天然气地球科学 ›› 2022, Vol. 33 ›› Issue (3): 431–440.doi: 10.11764/j.issn.1672-1926.2021.10.005

• 非常规天然气 • 上一篇    下一篇

川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素

王鹏威1(),刘光祥1,刘忠宝1,陈筱2,李鹏1,蔡钡钡3   

  1. 1.中国石油化工股份有限公司石油勘探开发研究院,北京 100083
    2.中海石油(中国)有限公司北京研究中心,北京 100027
    3.中国地质大学(北京),北京 100083
  • 收稿日期:2021-08-24 修回日期:2021-10-03 出版日期:2022-03-10 发布日期:2022-03-22
  • 作者简介:王鹏威(1986-),男,山东威海人,副研究员,博士,主要从事非常规油气地质研究. E-mail:wangpw.syky@sinopec.com.
  • 基金资助:
    国家自然科学基金项目(91755211)

Shale gas enrichment conditions and controlling factors of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou

Pengwei WANG1(),Guangxiang LIU1,Zhongbao LIU1,Xiao CHEN2,Peng LI1,Beibei CAI3   

  1. 1.Research Institute of Petroleum Exploration & Production,SINOPEC,Beijing 100083,China
    2.CNOOC International Limited,Beijing 100027,China
    3.China University of Geosciences (Beijing),Beijing 100083,China
  • Received:2021-08-24 Revised:2021-10-03 Online:2022-03-10 Published:2022-03-22
  • Supported by:
    The National Natural Science Foundation of China(91755211)

摘要:

利用有机岩石学、干酪根碳同位素、X?射线衍射、场发射扫描电镜等实验测试资料,阐述了川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩烃源岩品质、储层发育及含气性特征,并探讨了孔隙类型和含气性的主控因素。研究表明,川东南—黔西北地区龙潭组泥页岩总有机质丰度高(TOC值平均为3.50%)、热演化程度高(RO值平均为2.23%),有机显微组分以镜质体为主,惰质体次之,以Ⅲ型干酪根为主,是一套优质气源岩。页岩储层具有较好的物性(孔隙度平均为5.56%),孔隙类型以黏土矿物孔为主,其中伊/蒙混层间微孔隙较发育,主要为介孔—微孔,有机质孔基本不发育。泥页岩吸附气含量和总含气量变化较大。有机显微组分是控制龙潭组高成熟富有机质页岩有机孔隙发育的首要因素,有机质丰度是控制页岩吸附能力和含气性的重要因素。

关键词: 页岩气, 烃源岩品质, 储层特征, 含气性, 主控因素, 上二叠统, 龙潭组, 川东南—黔西北地区

Abstract:

Focusing on shale gas enrichment conditions of Upper Permian Longtan Formation transitional shale in Southeast Sichuan to Northwest Guizhou, this paper primarily discusses source rock quality, reservoir conditions and gas content by using measurements, e.g., organic petrology, kerogen carbon isotope, X-ray diffractometer (XRD) and field emission scanning electron microscopy (FE-SEM). Results show that the Longtan shale in Southeast Sichuan to Northwest Guizhou is characterized by high organic matter abundance (average TOC value is 3.50%) and high thermal maturity (average RO value is 2.23%). The organic macerals are dominated by vitrinite, followed by inertinite, indicating type III kerogen. It is a set of high-quality gas source rocks. The shale reservoir has high physical properties with average porosity of 5.56%, the reservoir is dominated by clay mineral pores, where mesoporous and micropores among I/S mixed layers are well developed. Organic macerals are main controlling factors on the organic pore development in Longtan high to over-high organic-rich shale. Shale varies greatly in adsorbed gas content and total gas content, and the organic matter abundance is an important factor controlling adsorption capacity and gas content.

Key words: Shale gas, Source rock quality, Shale reservoir, Gas content, Primary controllers, Upper Permian, Longtan Formation, Southeast Sichuan to Northwest Guizhou

中图分类号: 

  • TE122

图1

川东南—黔西北地区上二叠统龙潭组沉积相[12](a)及岩性柱状图(b)"

图2

黔西北地区龙潭组全岩矿物组成(a)及黏土矿物组成(b)"

图3

川东南—黔西北地区龙潭组泥页岩实测TOC(a)和RO(b)直方图"

图4

川东南—黔西北地区上二叠统龙潭组页岩TOC及RO等值线图"

图5

川东南—黔西北地区龙潭组页岩有机显微组分特征(a)Z1井,1 273.51 m,泥岩;(b)Z1井,1 272.68 m,炭质泥岩;(c)X1井,3 164.33 m,黑灰色泥岩;(d) X1井,3 147.35 m,黑灰色泥岩;(e)Z1井,1 052.86 m,炭质泥岩;(f)Z1井,1 057.66 m,泥岩"

图6

不同层系页岩干酪根碳同位素对比"

图7

川东南—黔西北地区龙潭组泥页岩孔隙度(a)和孔径分布(b)直方图"

图8

川东南—黔西北地区龙潭组页岩孔隙类型(a) Z1井,炭质泥岩,1 033.86 m,伊/蒙混层微孔隙放大;(b) Z1井,炭质泥岩,1 058.06 m,伊/蒙混层与绿泥石间发育的微孔隙放大;(c) Z1井,炭质粉砂质泥岩,1 263.48 m,绿泥石、伊利石和伊/蒙混层中发育丰富纳米孔隙;(d) Z1井,炭质泥岩,1 264.08 m,黏土矿物片层间发育的微孔隙放大"

图9

川东南—黔西北地区龙潭组页岩有机质扫描电镜照片(a) Z1井,1 272.68 m,TOC=4.00%,RO=2.49%;(b) Z1井,1 263.48 m,TOC=2.87%,RO=2.46%;(c) Z1井,1 260.2 3m,TOC=1.46%,RO=2.45%;(d) Z1井,1 264.48 m,TOC=5.76%,RO=2.44%"

图10

龙潭组泥页岩黏土矿物(a)和TOC(b)与孔隙度相关关系"

图11

龙潭组页岩样品等温吸附曲线"

图12

龙潭组泥页岩TOC(a)和黏土矿物(b)与总含气量关系"

1 郭旭升, 胡东风, 刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10):17-24.
GUO X S, HU D F, LIU R B, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):17-24.
2 邹才能, 赵群, 丛连铸,等. 中国页岩气开发进展,潜力及前景[J]. 天然气工业, 2021,41(1):1-14.
ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
3 董大忠, 邱振, 张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.
DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45.
4 匡立春, 董大忠, 何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3) :5-16.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3):5-16.
5 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35.
NIE H K, HE Z L, LIU G X, et al. Status and direction of shale gas exploration and development in China[J]. China University of Mining and Technology, 2020, 49(1): 13-35.
6 何治亮, 聂海宽, 李双建,等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J].石油与天然气地质, 2021, 42(1): 1-15.
HE Z L, NIE H K, LI S J, et al. Differential occurence of shale gas in the Permian Longtan Formation of Upper Yangtze region constrained by plate tectonics in the Tethyan domain[J]. Oil & Gas Geology, 2021, 42(1): 1-15.
7 何燚,唐玄,单衍胜,等. 四川盆地及其周缘典型地区龙潭组页岩岩相划分对比及特征[J]. 天然气地球科学, 2021, 32(2): 174-190.
HE Y,TANG X,SHAN Y S,et al. Lithofacies division and comparison and characteristics of Longtan Formation shale in typical areas of Sichuan Basin and its surrounding[J]. Natural Gas Geoscience, 2021, 32(2): 174-190.
8 曹涛涛, 曹清古, 刘虎, 等. 川东地区海陆过渡相泥页岩地球化学特征及吸附性能[J]. 煤炭学报,2020,45(4):1445-1456.
CAO T T, CAO Q G, LIU H, et al. Geochemical characteristics and adsorption capacity of marine-continental transitional mudrock in eastern Sichuan Basin[J]. Journal of China Coal Society, 2020, 45(4): 1445-1456.
9 翟刚毅, 王玉芳, 刘国恒,等. 中国二叠系海陆交互相页岩气富集成藏特征及前景分析[J]. 沉积与特提斯地质, 2020, 40(3): 102-117.
ZHAI G Y, WANG Y F, LIU G H, et al. Enrichment and accumulation characteristics and prospect analysis of the Permian marine conticental multiphase shale gas in China[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(3):102-117.
10 冯庆来, 刘本培,叶玫. 中国南方古特提斯阶段的构造古地理格局[J]. 地质科技情报, 1996, 15(3):1-6.
FENG Q L, LIU B P, YE M. Tectonic paleogeographic pattern of paleo Tethyan stage in south China[J]. Geological Science and Technology Information, 1996, 15(3):1-6.
11 周小进. 中国南方二叠纪构造—层序岩相古地理[D]. 长沙:中南大学, 2009:26-28.
ZHOU X J. Tectonic-Sequence-Based Lithofaeies and Paleogeography of Permian in South of China[D]. Changsha: Central South University, 2009:26-28.
12 刘光祥,金之均,邓模,等.川东地区上二叠统龙潭组页岩气勘探潜力[J]. 石油与天然气地质,2015,36(3):482-487.
LIU G X, JIN Z J, DENG M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Oil & Gas Geology,2015,36(3):482-487.
13 刘忠宝, 胡宗全, 刘光祥,等. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质, 2021, 42(1): 136-145.
LIU Z B, HU Z Q, LIU G X, et al. Pore characteristics and controlling factors of continental shale reservoirs inthe Lower Jurassic Ziliujing Formation,northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1):136-145.
14 金之钧, 胡宗全, 高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1):1-10.
JIN Z J, HU Z Q, GAO B,et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
15 牟传龙, 周恳恳, 梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011, 85(4):526-532.
MOU C L, ZHOU K K, LIANG W, et al. Early paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4):526-532.
16 高凤琳, 王成锡, 宋岩,等. 氩离子抛光—场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2):360-367.
GAO F L, WANG C X,SONG Y, et al. Ar-ion polishing FE-SEM analysis of organic maceral identification[J].Petroleum Geology & Experiment, 2021, 43(2):360-367.
17 王鹏威,张亚雄,刘忠宝,等. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学, 2021, 32(11):1-11.
WANG P W,ZHANG Y X,LIU Z B,et al. Microfracture development at Ziliujing lacustrine shale reservoir and its significance for shale-gas enrichment at Fuling in eastern Sichuan[J]. Natural Gas Geoscience,2021,32(11):1-11.
18 KOUCKS R, ZHANG T, et al. Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin,2016,100(1-11):1693-1722.
19 赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6):643-647.
ZHAO X Y, HE D B. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6):643-647.
20 吉利明,邱军利,夏燕青,等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256.
JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256.
21 曹涛涛, 刘光祥, 曹清古,等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39(1):40-53.
CAO T T, LIU G X, CAO Q G, et al. Influence of maceral composition on organic pore development in shale:A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(1):40-53.
22 ZHANG T W, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry,2012,47(6): 120-131.
23 JI L M, ZHANG T W, MILLIKEN K L, et al. Experimental investigation of main controls to methane adsorption in clay rich rocks[J].Applied Geochemistry,2012,27(12):2533-2545.
24 ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine & Petroleum Geology, 2009, 26(6): 916-927.
25 李军, 武清钊, 路菁,等. 页岩气储层总孔隙度与有效孔隙度测量及测井评价——以四川盆地龙马溪组页岩气储层为例[J]. 石油与天然气地质, 2017, 38(3):602-609.
LI J,WU Q Z,LU J,et al.Measurement and logging evaluation of total porosity and effective porosity of shale gas reservoirs: A case from the Silurian Longmaxi Formation shale in the Sichuan Basin[J]. Oil & Gas Geology,2017,38(3):602-609.
26 LU J, RUPPEL S C, ROWE H D. Organic matter pores and oil generation in the Tuscaloosa marine shale[J]. AAPG Bulletin, 2015, 99(2): 333-357.
27 任俊豪, 任晓海, 宋海强,等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11):1366-1375.
REN J H,REN X H,SONG H Q,et al.Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J].Acta Petrolei Sinica,2020,41(11):1366-1375.
28 HU Y, DEVEGOWDA D, RICHARD S. A microscopic characterization of wettability in shale kerogen with varying maturity levels[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1078-1086.
29 YANG R, JIA A, HE S, et al. Water adsorption characteristics of organic-rich Wufeng and Longmaxi Shales, Sichuan Basin (China)[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107387-107399.
30 李靖, 李相方, 王香增, 等. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影响[J].力学学报,2016,48(5):1217-1228.
LI J, LI X F, WANG X Z, et al. Effect of water distribution on methane adsorption capacity in shale clay[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228.
[1] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.
[2] 覃军, 张迎朝, 刘金水, 马清, 常吟善. 东海陆架盆地丽水—椒江凹陷古新统L气田成藏过程与主控因素[J]. 天然气地球科学, 2022, 33(4): 605-617.
[3] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[4] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[5] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[6] 王以城,张磊夫,邱振,彭思钟,封从军,孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[7] 马元稹, 王猛, 李嘉敏, 赵健光, 贾腾飞, 朱俊卿. 沁水盆地上古生界煤系页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(3): 441-450.
[8] 孟颖, 靳军, 高崇龙, 李际, 刘明, 刘可, 王柯, 任影, 邓毅. 准噶尔盆地南缘西段白垩系深层储层特征及物性保存机制[J]. 天然气地球科学, 2022, 33(2): 218-232.
[9] 杨佳颖, 蒋有录, 蔡国钢, 赵承锦, 张东伟. 深层砂岩储层特征及成岩差异演化过程[J]. 天然气地球科学, 2022, 33(2): 233-242.
[10] 方镕慧, 刘晓强, 张聪, 李美俊, 夏响华, 黄志龙, 杨程宇, 韩秋雅, 汤韩琴. 温度压力耦合作用下的页岩气吸附分子模拟[J]. 天然气地球科学, 2022, 33(1): 138-152.
[11] 谢菁, 陈建洲, 徐永锋, 王国仓, 王瑾, 李青, 王琪玮. 青藏高原北部东昆仑地区三叠系八宝山组页岩储层测井评价[J]. 天然气地球科学, 2021, 32(9): 1285-1296.
[12] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[13] 席胜利, 莫午零, 刘新社, 张雷, 李剑, 黄正良, 王民, 张春林, 朱秋影, 言语, 周能武. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力——以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.
[14] 蔡灵慧, 余烨, 郭建华, 黄俨然, 郭原草. 湘中南地区中奥陶统烟溪组页岩气勘探潜力[J]. 天然气地球科学, 2021, 32(8): 1247-1260.
[15] 文卓, 康永尚, 康刘旭, 李昀, 赵群, 王红岩. 页岩气工业建产区选区地质评价指标及其下限标准[J]. 天然气地球科学, 2021, 32(7): 950-960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[4] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[5] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[6] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[7] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[8] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[9] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[10] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .