天然气地球科学 ›› 2022, Vol. 33 ›› Issue (4): 556–571.doi: 10.11764/j.issn.1672-1926.2021.11.004

• 天然气地质学 • 上一篇    下一篇

塔里木盆地库车坳陷侏罗系阿合组与白垩系巴什基奇克组储层特征对比与勘探开发启示

王珂1,2(),张荣虎1,2,王俊鹏1,2,余朝丰1,2,杨钊1,2,唐雁刚3   

  1. 1.中国石油杭州地质研究院,浙江 杭州 310023
    2.中国石油勘探开发研究院塔里木盆地研究中心,新疆 库尔勒 841000
    3.中国石油塔里木油田公司勘探开发研究院,新疆 库尔勒 841000
  • 收稿日期:2021-05-11 修回日期:2021-11-10 出版日期:2022-04-10 发布日期:2022-04-22
  • 作者简介:王珂(1987-),男,山东郓城人,高级工程师,博士,主要从事碎屑岩储层地质研究. E?mail:wangk_hz@petrochina.com.cn.
  • 基金资助:
    中国石油“十四五”前瞻性基础课题(2021DJ0302);国家重点研发计划(2019YFC0605501)

Comparison of reservoir characteristics between Jurassic Ahe Formation and Cretaceous Bashijiqike Formation in Kuqa Depression of Tarim Basin and implications for exploration and developmentt

Ke WANG1,2(),Ronghu ZHANG1,2,Junpeng WANG1,2,Chaofeng YU1,2,Zhao YANG1,2,Yan′gang TANG3   

  1. 1.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China
    2.Tarim Basin Research Center,PetroChina Research Institute of Petroleum Exploration & Development,Korla 841000,China
    3.Research Institute of Petroleum Exploration & Development,PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2021-05-11 Revised:2021-11-10 Online:2022-04-10 Published:2022-04-22
  • Supported by:
    The Prospective and Fundemental Project of CNPC in China′s 14th Five Year Plan(2021DJ0302);the China National Key Research and Development Program(2019YFC0605501)

摘要:

塔里木盆地库车坳陷北部构造带和克拉苏构造带处于同一区域构造背景,发育相似的石油地质条件,含气目的层系分别为侏罗系阿合组和白垩系巴什基奇克组,储层特征是造成勘探开发效果差异的重要因素。系统开展阿合组与巴什基奇克组储层特征对比,对2个构造带的勘探开发均具有重要启示意义。利用岩心、薄片和成像测井等资料,从储层沉积背景、储层基质与裂缝特征以及储层敏感性等角度出发,开展阿合组和巴什基奇克组的储层特征对比分析,并在此基础上得到了2点勘探开发启示。结果表明:构造样式是控制优质储层分布的重要因素,克拉苏构造带构造样式主要为逆冲推覆作用下形成的断背斜,背斜长轴为巴什基奇克组裂缝性储层的有利分布区,在此部署井位有较大概率获得高产;北部构造带构造样式复杂,多因素控制下的阿合组裂缝—孔隙型储层成因机制和优质储层预测还需开展深入研究。储层特征与流体环境是储层改造措施制定的重要依据,巴什基奇克组储层方解石胶结物含量高、地层流体为酸性、储层酸敏性弱、构造裂缝发育,可采用酸化和压裂并举的储层改造措施;阿合组储层方解石胶结物含量低、地层流体为碱性、储层具中等酸敏性、构造裂缝较发育,储层改造措施应以压裂为主。

关键词: 沉积相, 储层裂缝, 储层敏感性, 构造样式, 优质储层分布, 储层改造措施, 库车坳陷

Abstract:

The northern tectonic belt and Kelasu tectonic belt within the Kuqa Depression are in the same regional tectonic background, and have similar petroleum geology conditions. The target strata of the two tectonic belts are Lower Jurassic Ahe Formation(J1a) and Lower Cretaceous Bashijiqike Formation(K1bs), respectively, and reservoir characteristics are important factors that lead to differences of exploration and development effect. Systematically comparison between reservoir characteristics of J1a and K1bs has significant meaning to exploration and development of both tectonic belts. From the aspects of reservoir sedimentary background, reservoir matrix and fracture characteristics, and reservoir sensitivity using core, thin sections and image logging data, the comparison of reservoir features between J1a and K1bs and its mechanism were systematically carried out. And based on analyses above, some exploration and development enlightenment were obtained. The results show two conclusions. Firstly, structural style is an important factor that controls favorable reservoir distribution. The structural style of Kelasu tectonic belt is primarily faulted anticline formed by thrusting from Tianshan orogenic belt. The long axis of anticline is favorable area of the K1bs fractured reservoir, and therefore, wells that deployed here have high probability to get high gas production. The northern tectonic belt has complex structural styles, and thus the formation mechanism and favorable reservoir prediction of J1a fractured-porous reservoir that controlled by multi-factors need further research. Secondly, reservoir characteristics and formation fluid environment are important references for reservoir reformation measure. The K1bs has high calcite cement content, acidic formation fluid, weak reservoir sensitivity, and develops tectonic fractures. Therefore to the K1bs, the reservoir reformation should use both acidizing and fracturing. While the J1a has low calcite cement content, alkaline formation fluid, moderate reservoir sensitivity, and also develop tectonic fractures. Therefore, the reservoir reformation should give priority to fracturing.

Key words: Sedimentary facies, Reservoir fracture, Reservoir sensitivity, Structural style, Favorable reservoir distribution, Reservoir reformation measure, Kuqa Depression

中图分类号: 

  • TE122.2

图1

库车坳陷北部构造带与克拉苏构造带构造位置与构造特征(a)研究区构造位置;(b)北部构造带构造特征;(c)克拉苏构造带构造特征"

图2

库车坳陷中新生界地层系统"

图3

库车坳陷北部构造带侏罗系阿合组(a)与克拉苏构造带白垩系巴什基奇克组(b)沉积相"

图4

库车坳陷北部构造带侏罗系阿合组(a)与克拉苏构造带白垩系巴什基奇克组(b)砂体与隔夹层展布剖面(剖面位置见图3)"

图5

库车坳陷北部构造带阿合组与克拉苏构造带巴什基奇克组储层岩矿组分三角图(a)阿合组岩石组分;(b)巴什基奇克组岩石组分;(c)阿合组岩屑组分;(d)巴什基奇克组岩屑组分Ⅰ:石英砂岩;Ⅱ:长石石英砂岩;Ⅲ:岩屑石英砂岩;Ⅳ:长石砂岩;Ⅴ:岩屑长石砂岩;Ⅵ:长石岩屑砂岩;Ⅶ:岩屑砂岩"

图6

库车坳陷北部构造带侏罗系阿合组与克拉苏构造带白垩系巴什基奇克组储层储集空间类型(a)依南2井,4 843.0 m,J1a,粒间溶孔、粒内溶孔及微孔隙,面孔率9%;(b)依南4井,4 375.5 m,J1a,粒内溶孔、粒间溶孔及微孔隙,面孔率8%;(c)明南1井,971.0 m,J1a,粒间溶孔及粒内溶孔,面孔率16%;(d)迪北102井,5 091.1 m,J1a,粒内溶孔及微孔隙、面孔率3%;(e)吐孜4井,4 206.9 m,J1a,粒间溶孔、粒内溶孔及微孔隙,面孔率8%;(f)迪北105X井,4 764.9 m,J1a,粒间溶孔、粒内溶孔、微孔隙及微裂缝,面孔率7%;(g)克深501井,6 421.9 m,K1bs,原生粒间孔及粒内溶孔,面孔率5%;(h)克深601井,6 084.5 m,K1bs,原生粒间孔,面孔率7%;(i)克深2-1-5井,6 734.1 m,K1bs,原生粒间孔及粒内溶孔,面孔率3%;(j)克深8井,6 731.4 m,K1bs,原生粒间孔及粒内溶孔,面孔率4%;(k)大北207井,5 783.9 m,K1bs,原生粒间孔及粒内溶孔,面孔率8%;(l)博孜104井,6 846.1 m,K1bs,原生粒间孔及粒内溶孔,面孔率6%"

图7

库车坳陷北部构造带侏罗系阿合组(a), (b)与克拉苏构造带白垩系巴什基奇克组(c), (d)岩心实测孔渗直方图"

图8

库车坳陷北部构造带侏罗系阿合组与克拉苏构造带白垩系巴什基奇克组储层裂缝特征(a)依南2井,4 966.1 m,J1a,细砂岩,直立的剪切缝,白云石少量充填;(b) 克孜1井,3 254.4 m,J1a,中—粗砂岩,高角度剪切缝,未充填;(c)吐孜4井,4 209.6 m,J1a,中砂岩,直立剪切缝,未充填;(d)依南2C井,4 751.4 m,J1a,一组穿粒缝;(e)依南4井,4 416.9 m,J1a,微裂缝网络连通孔隙;(f)依南5井,4 937.8 m,J1a,粒缘缝及穿粒缝;(g)克深504井,6 658.9 m,K1bs,细砂岩,直立张性缝,方解石半充填;(h)大北205井,5 836.0 m,K1bs,细砂岩,直立剪切缝,未充填;(i) 博孜104井,6 843.1 m,K1bs,中砂岩,直立剪切缝,未充填;(j)克深2-2-3井,6 944.9 m,K1bs,穿粒缝,硅质及铁白云石充填;(k)克深905井,7 479.8 m,K1bs,穿粒缝;(l)大北204井,5 986.5 m,K1bs,穿粒缝"

图9

库车坳陷北部构造带侏罗系阿合组与克拉苏构造带白垩系巴什基奇克组成岩作用(a)迪北105X井,4 762.1 m,J1a,颗粒压实致密,可见压弯的片状云母;(b)吐孜4井,4 204.9 m,J1a,粒间溶蚀及长石粒内溶蚀;(c)吐格4井,3 850.1 m,J1a,粒间方解石染成橘红色;(d)依南2井,4 787.0 m,J1a,粒间铁方解石染成淡紫色;(e)克孜1井,4 835.3 m,J1a,粒间伊/蒙混层、伊利石,可见高岭石的伊利石化;(f)迪北102井,5 030.9 m,J1a,粒间毛发状伊利石;(g)克深207井,6 877.3 m,K1bs,颗粒压实致密,未见明显孔隙;(h)大北205井,5 833.4 m,K1bs,粒间溶蚀及长石粒内溶蚀;(i)克深501井,6 361.9 m,K1bs,粒间方解石染成橘红色;(j)大北203井,6 350.9 m,K1bs,阴极发光,粒间方解石呈橘黄色;(k)克深501井,6 354.2 m,K1bs,粒间钠长石(Ab)、方解石(Cc)及伊/蒙混层(I/S);(l)克深902井,7 973.3 m,K1bs,粒间钠长石(Ab)、磷灰石(Ap)、方解石(Cc)及伊/蒙混层(I/S)"

图10

库车坳陷北部构造带侏罗系阿合组(a)与克拉苏构造带白垩系巴什基奇克组(b)埋藏史及孔隙演化(a)北部构造带依南2井;(b)克拉苏构造带克深201井"

图11

库车坳陷北部构造带侏罗系阿合组与克拉苏构造带白垩系巴什基奇克组储层敏感性"

表1

库车坳陷北部构造带侏罗系阿合组与克拉苏构造带白垩系巴什基奇克组储层特征对比"

储层特征/地层北部构造带阿合组克拉苏构造带巴什基奇克组
沉积相辫状河三角洲平原辫状河三角洲前缘
岩性中—粗砂岩为主中—细砂岩为主
岩石成分石英18%~68%,平均40.2%33%~60%,平均45.0%
长石2%~30%,平均15.1%17%~45%,平均30.8%
岩屑20%~76%,平均44.7%12%~47%,平均24.2%
岩石结构分选系数1.28~2.34,平均1.521.21~1.78,平均1.35
磨圆度次棱角状—次圆状为主次棱角状—次圆状为主
颗粒接触关系线、凹凸接触—线接触为主点—线接触为主
胶结类型孔隙—接触式和压嵌—孔隙式孔隙—接触式,偶见压嵌—孔隙式
储集空间微孔隙和粒内溶孔为主原生粒间孔为主
胶结物含量与类型0.9%~4.7%,平均1.8%,包括(铁)方解石、 (铁)白云石、硅质和黄铁矿等1%~40%,平均8.3%,包括方解石、白云石、硅质、 钠长石和硬石膏等
储层物性实测孔隙度2.4%~18.4%,平均7.2%,渗透率 (0.02~120.75)×10-3 μm2,中值0.91×10-3 μm2实测孔隙度2.0%~12.6%,平均4.3%,渗透率 (0.01~131.00)×10-3 μm2,中值0.05×10-3 μm2
原始孔隙度31%~39%,平均36%34%~40%,平均38%
宏观裂缝特征裂缝线密度平均0.20条/m,岩心裂缝开度0~0.5 mm裂缝线密度平均0.57条/m,岩心裂缝开度0.2~1.0 mm
微观裂缝特征包括粒内缝、粒缘缝、穿粒缝,裂缝面孔率平均0.79%以穿粒缝为主,裂缝面孔率平均约0.17%
储层类型裂缝—孔隙型储层裂缝性储层
储层敏感性较强较弱

图12

库车坳陷克拉苏构造带克深8气藏巴什基奇克组裂缝渗透率和单井无阻流量分布"

图13

库车坳陷北部构造带侏罗系阿合组最大古构造应力与储层关系(a)最大古构造应力与储层孔隙度;(b)最大古构造应力与裂缝面孔率"

图14

库车坳陷克拉苏构造带巴什基奇克组储层改造提产效果(a)克深205井,6 890~6 976 m;(b)克深2-1-7井,6 632~6 697 m"

图15

库车坳陷北部构造带依南2井阿合组4 776~4 785 m及4 969~4 982 m储层改造提产效果"

1 王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.
WANG Z M. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2014,25(2):153-166.
2 GUO X,LIU K,JIA C,et al. Effects of early petroleum charge and overpressure preservation in the giant Kela-2 Gas Field,Kuqa Depression,Tarim Basin,northwest China[J]. AAPG Bulletin,2016,100(2):191-212.
3 LAI J, WANG G, CHAI Y, et al. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression, Tarim Basin of China[J].AAPG Bulletin,2017,101(6):829-862.
4 李建忠.第四次油气资源评价[M].北京:石油工业出版社,2019.
LI J Z. Fourth Assessment for Oil and Gas Resource[M].Beijing: Petroleum Industry Press,2019.
5 鲁雪松,柳少波,李伟,等.低勘探程度致密砂岩气区地质和资源潜力评价——以库车东部侏罗系致密砂岩气为例[J].天然气地球科学,2014,25(2):178-184.
LU X S, LIU S B, LI W, et al. Geological and resource evaluation in tight sandstone gas plays of low exploration degree: A case study of Jurassic tight sandstone gas in east Kuqa Basin[J].Natural Gas Geoscience,2014,25(2):178-184.
6 卢玉红,钱玲,鲁雪松,等.迪北地区致密气藏地质条件及资源潜力[J].大庆石油地质与开发,2015,34(4):8-14.
LU Y H, QIAN L, LU X S, et al. Geological conditions and resource potential of the tight gas reservoirs in Dibei area[J].Petroleum Geology and Oilfield Development in Daqing,2015,34(4):8-14.
7 李谨,王超,李剑,等.库车坳陷北部迪北段致密油气来源与勘探方向[J].中国石油勘探,2019,24(4):485-497.
LI J, WANG C,LI J,et al. Source and exploration direction of tight oil and gas in the Dibei section of northern Kuqa Depression[J].China Petroleum Exploration,2019,24(4):485-497.
8 琚岩,孙雄伟,刘立炜,等.库车坳陷迪北致密砂岩气藏特征[J].新疆石油地质,2014,35(3):264-267.
JU Y, SUN X W, LIU L W, et al. Characteristics of Jurassic tight sandstone gas reservoir in Dibei area of Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology,2014,35(3):264-267.
9 PANG X, PENG J, JIANG Z, et al. Hydrocarbon accumulation processes and mechanisms in Lower Jurassic tight-sandstone reservoirs in the Kuqa subbasin, Tarim Basin, NW China: A case study of the Dibei tight-gas field[J].AAPG Bulletin,2019,103(4):769-796.
10 张荣虎,杨海军,魏红兴,等.塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J].天然气地球科学,2019,30(9):1243-1252.
ZHANG R H, YANG H J, WEI H X, et al. The sandstone characteristics and hydrocarbon exploration significance of Lower Jurassic in middle east section of northern tectonic belt in Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2019,30(9):1243-1252.
11 张荣虎,杨海军,王俊鹏,等.库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J].石油学报,2014,35(6):1057-1069.
ZHANG R H, YANG H J, WANG J P, et al. The formation mechanism and exploration significance of ultra-deep, low-permeability and tight sandstone reservoirs in Kuqa Depression, Tarim Basin[J].Acta Petrolei Sinica,2014,35(6):1057-1069.
12 鲁雪松,赵孟军,刘可禹,等.库车前陆盆地深层高效致密砂岩气藏形成条件与机理[J].石油学报,2018,39(4):365-378.
LU X S, ZHAO M J, LIU K Y, et al. Forming condition and mechanism of highly effective deep tight sandstone gas reservoir in Kuqa foreland basin[J].Acta Petrolei Sinica,2018,39(4):365-378.
13 王招明,李勇,谢会文,等.库车前陆盆地超深层大油气田形成的地质认识[J].中国石油勘探,2016,21(1):37-43.
WANG Z M, LI Y, XIE H W, et al. Geological understanding on the formation of large-scale ultra-deep oil-gas field in Kuqa foreland basin[J].China Petroleum Exploration,2016,21(1):37-43.
14 江同文,孙雄伟.库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J].天然气工业,2018,38(6):1-9.
JIANG T W, SUN X W. Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa foreland basin, Tarim Basin: Understanding points and technical countermeasures[J].Natural Gas Industry,2018,38(6): 1-9.
15 何登发,周新源,杨海军,等.库车坳陷的地质结构及其对大油气田的控制作用[J].大地构造与成矿学,2009,33(1):19-32.
HE D F, ZHOU X Y, YANG H J, et al. Geological structure and its controls on giant oil and gas fields in Kuqa Depression, Tarim Basin: A clue from new shot seismic data[J].Geotectonica et Metallogenia,2009,33(1):19-32.
16 张惠良,张荣虎,杨海军,等.构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J].岩石学报,2012,28(3):827-835.
ZHANG H L,ZHANG R H,YANG H J, et al. Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir: A Cretaceous example from Kuqa foreland basin[J].Acta Petrologica Sinica,2012,28(3):827-835.
17 张玮,徐振平,赵凤全,等.库车坳陷东部构造变形样式及演化特征[J].新疆石油地质,2019,40(1):48-53.
ZHANG W,XU Z P,ZHAO F Q,et al.Structural deformation styles and tectonic evolution characteristics in eastern Kuqa Depression[J].Xinjiang Petroleum Geology,2019,40(1):48-53.
18 张妮妮,刘洛夫,苏天喜,等.库车坳陷东部下侏罗统致密砂岩储层特征及主控因素[J].沉积学报,2015,33(1):160-169.
ZHANG N N, LIU L F, SU T X, et al. Reservoir characteristics and main controlling factors of the Lower Jurassic tight sandstone in eastern Kuqa Depression[J]. Acta Sedimentologica Sinica,2015,33(1):160-169.
19 杨克基,漆家福,马宝军,等.库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析[J].大地构造与成矿学,2018,42(2):211-224.
YANG K J, QI J F, MA B J, et al. Differential tectonic deformation of subsalt and suprasalt strata in Kuqa Depression and their controlling factors[J].Geotectonica et Metallogenia,2018,42(2):211-224.
20 高文杰,李贤庆,张光武,等.塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学,2018,29(2):226-235.
GAO W J, LI X Q, ZHANG G W, et al. The relationship research between densification of reservoir and accumulation of the deep tight sandstone gas reservoirs of the Kelasu tectonic zone in Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2018,29(2):226-235.
21 王艳忠,操应长,葸克来,等.碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J].石油学报,2013,34(6):1100-1111.
WANG Y Z, CAO Y C, XI K L, et al. A recovery method for porosity evolution of clastic reservoirs with geological time: A case study from the upper submember of Es4 in the Dongying Depression,Jiyang Subbasin[J].Acta Petrolei Sinica,2013,34(6):1100-1111.
22 杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学,2018,29(7):942-950.
YANG H J, ZHANG R H, YANG X Z, et al. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir: A case study of Keshen Gasfield, Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience,2018,29(7):942-950.
23 寿建峰,张惠良,沈扬,等.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报,2006,22(8):2165-2170.
SHOU J F, ZHANG H L, SHEN Y, et al. Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J].Acta Petrologica Sinica,2006,22(8):2165-2170.
24 彭涛,张海潮,任自强,等.两淮煤田煤系地层岩石热导率特征[J].高校地质学报,2014,20(3):470-475.
PENG T, ZHANG H C, REN Z Q, et al. Characteristics of rock thermal conductivity of coal measure strata in Huainan-Huaibei coalfield[J].Geological Journal of China Universities,2014,20(3):470-475.
25 吴海,赵孟军,卓勤功,等.膏盐岩对地层温度及烃源岩热演化的影响定量分析——以塔里木库车前陆盆地为例[J].石油勘探与开发,2016,43(4):550-558.
WU H, ZHAO M J, ZHUO Q G, et al. Quantitative analysis of the effect of salt on geothermal temperature and source rock evolution: A case study of Kuqa foreland basin, western China[J].Petroleum Exploration and Development,2016,43(4):550-558.
26 赵振宇,周瑶琪,马晓鸣,等.含油气盆地中膏盐岩层对油气成藏的重要影响[J].石油与天然气地质,2007,28(2):299-308.
ZHAO Z Y, ZHOU Y Q, MA X M, et al. The impact of saline deposit upon the hydrocarbon accumulation in petroliferous basin[J].Oil & Gas Geology,2007,28(2): 299-308.
27 杨宪彰,雷刚林,张国伟,等.库车坳陷克拉苏构造带膏盐岩对油气成藏的影响[J].新疆石油地质,2009,30(2):201-204.
YANG X Z, LEI G L, ZHANG G W, et al. Effect of gypsum-salt rocks on hydrocarbon accumulation in Kelasu structural belt of Kuqa Depression[J].Xinjiang Petroleum Geology,2009,30(2):201-204.
28 袁静,成荣红,朱忠谦,等.库车坳陷DB气田白垩系巴什基奇克组砂岩的多期溶蚀[J].石油与天然气地质,2016,37(4):546-555.
YUAN J, CHENG R H, ZHU Z Q, et al. Multi-staged dissolution of sandstone in Cretaceous Bashijiqike Formation in DB gas field of Kuqa Depression, Tarim Basin[J].Oil & Gas Geology,2016,37(4):546-555.
29 潘荣,朱筱敏,谈明轩,等.库车坳陷克拉苏冲断带深部巴什基奇克组致密储层孔隙演化定量研究[J].地学前缘,2018,25(2):159-169.
PAN R, ZHU X M, TAN M X, et al. Quantitative research on porosity evolution of deep tight reservoir in the Bashijiqike Formation in Kelasu structure zone, Kuqa Depression[J].Earth Science Frontiers,2018,25(2):159-169.
30 冯佳睿,高志勇,崔京钢,等.库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J].地球科学进展,2018,33(3):305-320.
FENG J R, GAO Z Y, CUI J G, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa Depression: Insight from diagensis modeling experiments under the influence of burial mode[J]. Advances in Earth Science,2018,33(3):305-320.
31 唐雁刚,罗金海,马玉杰,等.库车坳陷下侏罗统碱性成岩环境对储集物性的影响[J]. 新疆石油地质,2011,32(4):356-358.
TANG Y G,LUO J H,MA Y J,et al. Effect of alkaline diage-netic environment of Lower Jurassic on reservoir property in Ku-qa Depression[J]. Xinjiang Petroleum Geology,2011,32(4):356-358.
32 宫清顺,寿建峰,姜忠朋,等.准噶尔盆地乌尔禾油田三叠系百口泉组储层敏感性评价[J].石油与天然气地质,2012,33(2):307-313.
GONG Q S, SHOU J F, JIANG Z P, et al. Reservoir sensitivity evaluation of the Triassic Baikouquan Formation in Wuerhe Oilfield,Junggar Basin[J].Oil & Gas Geology,2012,33(2):307-313.
33 袁文芳,秦红,王锋,等.致密砂岩储层速敏效应形成机理及其分布规律研究——以库车坳陷东部阿合组为例[J].地质科学,2014,39(4):1279-1286.
YUAN W F, QIN H, WANG F, et al. The formation mechanism and distribution of velocity sensitive effect in tight sandstone reservoir: Taking Ahe Formation in east Kuqa Depression, Tarim Basin, as an example[J]. Chinese Journal of Geology,2014,39(4):1279-1286.
34 袁学芳,王茜,唐洪明,等.致密砂岩储层流体敏感性评价方法——以塔里木盆地克拉苏气田克深9井区K1 bs组为例[J].天然气工业,2016,36(12):59-66.
YUAN X F, WANG Q, TANG H M, et al. An improved fluid sensitivity evaluation method for tight sandstone gas reservoirs: A case study of K1 bs in Well Keshen 9 of the Kelasu Gasfield,Tarim Basin[J].Natural Gas Industry,2016,36(12):59-66.
35 刘春,张荣虎,张惠良,等.库车前陆冲断带多尺度裂缝成因及其储集意义[J].石油勘探与开发,2017,44(3):469-478.
LIU C, ZHANG R H, ZHANG H L, et al. Genesis and reservoir significance of multi-scale natural fractures in Kuqa foreland thrust belt, Tarim Basin, NW China[J]. Petroleum Exploration and Development,2017,44(3):469-478.
36 王俊鹏,张惠良,张荣虎,等.裂缝发育对超深层致密砂岩储层的改造作用——以塔里木盆地库车坳陷克深气田为例[J].石油与天然气地质,2018,39(1):77-88.
WANG J P, ZHANG H L, ZHANG R H, et al. Enhancement of ultra-deep tight sandstone reservoir quality by fractures: A case study of Keshen Gas Field in Kuqa Depression, Tarim Basin[J].Oil & Gas Geology,2018,39(1):77-88.
37 李国欣,易士威,林世国,等.塔里木盆地库车坳陷东部地区下侏罗统储层特征及其主控因素[J].天然气地球科学,2018,29(10):1506-1517.
LI G X, YI S W, LIN S G, et al. Reservoir characteristics and major factors influencing the reservoir quality of Lower Jurassic in eastern Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience,2018,29(10):1506-1517.
[1] 徐珂, 田军, 杨海军, 张辉, 鞠玮, 刘新宇, 王志民, 房璐. 塔里木盆地库车坳陷超深层现今地应力对储层品质的影响及实践应用[J]. 天然气地球科学, 2022, 33(1): 13-23.
[2] 李亚丁, 陈友莲, 严威, 代瑞雪, 郗诚, 和源. 四川盆地寒武系沧浪铺组沉积演化特征[J]. 天然气地球科学, 2021, 32(9): 1334-1346.
[3] 李谨, 李剑, 王超, 李德江, 韩中喜, 张海祖, 周慧, 卢玉红, 刘满仓. 塔里木盆地库车坳陷致密砂岩气地球化学特征[J]. 天然气地球科学, 2021, 32(8): 1151-1162.
[4] 于洲, 周进高, 李程善, 宋晓娇, 罗超, 吴兴宁, 吴东旭, 胡琮. 鄂尔多斯盆地西缘奥陶纪克里摩里期—乌拉力克期构造—岩相古地理特征[J]. 天然气地球科学, 2021, 32(6): 816-825.
[5] 刘桂珍, 高伟, 尉加盛, 唐文. 混积层系沉积、层序特征——以鄂尔多斯盆地高桥地区本溪组为例[J]. 天然气地球科学, 2021, 32(3): 382-392.
[6] 李明强, 张立强, 李政宏, 张亮, 毛礼鑫, 徐小童. 塔里木盆地下侏罗统阿合组下砂砾岩段致密砂岩成岩相划分及测井识别——以库车坳陷依奇克里克地区为例[J]. 天然气地球科学, 2021, 32(10): 1559-1570.
[7] 易士威, 李明鹏, 徐淑娟, 崔宝文, 蒙启安, 武雪琼, 程宏岗. 松辽盆地双城断陷结构特征及控藏模式[J]. 天然气地球科学, 2020, 31(6): 761-772.
[8] 栾守亮. 柴达木盆地全吉剖面第四系七个泉组沉积特征及沉积模式[J]. 天然气地球科学, 2020, 31(6): 800-808.
[9] 王珂, 张荣虎, 余朝丰, 杨钊, 唐雁刚, 魏红兴. 塔里木盆地库车坳陷北部构造带侏罗系阿合组储层特征及控制因素[J]. 天然气地球科学, 2020, 31(5): 623-635.
[10] 王毅, 李俊飞, 彭家琼, 魏璞, 唐宏, 张顺存, 郭晖. 准噶尔盆地SN31井区白垩系清一段一砂组沉积相及储层主控因素分析[J]. 天然气地球科学, 2020, 31(2): 194-208.
[11] 史超群, 王佐涛, 朱文慧, 蒋俊, 张慧芳, 周思宇, 娄洪, 左小军, 李刚, 王振鸿. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J]. 天然气地球科学, 2020, 31(12): 1687-1699.
[12] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[13] 魏强, 李贤庆, 孙可欣, 李瑾, 肖中尧, 梁万乐, 张亚超, . 塔里木盆地库车坳陷克深大气田深层天然气成藏地球化学特征[J]. 天然气地球科学, 2019, 30(6): 897-907.
[14] 贾爱林, 唐海发, 韩永新, 吕志凯, 刘群明, 张永忠, 孙贺东, 黄伟岗, 王泽龙. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918.
[15] 张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[5] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[6] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[7] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[8] . 柴达木盆地――中国第四大气区[J]. 天然气地球科学, 0, (): 9 .
[9] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[10] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .