to Constrain the Spacing of Hydraulically Fractured Wells in Neuquen Shale Oil Reservoirs[C]. SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, 2017:SPE-185518-MS.
22 ILKAY U, WISAM A, ERDINC E. Application of Well Interference Test Using Distributed Pressure Sensors to Optimize Well Spacing in Unconventional Shale Reservoirs[C]. SPE Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, 2019:SPE-197936-MS.
23 CHU W C, KYLE D. RAY F, et al. A new technique for quantifying pressure interference in fractured horizontal shale wells[J]. SPE Reservoir Evaluation & Engineering, 2020, 23(1):143-157.
24 HE Y W, CHENG S Q, QIN J Z et al. A Novel Multi-Well Interference Testing Model of a Fractured Horizontal Well and Vertical Wells[C]. SPE Annual Technical Conference and Exhibition, Dallas, 2018:SPE-191567-MS.
25 PUNEET S, RIPUDAMAN M, ASHISH K, et al. Estimating Hydraulic Fracture Geometry by Analyzing the Pressure Interference Between Fractured Horizontal Wells[C].SPE Annual Technical Conference and Exhibition, Dallas, 2018:SPE-191492-MS.
26 SVETLANA B, REGINA F, YULIA P, et al. Development of an Approach for the Numerical Analysis of Well Interference[C].SPE Russian Petroleum Technology Conference, Moscow, 2019.
27 PUNEET S, KAUSTUBH S, ASHISH K, et al. Pressure Interference Between Fractured Horizontal Wells: Impact of Complex Fracture Growth on Offset Well Pressure Measurements[C]. 53rd U.S. Rock Mechanics/Geomechanics Symposium, New York, 2019.
28 庄惠农. 气藏动态描述和试井[M]. 北京:石油工业出版社, 2009:234-242.
ZHUANG H N. Gas Reservoir Dynamic Description and Well Testing[M]. Beijing:Petroleum Industry Press,2009:234-242.
[1] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[2] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[3] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[4] 王鹏威,刘光祥,刘忠宝,陈筱,李鹏,蔡钡钡. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440.
[5] 马元稹,王猛,李嘉敏,赵健光,贾腾飞,朱俊卿. 沁水盆地上古生界煤系页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(3): 441-450.
[6] 方镕慧, 刘晓强, 张聪, 李美俊, 夏响华, 黄志龙, 杨程宇, 韩秋雅, 汤韩琴. 温度压力耦合作用下的页岩气吸附分子模拟[J]. 天然气地球科学, 2022, 33(1): 138-152.
[7] 谢菁, 陈建洲, 徐永锋, 王国仓, 王瑾, 李青, 王琪玮. 青藏高原北部东昆仑地区三叠系八宝山组页岩储层测井评价[J]. 天然气地球科学, 2021, 32(9): 1285-1296.
[8] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[9] 席胜利, 莫午零, 刘新社, 张雷, 李剑, 黄正良, 王民, 张春林, 朱秋影, 言语, 周能武. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力——以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.
[10] 蔡灵慧, 余烨, 郭建华, 黄俨然, 郭原草. 湘中南地区中奥陶统烟溪组页岩气勘探潜力[J]. 天然气地球科学, 2021, 32(8): 1247-1260.
[11] 陈京元, 位云生, 王军磊, 于伟, 齐亚东, 吴建发, 罗万静. 页岩气井间干扰分析及井距优化[J]. 天然气地球科学, 2021, 32(7): 931-940.
[12] 文卓, 康永尚, 康刘旭, 李昀, 赵群, 王红岩. 页岩气工业建产区选区地质评价指标及其下限标准[J]. 天然气地球科学, 2021, 32(7): 950-960.
[13] 姜宇玲, 陈晓宇, 包汉勇. 页岩气分段压裂水平井产量递减快速预测新模型[J]. 天然气地球科学, 2021, 32(6): 845-850.
[14] 张光荣, 聂海宽, 唐玄, 李东晖, 孙川翔, 张培先. 基于有机孔和生物成因硅优选页岩气富集高产层段的方法及应用[J]. 天然气地球科学, 2021, 32(6): 888-898.
[15] 倪云燕, 姚立邈, 廖凤蓉, 高金亮, 陈建平, 隋建立, 张蒂嘉. 四川盆地威远返排液元素地球化学特征及排放处理建议[J]. 天然气地球科学, 2021, 32(4): 492-509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[3] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[4] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[5] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[6] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[7] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[8] . 柴达木盆地――中国第四大气区[J]. 天然气地球科学, 0, (): 9 .
[9] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[10] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .