天然气地球科学 ›› 2022, Vol. 33 ›› Issue (5): 799–806.doi: 10.11764/j.issn.1672-1926.2021.10.017

• 非常规天然气 • 上一篇    下一篇

贵州省煤系气成藏条件及勘探方向

高为1,2,3(),易同生1,2(),颜智华1,金军1,2   

  1. 1.贵州省煤层气页岩气工程技术研究中心,贵州 贵阳 550008
    2.贵州省煤田地质局,贵州 贵阳 550008
    3.贵州省煤田地质局159队,贵州 盘州 561600
  • 收稿日期:2021-09-15 修回日期:2021-10-25 出版日期:2022-05-10 发布日期:2022-05-12
  • 通讯作者: 易同生 E-mail:404929883@qq.com;gzsmtdzyts@163.com
  • 作者简介:高为(1987-),男,湖南长沙人,高级工程师,硕士,主要从事煤层气开发地质研究. E-mail:404929883@qq.com.
  • 基金资助:
    贵州省地质勘查基金项目(2018-01);贵州省科技计划项目(黔科合支撑[2020]2Y028);国家科技重大专项项目(2016ZX05044001-005)

Reservoir forming conditions and exploration direction of coal measure gas in Guizhou Province

Wei GAO1,2,3(),Tongsheng YI1,2(),Zhihua YAN1,Jun JIN1,2   

  1. 1.Guizhou Provincial Engineering and Technology Research Center of Coalbed Methane and Shale Gas,Guiyang 550008,China
    2.Guizhou Provincial Coalfield Geology Bureau,Guiyang 550008,China
    3.No. 159 Team of Guizhou Coal Geological Bureau,Panzhou 561600,China
  • Received:2021-09-15 Revised:2021-10-25 Online:2022-05-10 Published:2022-05-12
  • Contact: Tongsheng YI E-mail:404929883@qq.com;gzsmtdzyts@163.com
  • Supported by:
    The Guizhou Geological Exploration Fund Project(2018-01);the Guizhou Provincial Science and Technology Plan Project (Grant No. Qiankehe Support [2020] 2Y028);the China National Science and Technology Major Project(2016ZX05044001-005)

摘要:

基于近年来的勘探认识,阐述了贵州省煤系气主要发育层系的基本特征,研究了主要层系的煤系气成藏地质条件,分析了不同层系的煤系气勘探潜力。结果表明:二叠系龙潭组和石炭系旧司组是贵州煤系气勘探研究的主要层系。龙潭组广泛发育薄至中厚煤层群,煤阶较高,煤层含气性远高于非煤层,烃源岩空间展布不稳定;不同岩性储层物性差异显著,三角洲相砂岩和泥页岩脆性较弱,潮坪—潟湖相砂岩和泥页岩具有较好脆性;垂向叠置含气系统发育,有利区段优选及合层改造难度较大,合采兼容性问题突出。龙潭组主要发育“源储一体型”独立煤层气藏、“源储紧邻型”煤系气(煤层气+煤系页岩气+煤系致密砂岩气)组合气藏2种主要类型,2种次要气藏类型为“源储一体型”煤系“两气”(煤层气+煤系页岩气)组合气藏、“下生上储型”煤系“两气”(煤层气+煤系致密砂岩气)组合气藏。旧司组发育以页岩为主、薄煤层交互且沉积厚度较大的中等富气储层,各类储集层含气性和脆性中等,均质性相对较好,有利于合层改造,主要发育“源储一体型”独立煤系页岩气藏和“源储一体型”煤系“两气”(煤系页岩气+煤层气)组合气藏2类气藏类型。

关键词: 贵州省, 煤系气, 煤层气, 成藏特征, 气藏类型, 综合勘探开发

Abstract:

Based on the exploration knowledge in recent years, the basic characteristics of coal measure gas in Guizhou province are described, the geological conditions of coal measure gas accumulation are studied, and the exploration potential of coal-derived gas in different layers is analyzed. The results show that the Longtan Formation and the Jiusi Formation are the main layers of coal measure gas exploration in Guizhou. The Longtan Formation widely developed thin to medium-thick coal seam groups with relatively high coal rank. The gas content of coal seam is much higher than that of non-coal seam, and the spatial distribution of source rock is unstable. The physical properties of different lithological reservoirs vary significantly, with the delta-phase sandstones and mud shales being weakly brittle and the tidal-lake-phase sandstones and mud shales having good brittleness. The vertically-stacked gas-bearing system is developed, and it is difficult to select favorable sections and reform the combined layers, and the mining compatibility problem is prominent. The Longtan Formation mainly develops two main types of independent coalbed methane reservoir with “source-reservoir integration type”, and coal measure gas combination gas reservoir with “source-reservoir adjacent type”(coalbed methane + shale gas + tight sandstone gas). The two secondary gas reservoir types are “source-reservoir integration type” coal measure “two gas” (coalbed methane + shale gas) combined gas reservoir, “lower source and upper reservoir type” coal measure “two gas”(coalbed methane + tight sandstone gas) combined gas reservoir. The Jiusi Formation is a medium-sized gas-rich reservoir that shale and thin coal seam are alternate with large thickness, all kinds of reservoirs have moderate gas-content and fragility, with relatively good homogeneity, which is helpful to reform consolidation reservoirs. The Jiusi Formation mainly develops two types of gas reservoirs: “source-reservoir integration type” independent shale gas reservoirs and “source-reservoir integration type” coal measure “two-gas”( shale gas + coalbed methane) combined gas reservoirs.

Key words: Guizhou Province, Coal measure gas, Coalbed methane, Hydrocarbon accumulation characteristic, Gas reservoir types, Integrated exploration and development

中图分类号: 

  • TE132.2

表1

贵州省煤系气勘查初步认识"

含煤地层成煤时代主要分布范围沉积环境及含煤情况勘探研究程度煤系气资源潜力
旧司组早石炭世威宁、都匀、荔波等地海陆交互相,地层厚400~900 m,以祥摆段含煤最好,含煤可达22层,一般含煤0~6层,煤层厚度较薄、稳定性较差,局部发育可采煤层少量的煤田钻井+4口参数井,勘探研究程度一般已取得良好的含气发现,潜力大,适合开展进一步勘探评价
梁山组中二叠世水城—大方、福泉—丹寨、务川—石阡等零星分布海陆交互相,地层厚一般不超过50 m,含煤最多达8层,一般含煤2~6层,煤层厚度薄、稳定性差,局部含1层可采煤层仅有实测剖面勘查,勘探研究程度低地层厚度和分布面积均有限,潜力较小
宣威组晚二叠世威宁陆相,地层厚0~192 m,含煤可达30层,一般0~9层多为薄煤层或煤线,稳定性差,局部含可采煤层1~4层少量的煤田钻井,勘探研究程度低分布面积有限,潜力较小
龙潭组晚二叠世贵州西部约为7.5×104 km2的广大地区海陆交互相,地层厚76~543 m,含煤1~83层,煤层较稳定,可采性较好,最多含可采煤层26层大量的煤田钻井+煤层气参数井、试采井,勘探研究程度高普遍含气,试采效果好,资源潜力大,适合开展进一步工程示范
领薅组晚二叠世关岭、紫云等地海相,地层厚492~2 380 m,偶夹劣质煤线1口参数井,勘探研究程度一般已有含气发现,应开展进一步勘探评价
吴家坪组晚二叠世贵州东部和南部广大地区海相,地层厚93~1 081 m,含煤最多可达16层,局部含可采煤层3层,碳酸盐岩和硅质岩十分发育少量的煤田钻井,勘探研究程度一般尚未开展勘探评价工作
把南组晚三叠世龙头山、郎岱、关岭海陆交互相,地层厚107~730 m,含煤可达22层,但煤层均很薄,一般在0.2 m以下仅有实测剖面勘查,勘探研究程度低分布面积有限,潜力较小
火把冲组晚三叠世龙头山、郎岱、关岭海陆交互相,地层厚252~750 m,含煤可达40~50层,一般为4层,局部含可采煤层1~3层仅有实测剖面勘查,勘探研究程度低分布面积有限,潜力较小

图1

贵州省晚二叠世岩相古地理图(据文献[14],修改)"

图2

贵州省早石炭世岩相古地理图"

图3

金沙地区JC-1井龙潭组典型煤系气有利层段含气性和物性参数分布"

表2

贵州省主要煤系页岩和砂岩矿物含量对比"

典型地区层系沉积环境岩性黏土矿物含量/%石英含量/%脆性指数/%
盘州二叠系龙潭组三角洲砂岩(49.26~72.35)/59.01(10.64~24.59)/19.04(13.55~26.29)/20.96
盘州二叠系龙潭组三角洲泥页岩(52.28~78.25)/64.28(11.38~30.90)/19.73(12.30~33.88)/22.29
金沙二叠系龙潭组潮坪砂岩(25.94~39.56)/34.93(25.54~38.19)/31.56(34.63~49.61)/43.78
金沙二叠系龙潭组潟湖泥页岩(30.83~47.85)/43.26(22.27~29.12)/26.22(31.41~47.95)/37.33
威宁石炭系旧司组浅水陆棚砂岩(29.11~49.70)/40.14(38.18~68.87)/54.74(43.45~70.29)/57.32
威宁石炭系旧司组浅水陆棚泥页岩(34.68~54.53)/41.97(22.11~32.64)/28.30(28.05~44.18)/38.52

表3

贵州省主要煤系不同岩性储层力学参数对比"

地区层系

代表性

岩性

杨氏模量

/104 MPa

泊松比

抗压强度

/MPa

抗拉强度

/MPa

金沙

二叠系

龙潭组

可采煤层0.360.373.5
砂岩1.890.2812.41.57
碳酸盐岩2.690.2341.65.96
泥页岩2.020.2818.81.95
威宁

石炭系

旧司组

薄煤层0.30
砂岩2.740.2456.52.54
页岩2.680.2456.02.51

图4

贵州省主要煤系气藏类型"

1 郭萍.渤海湾盆地冀中坳陷上古生界煤系烃源岩地球化学特征与生烃演化[J].天然气地球科学,2020,31(9):1306-1315.
GUO P. Geochemical characteristics and hydrocarbon generation evolution of Upper Paleozoic coal measures in Jizhong Depression,Bohai Bay Basin[J]. Natural Gas Geoscience,2020,31(9):1306-1315.
2 秦勇,吴建光,申建,等.煤系气合采地质技术前缘性探索[J].煤炭学报, 2018, 43(6): 1504-1516.
QIN Y, WU J G, SHEN J, et al. Frontier research of geological technology for coal measure gas joint-mining [J]. Journal of China Coal Society, 2018,43(6): 1504-1516.
3 秦勇.中国煤系气共生成藏作用研究进展[J].天然气工业, 2018, 38(4): 26-36.
QIN Y. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry,2018,38(4):26-36.
4 梁冰,石迎爽,孙维吉,等. 中国煤系“三气”成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167-173.
LIANG B, SHI Y S, SUN W J, et al. Reservoir forming characteristics of “the three gases” in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society,2016,41(1):167-173.
5 易同生,高为.六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J].煤炭学报,2018,43(6):1553-1564.
YI T S, GAO W. Reservoir formation characteristics as well as co-exploration and co-mining orientation of Upper Permian coal-bearing gas in Liupanshui Coalfield[J]. Journal of China Coal Society,2018,43(6):1553-1564.
6 高为,易同生,金军.黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J].煤炭学报,2017,42(5):1258-1265.
GAO W,YI T S,JIN J, et al. Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability[J]. Journal of China Coal Society,2017,42(5):1258-1265.
7 高为,易同生. 黔西松河井田煤储层孔隙特征及对渗透性的影响[J].煤炭科学技术,2016, 44(2):55-61.
GAO W, YI T S. Pore features of coal reservoir in Songhe mine field of west Guizhou and its impact to permeability[J]. Coal Science and Technology,2016,44(2):55-61.
8 高为,韩忠勤,金军,等.六盘水煤田煤层气赋存特征及有利区评价[J].煤田地质与勘探,2018,46(5):81-89.
GAO W, HAN Z Q, JIN J, et al. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui Coalfield[J]. Coal Geology & Exploration,2018,46(5):81-89.
9 单衍胜,毕彩芹,迟焕鹏,等.六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J].天然气地球科学,2018,29(1):122-129.
SHAN Y S, BI C Q, CHI H P, et al. Geological characteristics of coalbed methane and optimization for favorable productive intervals of Yangmeishu syncline in Liupanshui area[J]. Natural Gas Geoscience, 2018,29(1):122-129.
10 高为,田维江,秦文,等.贵州省煤层气与页岩气共探共采的地质优选[J].断块油气田,2014,21(1):36-38.
GAO W, TIAN W J, QIN W, et al. Geological optimization of coalbed methane and shale gas co-exploration and concurrent production in Guizhou Province[J].Fault-Block Oil & Gas Field,2014,21(1):36-38.
11 易同生,周效志,金军.黔西松河井田龙潭煤系煤层气—致密气成藏特征及共探共采技术[J].煤炭学报,2016,41(1) : 212-220.
YI T S, ZHOU X Z, JIN J. Reservoir forming characteristics and co-exploration and concurrent production technology of Longtan coal measure coalbed methane & tight gas in Songhe field,western Guizhou[J].Journal of China Coal Society,2016, 41(1): 212-220.
12 罗沙,汪凌霞,石富伦,等.黔西南地区龙潭组煤系页岩气勘探前景[J].科学技术与工程,2017,17(22):162-168.
LUO S, WANG L X, SHI F L, et al. Potentiality exploration of the Longtan Formation coal shale gas in southwestern Guizhou Province[J]. Science Technology and Engineering,2017,17(22) :162-168.
13 窦新钊,姜波,秦勇,等.黔西地区构造演化及其对晚二叠世煤层的控制[J].煤炭科学技术,2012,40 (3):109-114.
DOU X Z, JIANG B, QIN Y, et al. Structure evolution in west of Guizhou area and control to seam in Late Permian[J]. Coal Science and Technology,2012,40 (3):109-114.
14 徐彬彬,何明德. 贵州煤田地质[M]. 北京:中国矿业大学出版社,2003.
XU B B, HE M D. Guizhou Coalfield Geology[M]. Beijing:China University of Mining and Technology Press, 2003.
15 高为,易同生,金军,等.贵州松河井田煤层气地面抽采潜力分析[J].煤矿安全,2016,47(8):190-193,197.
GAO W, YI T S, JIN J, et al.Potential analysis of coalbed methane drainage in Guizhou Songhe coal mine[J]. Safety in Coal Mines,2016,47(8):190-193,197.
16 林玉祥,舒永,赵承锦,等. 沁水盆地含煤地层天然气统筹勘探方法及有利区预测[J]. 天然气地球科学,2017,28(5):744-754.
LIN Y X, SHU Y, ZHAO C J, et al. The overall exploration method and favorable area predition of natural gas in the coal-bearing strata,Qinshui Basin, China[J]. Natural Gas Geoscience, 2017, 28(5):744-754.
17 杨兆彪,李洋阳,秦勇,等. 煤层气多层合采开发单元划分及有利区评价[J]. 石油勘探与开发,2019,46(3):559-568.
YANG Z B, LI Y Y, QIN Y, et al. Development unit division and favorable area evaluation for joint mining coalbed methane[J]. Petroleum Exploration and Development, 2019, 46(3): 559-568.
18 杨兆彪, 张争光, 秦勇, 等.多煤层条件下煤层气开发产层组合优化方法[J].石油勘探与开发,2018,45(1):297-304.
YANG Z B, ZHANG Z G, QIN Y, et al. Optimization methods of production layer combination for coalbed methane development in multi-coal seams[J]. Petroleum Exploration and Development, 2018, 45(2): 297-304.
19 秦勇, 吴建光, 张争光, 等. 基于排采初期生产特征的煤层气合采地质条件分析[J].煤炭学报, 2020,45(1):241-257.
QIN Y, WU J G, ZHANG Z G, et al. Analysis of geological conditions for coalbed methane co-production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society, 2020, 45(1): 241-257.
20 杨兆彪, 秦勇, 张争光, 等. 基于聚类分析的多煤层煤层气产层组合选择[J].煤炭学报,2018,43(6):1641-1646.
YANG Z B, QIN Y, ZHANG Z G, et al. Production layer combination selection for coalbed methane development in multi-coal seams based on cluster analysis[J]. Journal of China Coal Society, 2018,43(6): 1641-1646.
21 秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.
QIN Y, SHEN J. On the fundamental issues of deep coalbed methane geology[J].Acta Petrolei Sinica,2016,37(1):125-136.
22 秦勇, 申建, 沈玉林, 等. 苏拉特盆地煤系气高产地质原因及启示[J]. 石油学报, 2019, 40(10): 1147-1157.
QIN Y, SHEN J, SHEN Y L, et al. Geological causes and inspirations for high production of coal measure gas in Surat Basin[J]. Acta Petrolei Sinica,2019, 40(10): 1147-1157.
[1] 费李莹, 王仕莉, 苏昶, 刘钰, 江祖强, 杨梦云, 李勇广, 彭海军. 准噶尔盆地盆1井西凹陷东斜坡侏罗系三工河组油气成藏特征及控制因素[J]. 天然气地球科学, 2022, 33(5): 708-719.
[2] 王国力,宋晓波,刘勇,孟宪武,隆轲. 川西地区雷口坡组四段天然气成藏特征及勘探前景[J]. 天然气地球科学, 2022, 33(3): 333-343.
[3] 郭飞飞, 柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征[J]. 天然气地球科学, 2021, 32(3): 405-415.
[4] 刘齐, 陈强, 孙中光, 胡千庭. 煤层不同类型裂缝应力敏感性实验——以阜新盆地煤样为例[J]. 天然气地球科学, 2021, 32(3): 437-446.
[5] 田永净, 吴和源, 姜雄鹰, 郑丽婧. 鄂尔多斯盆地东缘临兴地区上石盒子组成藏特征[J]. 天然气地球科学, 2021, 32(11): 1664-1672.
[6] 王丹, 郭广山, 余洋, 张盖霞, 陈明, 陈明星. 煤层气解吸过程中甲烷碳同位素特征[J]. 天然气地球科学, 2021, 32(1): 119-124.
[7] 冯树仁, 张聪, 张建国, 乔茂坡, 刘春春, 彭鹤, 毛崇昊. 沁水盆地南部郑庄区块高煤阶煤层气成藏模式[J]. 天然气地球科学, 2021, 32(1): 136-144.
[8] 王刚, 杨曙光, 李瑞明, 伏海蛟. 国内外低煤阶煤层气地质差异性与聚气模式探讨[J]. 天然气地球科学, 2020, 31(8): 1082-1091.
[9] 石迎爽, 梁冰, 薛璐, 孙维吉, 王青春, 程志恒. 煤层气多层合采井生产特征分析[J]. 天然气地球科学, 2020, 31(8): 1161-1167.
[10] 王碧维, 徐新德, 吴杨瑜, 游君君, 雷明珠. 珠江口盆地西部文昌凹陷油气来源与成藏特征[J]. 天然气地球科学, 2020, 31(7): 980-992.
[11] 张宝鑫, 邓泽, 傅雪海, 郝明, 周荣福, 李玉寿, 王振至. 温度对中高阶烟煤甲烷吸附—常压/带压解吸过程中煤体变形影响实验[J]. 天然气地球科学, 2020, 31(12): 1826-1836.
[12] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[13] 杨师宇,魏韧,袁学浩,郑司建,姚艳斌. 新疆乌鲁木齐河东矿区煤层含气特征及主控因素[J]. 天然气地球科学, 2019, 30(11): 1667-1676.
[14] 彭泽阳,李相方,孙政. 考虑气水分布的煤层气解吸模型[J]. 天然气地球科学, 2019, 30(10): 1415-1421.
[15] 许耀波, 朱玉双, 张培河. 沁水盆地赵庄井田煤层气产出特征及其影响因素[J]. 天然气地球科学, 2019, 30(1): 119-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑爱玲;王新海;江山;张晓红;. 煤层多元气体相互作用与替代机理研究方向[J]. 天然气地球科学, 2004, 15(4): 352 -354 .
[2] 陶伟, 邹艳荣, 刘金钟, 张馨, 张长春. 压力对粘土矿物催化生烃的影响[J]. 天然气地球科学, 2008, 19(4): 548 -552 .
[3] 赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球科学, 2012, 23(3): 393 -406 .
[4] 周庆华,宋宁,王成章,李博,王先德,彭传圣,任玉秀. 湖南花垣页岩气区块地质评价与勘探展望[J]. 天然气地球科学, 2014, 25(1): 130 -140 .
[5] 周庆华,宋宁,王成章,李博,车建炜,彭传圣,许江桥. 湖南常德地区牛蹄塘组页岩特征及含气性[J]. 天然气地球科学, 2015, 26(2): 301 -311 .
[6] 耳闯,赵靖舟,王芮,魏之焜. 沉积环境对富有机质页岩分布的控制作用——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2015, 26(5): 823 -832,892 .
[7] 吴陈君,张明峰,孙丽娜,刘艳,妥进才. 渝东南地区寒武系牛蹄塘组页岩气成因探讨[J]. 天然气地球科学, 2015, 26(8): 1481 -1487 .
[8] 仵宗涛,刘兴旺,李孝甫,王晓锋,郑建京. 稀有气体同位素在四川盆地元坝气藏气源对比中的应用[J]. 天然气地球科学, 2017, 28(7): 1072 -1077 .
[9] 纪沫,杨海长,曾清波,赵钊,王龙颖,孙钰皓. 珠江口盆地白云凹陷伸展拆离断层系及构造演化[J]. 天然气地球科学, 2017, 28(10): 1506 -1514 .
[10] 秦胜飞,周国晓. 气田水对甲烷氢同位素分馏作用[J]. 天然气地球科学, 2018, 29(3): 311 -316 .