天然气地球科学 ›› 2021, Vol. 32 ›› Issue (12): 1810–1821.doi: 10.11764/j.issn.1672-1926.2021.10.002

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地陕北地区长7段页岩油储层微观特征及控制因素

马文忠1,2(),王永宏1,2,张三1,2,冯胜斌1,2,郝炳英1,2,崔晓丽1,2   

  1. 1.中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
    2.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
  • 收稿日期:2021-07-21 修回日期:2021-10-16 出版日期:2021-12-10 发布日期:2021-12-27
  • 作者简介:马文忠(1980 -),男,陕西扶风人,高级工程师,主要从事油藏评价及综合地质研究. E-mail: mwz123_cq@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项“鄂尔多斯盆地石油富集规律及勘探目标评价”(2016E-0501)

Microscopic characteristics and controlling factors of Chang 7 Member shale oil reservoir in northern Shaanxi area, Ordos Basin

Wenzhong MA1,2(),Yonghong WANG1,2,San ZHANG1,2,Shengbin FENG1,2,Bingying HAO1,2,Xiaoli CUI1,2   

  1. 1.Research Institute of Exploration and Development,PetroChina Changqing Oilfield Company,Xi’an 710018,China
    2.National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields,Xi’an 710018,China
  • Received:2021-07-21 Revised:2021-10-16 Online:2021-12-10 Published:2021-12-27
  • Supported by:
    The Major Science and Technology Projects of China National Petroleum Corporation(2016E-0501)

摘要:

鄂尔多斯盆地陕北地区长7段蕴藏着丰富的页岩油资源。通过扫描电镜、微米CT、二维FIB?SEM测试等高精度孔隙分析技术手段,结合大量岩心、薄片、测井等资料,对该区长7段多期砂岩叠置型页岩油储层的微观特征进行精细刻画,讨论其主要控制因素。结果表明:研究区长7段页岩油储层孔隙以微米孔为主,半径为2.0~50 μm,喉道半径为0.3~13 μm,其孔喉为微米—纳米级与微米级喉道连通形成的众多簇状孔喉单元;其孔隙度分布在3.0%~13.0%之间,平均孔隙度为7.0%,渗透率在(0.02~0.30)×10-3 μm2之间,平均渗透率为0.15×10-3 μm2;其压汞曲线特征表现为排驱压力低、退汞效率高、粗喉道占比高。研究区长7段页岩油储层粒度细、塑性组分含量高、早期压实作用强烈、黏土矿物和碳酸盐胶结强烈是造成其孔隙减孔的主要因素,而溶蚀作用和绿泥石膜的保护作用具有一定的增孔效应。陕北地区长7段页岩油储层与庆城地区类比表明其具有Ⅰ类页岩油勘探开发的潜力。

关键词: 页岩油, 孔喉结构, 微—纳米孔隙, 陕北地区, 控制因素

Abstract:

Rich shale oil resources are developed in the Chang 7 Member of the Mesozoic Triassic Yanchang Formation in northern Shaanxi area, Ordos Basin. This paper mainly uses core, thin section, well logging and other data, focusing on high-precision pore analysis techniques such as scanning electron microscopy, micro-CT, two-dimensional FIB-SEM testing, etc. to finely portray the micro-features and to discuss its main controlling factors. The pores of the Chang 7 shale oil reservoir in the study area are mainly micro-pores with a radius of 2.0-50 μm and a throat radius of 0.3-13 μm. Numerous clustered pore-throat units are formed by micro-nano-level and micro-level throat connecting micro-level pores. The porosity is distributed between 3.0% and 13.0%, and the average porosity is 7.0%. The permeability is between 0.02×10-3 μm2 and 0.30×10-3 μm2, the average permeability is 0.15×10-3 μm2. The mercury injection curve is characterized by low displacement pressure, high mercury removal efficiency, and high proportion of thick throat. The Chang 7 Member shale oil reservoir in the study area has fine grain size and high content of plastic components. The main factors that cause its pores to decrease are the strong early compaction and the strong cementation of clay minerals and carbonates. The dissolution and the protective effect of the chlorite film have a certain pore-enhancing effect. The potential for Type I exploration and development of Chang 7 Member shale in northern Shaanxi area is huge. Compared with Qingcheng area, the class Ⅰ multi-stage superimposed sandstone reservoir of shale oil has great exploration and development potential in northern Shaanxi area.

Key words: Shale oil, Pore throat structure, Micro-nanopore, Northern Shaanxi area, Controlling factors

中图分类号: 

  • TE122.2

图1

鄂尔多斯盆地构造区划分及研究区位置"

图2

陕北地区长7段储层岩石类型三角图"

图3

鄂尔多斯盆地长7段储层矿物组成(a)耿291井,长71亚段,2 406.50 m; (b)元352井,长72亚段,2 166.33 m;(c)庄214井,长71亚段,1 748.09 m"

表1

陕北地区长7段储层填隙物组合对比"

区块层位水云母 /%绿泥石 /%铁方解石 /%铁白云石 /%高岭石 /%硅质 /%长石质 /%浊沸石 /%其他 /%合计 /%
姬塬长71亚段6.040.973.072.0001.200.0800.9014.27
长72亚段8.530.743.591.9901.240.0801.1817.34
长73亚段7.510.954.524.1000.550.0002.8220.47
新安边长71亚段3.452.265.771.2101.140.050.541.7615.65
长72亚段3.494.215.420.0900.760.070.060.9515.04
长73亚段4.622.356.670.0101.140.0900.8515.74

吴起—

安塞

长71亚段3.152.464.331.0601.160.100.580.9313.77
长72亚段3.932.986.030.8700.720.110.161.6616.46
长73亚段3.212.084.250.1401.180.090.303.6214.87
庆城长7段9.330.471.642.300.111.010.0700.2015.13

表2

陕北地区长7段储层粒度组成对比"

地区层位粒级分布/%粒度Φ样品数
粗砂中砂细砂粉砂
吴起—安塞长73亚段03.985.27.13.83.07153
新安边长72亚段08.482.55.83.42.8174
姬塬长71亚段01.283.88.46.63.29106
全盆地长7段02.680.79.57.23.06730
志靖—安塞长61亚段012.379.35.72.72.6389
姬塬长81亚段0.215.972.85.162.54109

图4

陕北地区长7段成岩作用与特征(a)黄212井,2 469.8 m,长71亚段,塑性碎屑含量高,颗粒定向分布,铸体片,单偏光,×100;(b)安102井,2 321.13 m,长71亚段,铁方解石充填孔隙并交代碎屑,铸体片,单偏光,×100;(c)新278井,1 972.5 m,长71亚段,橙红色方解石胶结物充填于粒间孔,阴极发光,×50;(d)新368井,1 973.0 m,长73亚段,铁方解石充填在有油气充注痕迹的粒间孔,铸体片,单偏光,×200;(e)耿291井,2 410.3 m,长71亚段,粒间孔中充填的钙质胶结物,FIB-SEM,×10 000;(f)安172井,2 142.9 m,长72亚段,绿泥石充填喉道,FIB-SEM,×1 200;(g)黄212井,2 469.8 m,长71亚段,根部位片状而边部丝缕状的伊利石,SEM,×5 261;(h)元264井,2 172.20 m,长72亚段,蜂巢状伊利石,SEM,×5 261;(i)塞544井,2 152.30 m,长73亚段,绿泥附着于碎屑颗粒表面,SEM,×700"

图5

陕北地区长7段储层孔隙类型(a)胡248井,2 230.7 m,长72亚段,粒间孔、溶孔发育,铸体片,单偏光,×200;(b)黄212井,2 482.3 m,长71亚段,粒间孔、溶蚀孔,铸体片,单偏光, ×50;(c)新538井,1 990.01 m,长73亚段,粒间孔,SEM,×824;(d)黄212井,2 480.32 m,长71亚段,碎屑溶蚀蚀变绿泥石残余孔,SEM,×1 963;(e)盐343井,2 570.6 m,长71亚段,长石粒内溶孔,SEM,×3 409;(f)耿291井,2 410.3 m,长71亚段,绿泥石晶间孔,FIB-SEM,×10 000"

表3

陕北地区长7段储层孔隙类型统计"

区块层位粒间孔/%长石溶孔 /%岩屑溶孔 /%粒间溶孔 /%沸石溶孔 /%晶间孔 /%微裂隙 /%面孔率 /%样品数
姬塬长71亚段0.910.970.130.1100.040.022.1872
长72亚段0.840.730.100.0400.030.041.7637
长73亚段0.331.010.040.0300.0201.4329
新安边长71亚段0.860.580.040.100.030.050.061.73129
长72亚段1.170.880.080.0100.050.072.26339
长73亚段0.350.760.040.0900.020.081.3465
吴起—安塞长71亚段1.260.750.060.150.010.060.022.29112
长72亚段0.810.640.030.130.020.020.071.71104
长73亚段0.700.860.070.080.060.020.021.82133

图6

陕北地区长7段页岩油储层微米CT扫描三维孔喉系统"

图7

陕北地区长7段储层毛管压力曲线"

表4

陕北地区长7段I类页岩油主要储层孔喉结构参数统计"

沉积

类型

地区层位排驱压力 /MPa中值压力 /MPa中值半径 /μm最大进汞量 /%退汞效率 /%分选系数样品数
水下分流河道吴起—安塞长71亚段2.4413.690.0676.4629.381.6613
长73亚段2.279.100.9079.4926.731.5218
新安边亚段长71亚段1.9011.300.0877.3024.171.6715
长72亚段2.168.330.1078.0428.901.5842
重力流姬塬长71亚段2.639.380.0982.9327.771.2021
庆城长71亚段2.8910.310.0778.5025.701.2234
长72亚段3.3510.200.0778.4025.301.1858

图8

陕北地区长7段页岩油储层物性频率分布"

图9

陕北地区长7段页岩油储层水平/垂直渗透率对比"

图10

陕北地区长7段页岩油储层埋藏史"

1 LAW B E, CURTIS J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11):1851-1852.
2 邹才能,张光亚,陶士振,等 . 全球油气勘探领域地质特征、重大发现及非常规石油地质[J]. 石油勘探与开发,2010,37(2):129-145.
ZOU C N,ZHANG G Y,TAO S Z,et al. Geological features,major discoveries and unconventional petroleum geology in the global petroleum exploration[J]. Petroleum Exploration and Development,2010,37(2):129-145.
3 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.
ZOU C N, YANG Z, CUI J W, et al. Formation mechanism, geological characteristics, and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013,40(1): 14-26.
4 焦方正,邹才能,杨智,等.陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发,2020,47(6):1067-1078.
JIAO F Z, ZOU C N, YANG Z , et al. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development,2020,47(6):1067-1078.
5 付金华,李士祥,牛小兵, 等.鄂尔多斯盆地三叠系长7 段页岩油地质特征与勘探实践[J]. 石油勘探与开发,2020.47(5):870-883.
FU J H, LI S X, NIU X B, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J] .Petroleum Exploration and Development, 2020,47(5):870-883.
6 付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7 段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5):601-614.
FU J H, NIU X B, DAN W D, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614.
7 邓秀芹,付金华,姚泾利, 等.鄂尔多斯盆地中及上三叠统延长组沉积相与油气勘探的突破[J].古地理学报,2011,13(4):443-455.
DENG X Q, FU J H, YAO J L, et al. Sedimentary facies of the Middle-Upper Triassic Yanchang Formation in Ordos Basin and breakthrough in petroleum exploration[J]. Journal of Palaeogeography, 2011, 13(4):443-455.
8 刘池洋, 赵红格, 王锋, 等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报, 2005, 79(6): 737-747.
LIU C Y, ZHAO H G, WANG F, et al. Attributes of the Mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 2005, 79(6): 737-747.
9 付锁堂,邓秀芹,庞锦莲.晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析[J].沉积学报, 2010, 28(6): 1081-1089.
FU S T, DENG X Q, PANG J L. Characteristics and mechanism of thick sand body of Yanchang Formation at the centre of Ordos Basin[J]. Acta Sedimentologica Sinica,2010, 28(6): 1081-1089.
10 邹才能, 赵政璋, 杨华, 等. 陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J]. 沉积学报, 2009, 27(6): 1065-1076.
ZOU C N, ZHAO Z Z, YANG H, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial Lacustrine Basin[J].Acta Sedimentologica Sinica,2009,27(6):1065-1076.
11 杨华,邓秀芹,庞锦莲,等.鄂尔多斯盆地延长组湖盆中部大型复合浊积体发育特征及浊积岩形成控制因素分析[J]. 西北大学学报(自然科学版),2006, 36(增刊): 1-5.
YANG H,DENG X Q,PANG J L, et al. The analysis of character and its control factors about great turbidite system of Yanchang Formation in the middle part of Ordos Basin[J]. Journal of Northwest University,2006,36(S1):1-5.
12 邓秀芹,蔺昉晓,刘显阳,等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的讨论[J]. 古地理学报,2008,10(2):159-165.
DENG X Q,LIN F X,LIU X Y, et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian movement in Ordos Basin[J]. Journal of Palaeogeography, 2008,10(2):159-165.
13 付锁堂, 付金华, 牛小兵, 等.庆城油田成藏条件及勘探开发关键技术[J].石油学报, 2020, 41(7): 777-795.
FU S T, FU J H, NIU X B, et al. Accumulation conditions and key exploration and development technologies in Qincheng Oilfield[J]. Acta Petrolei Sinica,2020,41(7):777-795.
14 BEARD D C, WELY P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin,1973, 57(2):349-369.
15 姚泾利,王琪,张瑞,等. 鄂尔多斯盆地中部延长组砂岩中碳酸盐胶结物成因与分布规律研究[J]. 天然气地球科学,2011,22(6): 943-950.
YAO J L, WANG Q, ZHANG R, et al. Origin and spatial distribution of carbonates in Yanchang Formation(Triassic) sandstones within the lacustrine center of Ordos Basin, NW China[J]. Natural Gas Geoscience,2011,22(6): 943-950.
16 祝海华,钟大康,姚泾利,等. 鄂尔多斯西南地区长7段致密油储层微观特征及成因机理[J]. 中国矿业大学学报, 2014, 43(5): 853-863.
ZHU H H,ZHONG D K,YAO J L,et al.Microscopic characte-ristics and formation mechanism of Upper Triassic Chang 7 tight oil reservoir in the southwest Ordos Basin[J]. Journal of China University of Mining & Technology,2014,43(5):853-863.
17 黄思静,黄可可,冯文立,等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球化学,2009,38(5): 498-506.
HUANG S J,HUANG K K, FENG W L, et al. Kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, western Sichuan Depression[J]. Geochimica, 2009,38(5): 498-506.
18 姚泾利,王琪,张瑞,等,鄂尔多斯盆地华庆地区延长组长6 砂岩绿泥石膜的形成机理及其环境指示意义[J]. 沉积学报,2011,29(1): 72-79.
YAO J L, WANG Q, ZHANG R, et al. Forming mechanism and their environmental implications of chlorite-coatings in Chang 6 sandstone (Upper Triassic) of Hua-Qing, Ordos Basin[J]. Acta Sedimentologica Sinica,2011,29(1):72-79.
19 黄思静,谢连文,张萌,等,中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版),2004,31(3):273-281.
HUANG S J,XIE L W,ZHANG M,et al. Formation mechanism of authigenic chlorite and relation top reservation of porosity in nonmarine Triassic reservoir sandstones,Ordos Basin and Sichuan Basin[J].China Journal of Chengdu University of Tech-chnology(Science & Technology Edition),2004,31(3):273-281.
20 柳益群,李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J]. 沉积学报,1996,14(3):87-96.
LIU Y Q,LI W H. Diagenetic characteristics and porosity evolution of the oil-bearing arkoses in the Upper Triassic in the Eastern Shan Gan Ning Basin[J]. Acta Sedimentologiaca Sinica,1996,14(3):87-96.
21 田建锋,陈振林,杨友运. 自生绿泥石对砂岩储层孔隙的保护机理[J]. 地质科技情报,2008,27(4):49-55.
TIAN J F,CHEN Z L,YANG Y Y. Protection mechanism of authigenic chlorite on sandstone reservoir pores[J]. Geological Science and Technology Information, 2008, 27(4):49-55.
[1] 王万春, 吉利明, 宋董军, 张东伟, 吕成福, 苏龙. 不同比例砂岩/油页岩热模拟实验滞留油量及其地质意义——以鄂尔多斯盆地三叠系延长组7段为例[J]. 天然气地球科学, 2021, 32(8): 1142-1150.
[2] 刘雅慧, 王才志, 刘忠华, 王浩, 刘英明. 一种评价页岩油含油性的测井方法[J]. 天然气地球科学, 2021, 32(7): 1084-1092.
[3] 郭轩豪, 谭成仟, 赵军辉, 赵信, 王进. 成岩作用对致密砂岩储层微观结构的影响差异[J]. 天然气地球科学, 2021, 32(6): 826-835.
[4] 焦方正. 陆相低压页岩油体积开发理论技术及实践[J]. 天然气地球科学, 2021, 32(6): 836-844.
[5] 赵祺楠, 江厚顺, 孟伟, 汪杰, 王长权, 续化蕾. 致密油气藏二氧化碳焖井置换效率实验[J]. 天然气地球科学, 2021, 32(5): 718-726.
[6] 付金华, 郭雯, 李士祥, 刘显阳, 程党性, 周新平. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学, 2021, 32(12): 1749-1761.
[7] 刘显阳, 杨伟伟, 李士祥, 孙林, 常睿. 鄂尔多斯盆地延长组湖相页岩油赋存状态评价与定量表征[J]. 天然气地球科学, 2021, 32(12): 1762-1770.
[8] 李士祥, 周新平, 郭芪恒, 刘建平, 刘江艳, 李树同, 王博, 吕奇奇. 鄂尔多斯盆地长73亚段页岩油可动烃资源量评价方法[J]. 天然气地球科学, 2021, 32(12): 1771-1784.
[9] 李树同, 李士祥, 刘江艳, 杨鸣一, 陈俊霖, 张珊, 崔德艺, 李家程. 鄂尔多斯盆地长7段纯泥页岩型页岩油研究中的若干问题与思考[J]. 天然气地球科学, 2021, 32(12): 1785-1796.
[10] 徐黎明, 郭芪恒, 刘元博, 刘江艳, 周新平, 李士祥. 鄂尔多斯盆地长73亚段深水重力流砂岩储层特征及控制因素——以华池地区CY1井为例[J]. 天然气地球科学, 2021, 32(12): 1797-1809.
[11] 马艳丽,辛红刚,马文忠,毛振华,周树勋,淡卫东. 鄂尔多斯盆地陕北地区长7段页岩油富集主控因素及甜点区预测[J]. 天然气地球科学, 2021, 32(12): 1822-1829.
[12] 刘江艳,李士祥,李桢,刘强,郭雯,周新平,马晓峰. 鄂尔多斯盆地长73亚段泥页岩黄铁矿发育特征及其地质意义[J]. 天然气地球科学, 2021, 32(12): 1830-1838.
[13] 李继宏,侯景涛,杨艳宁,谢先奎,李程善,刘广林,李树同. 鄂尔多斯盆地志丹地区长73亚段泥页岩地球化学特征及页岩油地质意义[J]. 天然气地球科学, 2021, 32(12): 1839-1848.
[14] 张紫芸,侯连华,罗霞,何坤,张岩. 鄂尔多斯盆地长7段页岩生烃动力学特征与原位转化温度条件[J]. 天然气地球科学, 2021, 32(12): 1849-1858.
[15] 张矿生,唐梅荣,杜现飞,陶亮. 鄂尔多斯盆地页岩油水平井体积压裂改造策略思考[J]. 天然气地球科学, 2021, 32(12): 1859-1866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[2] 张荣虎;张惠良;马玉杰;沈扬;李昌;张丽娟 . 特低孔特低渗高产储层成因机制—以库车坳陷大北1气田巴什基奇克组储层为例[J]. 天然气地球科学, 2008, 19(1): 75 -82 .
[3] 魏立花, 郭精义, 杨占龙, 黄云峰. 测井约束岩性反演关键技术分析[J]. 天然气地球科学, 2006, 17(5): 731 -735 .
[4] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .
[5] 王卫红,沈平平,马新华,何东博 . 非均质低渗透气藏储层动用能力及影响因素研究[J]. 天然气地球科学, 2005, 16(1): 93 -97 .
[6] 张浩,康毅力,陈一健,李前贵,高波 . 致密砂岩气藏超低含水饱和度形成地质过程及实验模拟研究[J]. 天然气地球科学, 2005, 16(2): 186 -189 .
[7] 滑双君;李会慎;翟桂云;王莉;肖枚;. 沧县隆起大港探区煤层气勘探前景分析[J]. 天然气地球科学, 2003, 14(4): 323 -326 .
[8] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[9] 宋全友;秦勇. 惠民凹陷深部煤层含气性预测[J]. 天然气地球科学, 2005, 16(6): 764 -767 .
[10] 穆亚蓬,;王万春;宋振响, . 生物气源岩评价指标研究现状及展望[J]. 天然气地球科学, 2008, 19(06): 775 -779 .