天然气地球科学 ›› 2022, Vol. 33 ›› Issue (4): 588–604.doi: 10.11764/j.issn.1672-1926.2021.10.003

• 天然气地质学 • 上一篇    下一篇

滨岸闭塞环境中有机质富集模式——以川西南峨边葛村剖面筇竹寺组为例

李依林1(),伏美燕1,2,邓虎成1,2,刘四兵1,胥旺1,吴冬1   

  1. 1.成都理工大学能源学院,四川 成都 610059
    2.成都理工大学油气藏地质及开发工程国家重点实验室,四川 成都 610059
  • 收稿日期:2021-07-05 修回日期:2021-09-13 出版日期:2022-04-10 发布日期:2022-04-22
  • 作者简介:李依林(1997-),男,黑龙江大庆人,硕士研究生,主要从事碳酸盐岩成岩作用及页岩储层评价研究.E-mail:liyilin@stu.cdut.edu.cn.
  • 基金资助:
    国家“十三五”科技重大专项“四川盆地寒武系筇竹寺组沉积特征研究”(2017ZX05036003-007)

The enrichment model of organic matter in the coastal detention environment: Case study of the Qiongzhusi Formation in the Gecun section of Ebian in southwestern Sichuan Basin

Yilin LI1(),Meiyan FU1,2,Hucheng DENG1,2,Sibing LIU1,Wang XU1,Dong WU1   

  1. 1.College of Energy,Chengdu University of Technology,Chengdu 610059,China
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China
  • Received:2021-07-05 Revised:2021-09-13 Online:2022-04-10 Published:2022-04-22
  • Supported by:
    The National Science and Technology Major Project of China(2017ZX05036003-007)

摘要:

上扬子地区筇竹寺组是我国四川盆地页岩气勘探的重点层位之一。目前对于筇竹寺组细粒沉积岩的有机质富集研究集中于绵阳—长宁拉张槽内的深水陆棚中,对川西南地区滨岸浅水环境中有机质富集的研究较少。以峨边葛村剖面为例,通过开展剖面及薄片观察、X射线衍射分析、有机地球化学测试、元素地球化学分析等工作,恢复研究区的沉积古环境并探讨了有机质富集的主控因素。结果表明:峨边地区筇竹寺组发育富有机质泥页岩,有机质富集是古气候、古生产力及水体氧还原性质协调作用的结果。导致滨岸环境有机质富集的根本原因是滞留的水体及古水深的变化,筇竹寺组沉积晚期温暖的气候和古水深的增加促使生物繁盛,古生产力提高。古水深的变化先后导致水体分层和滞留水体的形成,使沉积水体还原性进一步提高。研究认为川西南地区筇竹寺组沉积晚期古水深变化的过程有利于有机质的富集,滨岸闭塞环境的富有机质泥页岩段发育于水体深度波动变化时期,在此基础上建立了滨岸环境下的有机质富集模式。

关键词: 峨边葛村剖面, 筇竹寺组, 滨岸闭塞环境, 有机质富集, 古水深, 沉积古环境

Abstract:

The Qiongzhusi Formation in the Upper Yangtze area is one of the key formations for shale gas exploration in the Sichuan Basin, China. At present, the research on the organic matter enrichment of the fine-grained sedimentary rocks of the Qiongzhusi Formation focuses on the deep-water shelf environment in the Mianyang-Changning elongated trough. There are few studies on the organic matter enrichment in the coastal shallow water environment in southwestern Sichuan Basin. This study takes the Gecun section of Ebian as an example. Through section and thin section observation, X-ray diffraction analysis, organic geochemical test, element geochemical analysis, etc., the ancient sedimentary environment in the area was restored and the main controlling factors of organic matter enrichment in the study area were explored. The results of the study show that organic-rich mud shale is developed in the Qiongzhusi Formation in Ebian area, and the enrichment of organic matter is the result of the coordinated effect of paleo-climate, paleo-productivity and oxygen reduction properties of the water. The key reason of the enrichment of organic matter is the change of paleo-water depth. The warmer climate and the rise of paleo-water depth during the late deposition period of Qiongzhusi Formation promoted the prosperity of organisms and the increase of ancient productivity. Paleo-water depth changes have successively led to the formation of water stratification and the formation of detaining environments, which further improved the reducibility of sedimentary water bodies. Research suggests that the late deposition period of Qiongzhusi Formation in southwestern Sichuan is conducive to the enrichment of organic matter, the organic-rich mud shale section in the riparian facies retention environment developed during the paleo-water depth rise and fall. Based on these studies, the organic matter enrichment model in the riparian environment was established.

Key words: Gecun section of Ebian, Qiongzhusi Formation, Coastal retention environment, Organic matter enrichment, Paleo-water depth, Sedimentary paleoenvironment

中图分类号: 

  • TE122.2

图1

四川盆地下寒武统地层发育特征[32]"

图2

四川盆地及周缘峨边筇竹寺组沉积环境及峨边葛村剖面位置(修改自文献[34,38-40])"

图3

川西南地区峨边葛村—乐山范店—金页1井筇竹寺组岩性对比(修改自文献[34])"

图4

峨边葛村剖面岩性及取样位置"

图5

研究区细粒沉积岩镜下特征及宏观特征(a)黑色泥岩,峨边葛村剖面;(b)灰绿色粉砂岩,峨边老鸦村剖面;(c)炭质页岩样品,56 m;(d)灰绿色粉砂质泥岩样品,34 m;(e)砂质泥岩,238.5 m,单偏光;(f)砂质泥岩,238.5 m,正交光;(g)含泥粉砂岩,126 m,单偏光;(h)含泥粉砂岩,126 m,正交光;(i)黑色泥页岩,65 m,单偏光;(j)黑色泥页岩,65 m,正交光;(k)纹层,77.5 m,单偏光;(l)纹层,77.5 m,正交光;(m)砂质透镜体,30.2 m,单偏光;(n)砂质透镜体,30.2 m,正交光;(o)条带状有机质,24 m,单偏光;(p)条带状有机质,24 m,正交光"

图6

研究区样品矿物组分特征"

表1

研究区样品主要元素分析结果"

样品编号深度/m主量元素含量/%微量元素含量/10-6
Al2O3CaOMgONa2OK2OP2O5MnOMoVCrNiCuCo
S1262.016.0620.2542.9250.2455.7140.2600.0831.0696.5891.6232.1728.6419.92
S2258.016.1210.3804.3800.6514.9210.2760.0400.6595.2448.3535.6138.6610.86
S3239.015.7090.3934.2450.6894.8650.2830.0400.6293.8247.4335.2938.2112.02
S4237.515.0711.2785.4440.6604.7820.2280.0641.96106.2953.5346.2527.0520.83
S523715.7741.0125.5000.5844.8860.2320.0561.49123.5561.2846.7122.7621.34
S622315.1941.0915.3590.6934.7590.2440.0501.28110.5749.4142.9318.3419.11
S722114.9501.2085.3890.7224.6990.2490.0501.11103.0051.2139.6718.4416.55
S818312.4563.4585.7440.3524.7700.2750.0780.5172.7736.4121.535.689.97
S917717.4170.6193.3340.3237.5060.4820.0870.4269.5632.5919.164.8910.52
S1016114.9580.7044.3680.1825.9420.4140.0690.5486.9848.2528.835.2510.39
S1116014.6852.8395.7240.3235.4340.2880.0650.5187.7239.9227.124.519.04
S1215713.9103.1305.7210.3535.3300.2830.0710.4581.4241.5325.7920.268.61
S1310014.1950.7113.4280.1886.2470.5700.1140.5173.0041.8724.093.667.32
S1489.015.2750.5422.4950.1938.0540.4390.0280.44100.5154.6524.997.3010.57
S1586.014.9961.8323.6150.1797.5970.2990.0551.0691.5554.8330.7911.8115.93
S1681.010.4944.6714.8130.1676.0530.2940.1020.5547.2040.2212.214.795.37
S1777.012.0105.4126.8800.1675.1982.4880.0660.7784.4157.5425.5014.3822.54
S1876.04.51515.46014.3160.1221.6080.4430.1861.1921.0632.146.586.733.12
S1975.812.4913.5454.3850.1716.7030.4810.0841.3188.2565.9220.268.949.14
S2074.011.4274.9945.5180.1665.4561.2350.0852.8672.0055.5019.9210.969.57
S2169.015.9871.7484.1380.1696.0310.3540.0521.26149.6396.3645.8722.9214.38
S2266.011.9544.7615.1730.1625.3160.4150.0992.4183.4668.0827.3218.289.22
S2357.514.2394.2934.7040.1675.5480.9220.0862.65170.7780.1643.8829.2710.83
S2456.016.1331.6413.9140.1626.1360.2830.0539.08202.3960.6658.6262.9822.55
S2546.016.5821.6664.3700.1665.7290.2380.0572.32217.1169.2955.3078.2920.65
S2645.016.7622.1404.8650.1625.3900.2220.0632.88205.7769.6953.9366.4719.41
S2743.816.6632.1184.8510.1635.3940.2280.0631.30203.6162.7651.9174.6319.29
S2841.516.5102.4065.0590.1605.2090.2200.0701.48193.4960.7350.6081.6419.13
S2932.014.5263.9855.5230.1665.6650.1990.0611.62167.3668.0746.5646.6020.24
S3030.016.4541.6814.5540.1716.3010.2370.0431.25184.7558.8651.4739.6723.69
S3127.516.4391.9845.1260.1645.7110.2660.0451.29201.3663.7562.4536.3326.73

图7

研究区样品地球化学参数计算结果及全球海平面变化在垂向上的分布(海平面变化数据引自文献[49])"

图8

研究区样品TOC与古生产力、古气候、氧化还原性质指标的相关性"

图9

研究区样品TOC与陆源碎屑及水体滞留程度指标在不同水深下的相关性差异"

图10

峨边地区筇竹寺组上段泥页岩有机质富集模式(a)古水深升高过程中有机质富集特征;(b)古水深降低过程中有机质富集特征"

1 马丽梅,史丹,裴庆冰.中国能源低碳转型(2015—2050):可再生能源发展与可行路径[J].中国人口:资源与环境,2018,28(2):8-18.
MA L M, SHI D, PEI Q B. Low-carbon transformation of China’s energy in 2015-2050: Renewable energy development and feasible path[J]. China Population: Resources and Environment,2018,28(2): 8-18.
2 黎江峰,周娜,吴巧生.中国天然气资源安全分析[J].中国矿业,2021,30(4):10-14.
LI J F,ZHOU N,WU Q S.Natural gas resources security analysis in China[J]. China Mining Magazine,2021,30(4):10-14.
3 门相勇,王陆新,王越,等.新时代我国油气勘探开发战略格局与 2035 年展望[J].中国石油勘探,2021,26(3):1-8.
MEN X Y, WANG L X, WANG Y, et al. Strategic pattern of China’s oil and gas exploration and development in the new era and prospects for 2035[J]. China Petroleum Exploration,2021,26(3):1-8.
4 郭威,潘继平.“十三五”全国油气资源勘查开采规划执行情况中期评估与展望[J].天然气工业,2019,39(4):111-117.
GUO W, PAN J P. Mid-term evaluation and prospect of the implementation of the 13th Five-Year Plan for the national oil and gas resources exploration and mining plan[J]. Natural Gas Industry,2019,39(4):111-117.
5 姜在兴,孔祥鑫,杨叶芃,等.陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J].石油勘探与开发,2021,48(1):26-37.
JIANG Z X, KONG X X, YANG Y P, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development,2021,48(1):26-37.
6 朱毅秀,金振奎,金科,等.中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征——以四川盆地元坝地区下侏罗统大安寨段为例[J].石油与天然气地质,2021,42(2):494-508.
ZHU Y X, JIN Z K, JIN K, et al. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks in continental lacustrine basins: A case study on the Lower Jurassic Da’anzhai Member of Yuanba area,Sichuan Basin[J]. Oil & Gas Geology, 2021,42(2):494-508.
7 李圯,刘可禹,蒲秀刚,等.沧东凹陷孔二段混合细粒沉积岩相特征及形成环境[J].地球科学,2020,45(10):3779-3796.
LI Y, LIU K Y, PU X G, et al. Lithofacies characteristics and formation environments of mixed fine-grained sedimentary rocks in second member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin[J]. Earth Science,2020,45(10):3779-3796.
8 黄梓桑,王兴志,杨西燕,等.沉积环境对页岩中有机质富集的约束——以蜀南地区五峰组—龙马溪组为例[J].沉积学报,2021,39(3):631-644.
HUANG Z S, WANG X Z, YANG X Y, et al. Constraints of sedimentary environment on organic matter accumulation in shale: A case study of the Wufeng-Longmaxi formations in the southern Sichuan Basin[J]. Acta Sedimentologica Sinica,2021,39(3):631-644.
9 WANG J, BULOT L G, TAYLOR K G, et al. Controls and timing of Cenomanian-Turonian organic enrichment and relationship to the OAE2 event in Morocco, North Africa[J]. Marine and Petroleum Geology,2021,128:105013.
10 HAN Y, RAN B, LIU S, et al. Main controlling factors of organic-matter enrichment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze Block, South China[J].Marine and Petroleum Geology,2021,127: 104959.
11 YU Y, LI P, GUO R, et al. Upwelling-induced organic matter enrichment of the Upper Permian Dalong Formation in the Sichuan Basin, SW China and its paleoenvironmental implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2021,576:110510.
12 WU Y, TIAN H, GONG D, et al. Paleo-environmental variation and its control on organic matter enrichment of black shales from shallow shelf to slope regions on the Upper Yangtze platform during Cambrian Stage 3[J].Palaeogeography,Pa-laeoclimatology, Palaeoecology, 2020,545:109653.
13 白悦悦,刘招君,孙平昌,等.近系梅河组下部含煤岩系有机质富集模式[J].煤炭学报,2014,39(S2):458-464.
BAI Y Y, LIU Z J, SUN P C, et al. Organic matter accumulation pattern of coal bearing layers in the lower part of Meihe Formtion in Paleogene, Meihe Basin[J]. Journal of China Coal Society,2014,39(S2):458-464.
14 李艳芳,邵德勇,吕海刚,等.四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483.
LI Y F, SHAO D Y, LV H G, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica,2015,36(12):1470-1483.
15 郭来源,张士万,解习农,等.鄂西—渝东地区下侏罗统东岳庙段泥岩地球化学特征及有机质富集模式[J].地球科学,2017,42(7):1235-1246.
GUO L Y, ZHANG S W, XIE X N, et al. Geochemical characteristics and organic matter enrichment of the Dongyuemiao member mudstone of Lower Jurassic in the western Hubei-eastern Chongqing [J]. Earth Science,2017,42(7):1235-1246.
16 SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology,2003,195(1):229-273.
17 MORT H, JACQUAT O, ADATTE T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: Enhanced productivity and/or better preservation?[J]. Cretaceous Research,2007,28(4):597-612.
18 WEI H, CHEN D, WANG J, et al. Organic accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2012,353-355:73-86.
19 张钰莹,何治亮,高波,等.上扬子区下寒武统富有机质页岩沉积环境及其对有机质含量的影响[J].石油实验地质,2017,39(2):154-161.
ZHANG Y Y, HE Z L, GAO B, et al. Sedimentary environment of the Lower Cambrian organic-rich shale and its influence on organic content in the Upper Yangtze[J]. Petroleum Geology & Experiment,2017,39(2):154-161.
20 张逊,庄新国,涂其军,等.准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理[J].地球科学,2018,43(2):538-550.
ZHANG X,ZHUANG X G,TU Q J,et al. Depositional proce-ss and mechanism of organic matter accumulation of Lucaogou shale in southern Junggar Basin,northwest China[J]. Earth Science,2018,43(2):538-550.
21 田巍,王传尚,白云山,等.湘中涟源凹陷上泥盆统佘田桥组页岩地球化学特征及有机质富集机理[J].地球科学,2019,44(11):3794-3811.
TIAN W, WANG C S, BAI Y S, et al. Shale geochemical characteristics and enrichment mechanism of organic matter of the Upper Devonian Shetianqiao Formation shale in Lianyuan Sag, central Hunan[J]. Earth Science,2019,44(11):3794-3811.
22 商斐,周海燕,刘勇,等.松辽盆地嫩江组泥页岩有机质富集模式探讨——以嫩江组一、二段油页岩为例[J].中国地质,2020,47(1):236-248.
SHANG F, ZHOU H Y, LIU Y, et al. A discussion on the organic matter enrichment model of the Nenjiang Formation, Songliao Basin: A case study of oil shale in the 1st and 2nd members of the Nenjiang Formation[J]. Geology in China,2010,47(1):236-248.
23 夏鹏,付勇,杨镇,等.黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J].地质学报,2020,94(3):947-956.
XIA P, FU Y, YANG Z, et al. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan, northern Guizhou[J]. Acta Geologica Sinica,2020,94(3):947-956.
24 郭伟, 冯庆来, Maliha Zareen Khan. 重庆焦页143-5井五峰组—龙马溪组黑色页岩有机质富集机理[J]. 地球科学,2021,46(2):572-582.
GUO W, FENG Q L, MALIHA Z K. Organic matter enrichment mechanism of black shale in Wufeng-Longmaxi formations: A case study from Jiaoye 143-5 Well at Chongqing[J]. Earth Science,2021,46(2):572-582.
25 何佳伟,谢渊,刘建清,等.上扬子西南缘下志留统细粒沉积岩有机质富集机理研究——以盐津牛寨剖面为例[J].沉积学报,2021,39(3):656-671.
HE J W, XIE Y, LIU J Q, et al. Mechanism of organic matter enrichment of fine-grained sedimentary rocks in the southwest margin of Upper Yangtze: A case study of the Niuzhai section, Yanjin[J]. Acta Sedimentologica Sinica,2021,39(3):656-671.
26 丁江辉,张金川,石刚,等.宣城地区龙潭组页岩沉积环境与有机质富集[J].沉积学报,2021,39(2):324-340.
DING J H, ZHANG J C, SHI G, et al. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area[J]. Acta Sedimentologica Sinica,2021,39(2):324-340.
27 丁江辉,张金川,石刚,等.皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J].石油与天然气地质,2021,42(1):158-172.
DING J H, ZHANG J C, SHI G, et al. Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale,southern Anhui Province,China[J]. Oil & Gas Geology,2021,42(1):158-172.
28 方正,蒲秀刚,陈世悦,等.沧东凹陷孔二段页岩有机质富集特征研究[J].中国矿业大学学报,2021,50(2):304-317.
FANG Z, PU X G, CHEN S Y, et al. Investigation of enrichment characteristics of organic matter in shale of the 2nd member of Kongdian Formation in Cangdong Sag[J].Journal of China University of Mining & Technology,2021,50(2):304-317.
29 闫德宇,黄文辉,陆小霞,等.下扬子区海陆过渡相不同沉积环境页岩气成藏条件对比[J].煤炭学报,2016,41(7):1778-1787.
YAN D Y, HUANG W H, LU X X, et al. Contrast of reservoir-forming conditions of marine-continental transitional shale gas in different sedimentary environments in the Lower Yangtze area of China[J]. Journal of China Coal Society, 2016, 41(7):1778-1787.
30 辛云路,王劲铸,金春爽.南盘江盆地石炭系沉积体系及页岩气有利区带[J].现代地质,2018,32(4):774-785.
XIN Y L, WANG J Z, JIN C S. Sedimentary system and the shale-gas favorable area of the Carboniferous in the Nanpanjiang Basin[J]. Geoscience,2018,32(4):774-785.
31 CHEN L, JIANG S, CHEN P, et al. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi formations in the central Yangtze area, China[J]. Marine and Petroleum Geology,2021,124:104809.
32 唐娜. 四川盆地下寒武统岩相古地理研究[D].武汉: 长江大学,2017.
TANG N. Study on Lithofacies Palaeogeography of the Lower Cambrian in the Sichuan Basin[D]. Wuhan: Yangtze University, 2017.
33 曾义金,陈作,卞晓冰.川东南深层页岩气分段压裂技术的突破与认识[J].天然气工业,2016,36(1):61-67.
ZENG Y J, CHEN Z, BIAN X B. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J]. Natural Gas Industry,2016, 36(1):61-67.
34 范海经,邓虎成,伏美燕,等.四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J].沉积学报,2021,39(4):1004-1019.
FAN H J, DENG H C, FU M Y, et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica,2021,39(4):1004-1019.
35 熊亮,葛忠伟,王同,等.川南寒武系筇竹寺组勘探潜力研究[J].油气藏评价与开发,2021,11(1):14-21,55.
XIONG L, GE Z W, WANG T, et al. Exploration potential of Cambrian Qiongzhusi Formation in southern Sichuan Basin[J]. Reservoir Evaluation and Development,2021,11(1): 14-21,55.
36 杨雨,罗冰,张本健,等.四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J].石油实验地质,2021,43(4):611-619.
YANG Y, LUO B, ZHANG B J, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2021,43(4):611-619.
37 杨帅杰,王伟锋,张道亮,等.川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J].天然气地球科学,2020,31(4):507-517.
YANG S J, WANG W F, ZHANG D L, et al. Distribution characteristics and formation environment of high quality source rocks of Qiongzhusi Formation in northeastern Sichuan Basin[J]. Natural Gas Geoscience,2020,31(4):507-517.
38 王鹏威,刘忠宝,金之钧,等.川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素[J].地球科学,2019,44(11):3628-3638.
WANG P W, LIU Z B, JIN Z J, et al. Main control factors of shale gas differential vertical enrichment in Lower Cambrian Qiongzhusi Formation, southwest Sichuan Basin, China[J]. Earth Science,2019,44(11):3628-3638.
39 赵立可,李文皓,和源,等.四川盆地麦地坪组—筇竹寺组沉积充填规律及勘探意义[J].天然气勘探与开发,2020,43(3):30-38.
ZHAO L K, LI W H, HE Y, et al. Sedimentation and filling laws of Maidiping-Qiongzhusi formations in Sichuan Basin and their significance of oil and gas geological exploration[J]. Natural Gas Exploration and Development,2020,43(3):30-38.
40 程建,郑伦举.川南地区金页1井早寒武世烃源岩沉积地球化学特征[J].石油与天然气地质,2020,41(4):800-810.
CHENG J, ZHENG L J. Sedimentary geochemical characteristics of the Early Cambrian source rocks in Well Jinye 1 in southern Sichuan Basin[J]. Oil & Gas Geology, 2020,41(4):800-810.
41 胡琳,朱炎铭,陈尚斌,等.中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析[J].煤炭学报,2012,37(11):1871-1877.
HU L, ZHU Y M, CHEN S B, et al. Resource potential analysis of shale gas in Lower Cambrian Qiongzhusi Formation in Middle & Upper Yangtze region[J]. Journal of China Coal Society,2012,37(11):1871-1877.
42 韩双彪,张金川,李玉喜,等.黔北地区下寒武统牛蹄塘组页岩气地质调查井位优选[J].天然气地球科学,2013,24(1):182-187.
HAN S B, ZHANG J C, LI Y X, et al. The optimum selecting of shale gas well location for geological investigation in Niutitang Formation in Lower Cambrian, northern Guizhou area[J]. Natural Gas Geoscience,2013,24(1):182-187.
43 夏嘉,王思波,曹涛涛,等.黔北地区下寒武统页岩孔隙结构特征及其含气性能[J].天然气地球科学,2015,26(9):1744-1754.
XIA J, WANG S B, CAO T T, et al. The characteristics of pore structure and its gas storage capability of the Lower Cambrian shales from northern Guizhou Province[J]. Natural Gas Geoscience,2015,26(9):1744-1754.
44 刘犟,张克银.四川盆地井研地区麦地坪组-筇竹寺组高分辨率层序地层特征[J].成都理工大学学报(自然科学版),2018,45(5):585-593.
LIU J, ZHANG K Y. Characteristics of high-resolution stratigraphic sequence of Madiping Formation and Qiongzhusi Formation in Jingyan area, Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2018,45(5):585-593.
45 赵建华,金之钧,林畅松,等.上扬子地区下寒武统筇竹寺组页岩沉积环境[J].石油与天然气地质,2019,40(4):701-715.
ZHAO J H, JIN Z J, LIN C S, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology,2019,40(4): 701-715.
46 王淑芳,张子亚,董大忠,等.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J].天然气地球科学,2016,27(9):1619-1628.
WANG S F, ZHANG Z Y, DONG D Z, et al. Microscopic pore structure and reasons making reservoir property weaker of Lower Cambrian Qiongzhusi shale, Sichuan Basin, China[J]. Natural Gas Geoscience,2016,27(9):1619-1628.
47 刘树根,冉波,郭彤楼. 四川盆地及周缘下古生界富有机质黑色页岩——从优质烃源岩到页岩气产层[M]. 北京:科学出版社, 2014.
LIU S G, RAN B, GUO T L. From Oil-Prone Source Rock to Gas-Producting Shale Reservoir Lower Palaeozoic Organic-Matter-Rich Black Shale in the Sichuan Basin and its Periphery [M]. Beijing: Science Press, 2014.
48 MCLENNAN S M, HEMMING S R, MCDANIEL D K, et al. Geochemical Approaches to Sedimentation, Provenance, and Tectonics[M]. Boulder: Geological Society of America, 1993.
49 HAQ B, SCHUTTER S. A chronology of Paleozoic sea-level changes[J]. Science, 2008,322:64-68.
50 李浩,陆建林,李瑞磊,等.长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J].地球科学,2017,42(10):1774-1786.
LI H, LU J L, LI R L, et al. Generation paleoenvironment and its controlling factors of Lower Cretaceous lacustrine hydrocarbon source rocks in Changling Depression, south Songliao Basin[J]. Earth Science,2017,42(10):1774-1786.
51 熊小辉,肖加飞.沉积环境的地球化学示踪[J].地球与环境,2011,39(3):405-414.
XIONG X H,XIAO J F. Geochemical indicators of sedimentary environments:A summary[J]. Earth and Environment,2011,39(3):405-414.
52 拜文华,王强,孙莎莎,等.五峰组—龙马溪组页岩地化特征及沉积环境——以四川盆地西南缘为例[J].中国矿业大学学报,2019,48(6):1276-1289.
BAI W H, WANG Q, SUN S S, et al. Geochemical characteristics and sedimentary environment of the Wufeng-Longmaxi shales: A case study from south western margin of the Sichuan Basin[J].Journal of China University of Mining & Technology,2019,48(6):1276-1289.
53 NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299:715-717.
54 MCLENNAN S, HEMMING S, MCDANIEL D, et al. Geochemical Approaches to Sedimentation,Provenance, and Tectonics[M]. Boulder: Processes Controlling the Composition of Clastic Sediments, 1993.
55 BAI Y, LIU Z, SUN P, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, northeast China[J]. Journal of Asian Earth Sciences, 2015,97:89-101.
56 RIMMER S M, THOMPSON J A, GOODNIGHT S A, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,215(1):125-154.
57 VAN BENTUM E C, REICHART G, SINNINGHE DAMSTÉ J S. Organic matter provenance, palaeoproductivity and bottom water anoxia during the Cenomanian/Turonian oceanic anoxic event in the Newfoundland Basin (northern proto North Atlantic Ocean)[J]. Organic Geochemistry,2012,50:11-18.
58 MOHIALDEEN I M J, HAKIMI M H. Geochemical characterisation of Tithonian-Berriasian Chia Gara organic-rich rocks in northern Iraq with an emphasis on organic matter enrichment and the relationship to the bioproductivity and anoxia conditions[J]. Journal of Asian Earth Sciences, 2016,116:181-197.
59 WANG C, WANG Q, CHEN G, et al. Petrographic and geochemical characteristics of the lacustrine black shales from the Upper Triassic Yanchang Formation of the Ordos Basin, China: Implications for the organic matter accumulation[J]. Marine and Petroleum Geology, 2017,86:52-65.
60 HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. [J]. Chemical Geology,1992,99(1):65-82.
61 JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111(1):111-129.
62 常华进,储雪蕾,冯连君,等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评,2009,55(1):91-99.
CHANG H J, CHU X L, FENG L J, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Re-view,2009,55(1):91-99.
63 PI D, JIANG S Y, LUO L, et al. Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: Evidence from redox-sensitive trace element geochemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2014,398:125-131.
64 ZHU B, JIANG S, PI D, et al. Trace elements characteristics of black shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for redox and open vs.restricted basin conditions[J]. Journal of Earth Science,2018,29(2):342-352.
65 COVENEY R M, CHEN N S. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States[J].Mineralium Deposita,1991,26(2):83-88.
66 魏怀瑞.贵州早寒武世黑色岩系热(液)水沉积特征及热水生物群研究[D].贵阳:贵州大学,2008.
WEI H R. Study on the Characteristics of Hydrothermal (Liquid) Water Deposition and Hydrothermal Biota of the Early Cambrian Black Rock Series in Guizhou[D].Guiyang:Guizhou University, 2008.
67 闵华军.扬子板块西南缘下寒武统筇竹寺组高过成熟页岩储层特征及形成机理[D].成都:成都理工大学,2020.
MIN H J. Characteristics and Formation Mechanism of Highly Over-mature Shale Gas Reservoirs in Lower Cambrian Qiongzhusi Formation in the Southwestern Yangtze Plate[D]. Chengdu: Chengdu University of Technology, 2020.
68 王鹏万,邹辰,李娴静,等.滇黔北地区筇竹寺组元素地球化学特征及古环境意义[J].中国石油大学学报(自然科学版),2021,45(2):51-62.
WANG P W, ZOU C, LI X J, et al. Geochemical characteristics of element Qiongzhusi Group in Dianqianbei area and paleoenvironmental significance[J]. Journal of China University of Petroleum(Edition of Natural Science),2021,45(2):51-62.
69 MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta,1999,63(11):1735-1750.
70 CALVERT S E, PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology,1993,113(1):67-88.
71 WHITFIELD M. Interactions Between Phytoplankton and Trace Metals in the Ocean, Volume 41[M]. San Diego: Academic Press, 2001:1-128.
72 YU X, FENG Q L, SHEN J, et al. Changhsingian radiolarian fauna from Anshun of Guizhou, and its relationship to TOC and paleo-productivity[J]. Science China Earth Sciences,2013,56(8):1334-1342.
73 CHEN H, XIE X, HU C, et al. Geochemical characteristics of Late Permian sediments in the Dalong Formation of the Shangsi Section, northwest Sichuan Basin in South China: Implications for organic carbon-rich siliceous rocks formation[J]. Journal of Geochemical Exploration,2012,112:35-53.
74 LYONS T W, WERNE J P, HOLLANDER D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela[J]. Chemical Geology,2003,195(1):131-157.
75 ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography,2006,21(1):1-23.
76 ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J] Chemical Geology,2009,268(3):211-225.
77 TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology,2012,324-325:46-58.
78 BÖNING P, BRUMSACK H, SCHNETGER B, et al. Trace element signatures of Chilean upwelling sediments at ~36°S[J]. Marine Geology,2009,259(1):112-121.
79 SWEERE T, VAN DEN BOORN S, DICKSON A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn,Co,Mo and Cd concentrations[J]. Chemical Geology,2016,441:235-245.
[1] 王玉满, 沈均均, 邱振, 李新景, 张磊夫, 张琴, 王灿辉. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学, 2021, 32(9): 1308-1323.
[2] 周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[3] 杨帅杰, 王伟锋, 张道亮, 付小东, 张建勇, 李文正. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学, 2020, 31(4): 507-517.
[4] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[5] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[6] 刘佳宜,刘全有,朱东亚,孟庆强,刘文汇,邱登峰,黄振凯. 深部流体在富有机质烃源岩形成中的作用[J]. 天然气地球科学, 2018, 29(2): 168-177.
[7] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
[8] 王淑芳, 张子亚, 董大忠, 王玉满, 李新景, 胡俊文, 黄金亮, 管全中. 四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J]. 天然气地球科学, 2016, 27(9): 1619-1628.
[9] 张鉴,王兰生,杨跃明,万茂霞,邹春艳,邓鸿斌,孔令明. 四川盆地海相页岩气选区评价方法建立及应用[J]. 天然气地球科学, 2016, 27(3): 433-441.
[10] 高岗, 向宝力, 王轩, 王熠, 周然然, 马万云, 任江铃, 赵克. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究[J]. 天然气地球科学, 2016, 27(11): 1963-1969.
[11] 王淑芳,董大忠,王玉满,李新景,黄金亮,管全中. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678.
[12] 江强,朱传庆,邱楠生,曹环宇. 川南地区热史及下寒武统筇竹寺组页岩热演化特征[J]. 天然气地球科学, 2015, 26(8): 1563-1570.
[13] 张才利, 高阿龙, 刘哲, 黄静, 杨亚娟, 张艳. 鄂尔多斯盆地长7油层组沉积水体及古气候特征研究[J]. 天然气地球科学, 2011, 22(4): 582-587.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[7] . 柴达木盆地――中国第四大气区[J]. 天然气地球科学, 0, (): 9 .
[8] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .