天然气地球科学 ›› 2022, Vol. 33 ›› Issue (4): 666–676.doi: 10.11764/j.issn.1672-1926.2021.09.012

• 非常规天然气 • 上一篇    下一篇

过成熟煤系页岩平衡水吸附特征及其地质意义

单国鑫1(),程鹏2,肖贤明1(),孙健1,高平1   

  1. 1.中国地质大学(北京)能源学院,北京 100083
    2.中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东 广州 501640
  • 收稿日期:2021-07-14 修回日期:2021-10-12 出版日期:2022-04-10 发布日期:2022-04-22
  • 通讯作者: 肖贤明 E-mail:1006172216@cugb.edu.cn;xmxiao@cugb.edu.cn
  • 作者简介:单国鑫(1998-),男, 云南大理人, 主要从事煤系页岩气储层评价研究. E-mail:1006172216@cugb.edu.cn.
  • 基金资助:
    国家自然科学基金(U1810201);山西省科技厅项目(20201101003)

Water-bearing characteristics in overmature shales from coal measure strata based on equilibrium water vapor adsorption and its geological significances

Guoxin SHAN1(),Peng CHENG2,Xianming XIAO1(),Jian SUN1,Ping GAO1   

  1. 1.School of Energy,China University of Geosciences of China (Beijing),Beijing 100083,China
    2.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 501640,China
  • Received:2021-07-14 Revised:2021-10-12 Online:2022-04-10 Published:2022-04-22
  • Contact: Xianming XIAO E-mail:1006172216@cugb.edu.cn;xmxiao@cugb.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(U1810201);the Science and Technology Department of Shanxi Province, China(20201101003)

摘要:

页岩储层的含水特征对页岩气评价与勘探开发具有重要的影响,然而对于高—过成熟煤系页岩的相关研究缺乏。对取自沁水盆地阳泉区块的2块煤系页岩样品进行了平衡水吸附实验,研究了吸附水对页岩孔隙结构参数的影响,探讨了吸附水在页岩纳米孔隙中的赋存与分布。结果表明:页岩样品吸附水对孔隙结构参数有显著的影响, 吸附水含量(饱和度)与部分孔隙结构参数呈现非线性负相关关系。页岩样品中很低的吸附水含量就可大幅度减少其有效孔隙结构参数,尽管如此,即使页岩样品达到很高的吸附水饱和度,仍有部分孔隙空间与表面积可用于气体吸附。吸附水在非微孔中主要呈吸附态,而在微孔中主要呈填充态。研究成果为进一步认识地质条件下高—过成熟度煤系页岩孔隙水的赋存特征,以及客观评价页岩的含气性提供了参考。

关键词: 沁水盆地, 高—过成熟, 煤系页岩, 平衡水吸附实验, 孔隙结构

Abstract:

The water-bearing characteristics of shale reservoirs have an important impact on shale gas exploration and development, but the related research on high and over-mature coal measure shale is rarely reported. Using equilibrium water vapor adsorption experiments on two shale samples taken from the Yangquan block of the Qinshui Basin, this study investigated the influence of adsorption water on shale effective pore structure parameters, and discussed the occurrence and distribution of adsorption water in shale nanopores. The results show that the adsorbed water of the samples has a significant influence on the pore parameters, and the water content (or saturation) shows a nonlinear negative correlation with the effective pore parameters. A very low water content in the samples can greatly reduce their effective pore structure parameters, but even if the samples reach a high water saturation, there is still a portion of the pore spaces and surface areas can be available for gas adsorption. The water in the shale samples can be stored in nanopores with different pore sizes, but mainly stored in mesopores and 50-100 nm macropores. The water saturation extent of the non-micropore specific surface areas of the samples is significantly higher than that of their non-micropore volumes, and the water saturation extent to the micropore volumes and specific surface areas are similar, further indicating that the water is stored mainly in an adsorption state in the non-micropores and in a filling- state in the micropores. These results provide a reference for further understanding the pore water characteristics of high and over-mature coal measure shales under geological conditions.

Key words: Qinshui Basin, High-overmature, Coal measure shale, Equilibrium water vapor adsorption experiment, Pore structure

中图分类号: 

  • TE122.2+13

表1

实验样品基础数据"

样品号深度/m岩性RO/%TOC/%Rock-Eval分析XRD分析

Tmax

/℃

IH(mgHC/gTOCIO(mgHC/gTOC

石英

/%

长石

/%

黏土矿物

/%

黄铁矿 /%锐钛矿/%
样品1390.4页岩3.357.0458415244.51.149.20.94.3
样品2300.1页岩3.382.37586143239.61.350.95.32.9

图1

研究样品平衡水吸附曲线"

图2

实验样品在不同吸附水饱和度条件下低压N2吸附—解吸附曲线"

图3

不同吸附水饱和度的页岩样品低压CO2吸附曲线"

表2

样品1在不同吸附水饱和度条件下的孔隙结构参数"

吸附水饱和度

/%

N2吸附参数CO2吸附参数
非微孔比表面积/(m2/g)非微孔孔容/(cm3/g)微孔比表面积/(m2/g)微孔孔容/(cm3/g)
010.410.016 6528.350.011 75
12.813.760.015 7820.130.008 54
33.483.530.013 5815.120.005 74
69.841.300.006 0513.550.005 02
82.861.190.005 7712.360.004 48

表3

样品2在不同束缚水饱和度条件下的孔隙结构参数"

平衡水饱和度

/%

N2吸附参数CO2吸附参数
非微孔比表面积/(m2/g)非微孔孔容/(cm3/g)微孔比表面积/(m2/g)微孔孔容/(cm3/g)
09.900.015 9816.040.006 67
9.583.650.014 6511.510.004 71
14.453.340.012 7411.470.004 66
52.042.370.011 8811.460.004 60
79.511.270.005 5811.290.004 57

图4

页岩样品吸附水饱和度与孔隙结构参数的关系"

图5

页岩样品吸附水饱和度与其对孔隙空间占据程度的相关性"

图6

干燥样品与含吸附水样品N2吸附的孔径分布"

图7

干燥样品与含吸附水样品CO2吸附的孔径分布"

1 CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86 (11): 1921-1938.
2 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 2013, 33(7): 140-145.
LIU H L, WANG H Y. Ultra low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China[J]. Natural Gas Industry, 2013, 33 (7):140-145.
3 魏志红, 魏祥峰. 页岩不同类型孔隙的含气性差异——以四川盆地焦石坝地区五峰组—龙马溪组为例[J].天然气工业, 2014, 34(6): 37-41.
WEI Z H, WEI X F. Comparison of gas-bearing property between different pore types of shale: A case from the Upper Ordovician Wufeng and Longmaxi formations in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34 (6): 37-41.
4 周秦, 田辉, 陈桂华,等.页岩孔隙水中溶解气的主控因素与地质模型[J]. 煤炭学报, 2013, 38(5): 800-804.
ZHOU Q, TIAN H, CHEN G H, et al. Geological model of dissolved gas in pore water of gas shale and its controlling factors[J]. Journal of China Coal Society,2013,38(5):800-804.
5 AMBROSE R J,HARTMAN R C,CAMPOS M D,et al. New pore-scale considerations for shale gas in place calculations[C]∥ Proceedings of the SPE Unconventional Gas Conferen-ce, Pittsburgh, Pennsylvania, USA, February, SPE-131772-MS,2010.
6 ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26 (6): 916-927.
7 GASPARIK M, BERTIER P, GENSTERBLUM Y,et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123 (2): 34-51.
8 LI J, LI X F, WANG X Z, et al. Water distribution characteristic and effect on methane adsorption capacity in shale clay[J]. International Journal of Coal Geology, 2016, 159: 135-154.
9 DEHGHANPOUR H, ZUBAIR H A, CHHABRA A, et al. Liquid intake of organic shales[J]. Energy and Fuels, 2012, 26(9): 5750-5758.
10 TERRY E, LAWRENCE M C L, TARAS B. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7:33-48.
11 BURNAMAN M D, XIA W W, SHELTON J. Shale gas play screening and evaluation criteria[J]. China Petroleum Exploration, 2009, 14 (3): 51-64.
12 王社教,杨涛,张国生,等. 页岩气主要富集因素与核心区选择及评价[J].中国工程科学,2012, 14(6): 94-100.
WANG S J,YANG T,ZHANG G S, et al. Shale gas enrichment factors and the selection and evaluation of the core area[J]. Chinese Engineering Science, 2012, 14(6): 94-100.
13 BENNION D B, BIETZ R F, THOMAS F B, et al. Reductions in the productivity of oil and low permeability gas reservoirs due to aqueous phase trapping[J]. Journal of Canadian Petroleum Technology,1994, 33(9): 45-54.
14 KATZ D L, LUNDY C L. Absence of connate water in Michigan reef gas reservoirs:An analysis[J]. AAPG Bulletin,1982, 66(1): 91-98.
15 SICKEL W A, KOMINZ M A, MILLER K G, et al. Late Cretaceous and Cenozoic sea level estimates: Back stripping analysis of borehole data, onshore New Jersey[J]. Basin Research, 2004, 16 (4): 451-465.
16 CHENP P, XIAO X M, TIAN H, et al. Water content and equilibrium saturation and their influencing factors of the Lower Paleozoic overmature organic-rich shales in the upper Yangtze region of Southern China[J].Energy and Fuels,2018,32(11):11452-11466.
17 CHALMERS G R, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70 (1-3): 223-239.
18 SONDERGELD C H, NEWSHAM K E, COMISKY J T, et al. Petrophysical considerations in evaluating and producing shale gas resources[C]∥Proceedings of the SPE Unconventional Gas Conference,Pittsburgh, Pennsylvania,USA,February, SPE-131768-MS,2010.
19 GU X, MILDNER D F R, COLE D R, et al. Quantification of organic porosity and water accessibility in Marcellus shale using neutron scattering[J]. Energy and Fuels,2016,30(6): 4438-4449.
20 WU K L, CHEN Z X, LI J, et al. Wettability effect on nanoconfined water flow[J]. Proceeding of the National Academy of Sciences of the United States of America,2017,114(13):3358-3363.
21 LI J, LI X F, WU K L, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay[J]. International Journal of Coal Geology,2017,179:253-268.
22 STRIOLO A, NAICKER P K, CHIALVO A A, et al. Simulated water adsorption isotherms in hydrophilic and hydrophobic cylindrical nanopores[J].Adsorption,2005,11(1):397-401.
23 方朝合,黄志龙,王巧智,等. 富含气页岩储层超低含水饱和度成因及意义[J]. 天然气地球科学,2014,25(3):471-476.
FANG Z H, HUANG Z L, WANG Q Z, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir[J]. Natural Gas Geoscience,2014,25(3):471-476.
24 张大伟,李玉喜, 张金川. 全国页岩气资源潜力调查评价[M]. 北京: 地质出版社,2012:1-138.
ZHANG D, LI Y X, ZHANG J C. The National Shale Gas Resource Potential Survey and Evaluation[M]. Beijing: Geological Press, 2012: 1-138,
25 董大忠,王玉满,李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J].天然气工业, 2016, 36(1):19-32.
DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry,2016, 36(1):19-32.
26 郭少斌, 付娟娟, 高丹,等. 中国海陆交互相页岩气研究现状与展望[J]. 石油实验地质,2015,37(5):535-540.
GUO S B,FU J J,GAO D,et al. Research status and prospects for marine-continental shale gases in China[J].Petroleum Geology and Experiment, 2015, 37(5): 535-540.
27 郭少斌,王子龙,马啸. 中国重点地区二叠系海陆过渡相页岩气勘探前景[J]. 石油实验地质, 2021,43(3): 377-385.
GUO S B, WANG Z L, MA X. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J]. Petroleum Geology and Experiment,2021,43(3):377-385.
28 贾腾飞,王猛,赵健光. 沁水盆地石炭系—二叠系煤系页岩气储层特征及生烃潜力分析——以山西省临汾市Y1 井为例[J].科学技术与工程,2020,20(6):2169-2178.
JIA T F,WANG M,ZHAO J G. Physical characters of coal shale reservoirs and potential analysis of Qinshui Basin: An example from Y1 Well linfen City,Shanxi Province[J]. Science Technology and Engineering,2020,20(6): 2169-2178.
29 孙彩蓉,唐书恒,魏建光. 中国南方海相页岩气与华北煤系页岩气储层特征差异分析[J]. 中国矿业,2017,26(3):166-170.
SUN C R,TANG S H,WEI J G. The differences of reservoir features between southern marine shale gas and northern coal-bearing shale gas in China[J]. China Mining Magazine, 2017, 26(3):166-170.
30 蔡光银,蒋裕强,李星涛,等. 海陆过渡相与海相富有机质页岩储层特征差异[J].沉积学报,2021,待出版.DOI:10.14027/j.issn.1000-0550.2021.069.
CAI G Y, JIANG Y Q, LI X T, et al. Comparison of characteristics of transitional and marine organic-rich shale reservoirs[J].Acta Sedimentologica Sinica,2021,in press,DOI:10.14027/j.issn.1000-0550.2021.069.
31 SUN J, XIAO X M, WEI Q, et al. Gas in place and its controlling factors of the shallow Longmaxi shale in the Xishui area, Guizhou,China[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103272.
32 马继胜,蔡亚,胡振秦,等. 沁水盆地榆社区块太原组煤系页岩中水含量及其对孔隙特征影响[J]. 天然气地球科学,2021,32(1): 145-154.
MA J S,CAI Y,HU Z Q,et al. The water content and its effects on the pore structures of the shales from the coal-bearing Taiyuan Formation in the Yushe area of the Qinshui Basin[J]. Natural Gas Geoscience,2021,32(1):145-154.
33 SULUCARNAIN I, SONDERGELD C H, RAI C S. An NMR study of shale wettability and effective surface relaxivity[C]∥ Proceedings of the SPE Canadian Unconventional Resources Conference,Calgary,Alberta,Canada, October, SPE-162236-MS,2012.
34 HANDWERGER D A, SUAREZ-RIVERA R, VAUGHN K I, et al. Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples[C]∥ Proce-edings of the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October, SPE-147456-MS,2011.
35 BORYSENKO A, CLENNELL B, SEDEV R, et al. Experimental investigations of the wettability of clays and shales[J]. Journal of Geophysical Research, 2009, 114: B07202.
36 ROSS D J K, BUSTIN R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western Canada Sedimentary Basin: Application of an integrated formation evaluation[J]. AAPG Bulletin,2008,92(1):87-125.
37 CHENG P, TIAN H, XIAO X M, et al. Water distribution in overmature organic-rich shales: Implications from water adsorption experiments[J]. Energy and Fuels, 2017, 31 (12): 13120-13132.
38 苏育飞,张庆辉,屈晓荣,等. 山西省海陆过渡相页岩气地质评价及有利区优选[J].天然气勘探与开发,2016,39(3):1-10.
SU Y F, ZHANG Q H, QU X R, et al. Geological evaluation of marine-continental transitional shale gas and optimal selection of favorable area, Shanxi Province[J]. Natural Gas Exploration and Development,2016,39(3):1-10.
39 魏书宏,申有义,杨晓东. 沁水盆地榆社—武乡区块煤系页岩气储层特征评价[J]. 中国煤炭地质,2017,29(8):25-31.
WEI S H,SHEN Y Y, YANG X D. Assessment of coal measures shale gas reservoir features in Yushe-Wuxiang block,Qinshui Basin[J]. Coal Geology of China,2017,29(8):25-31.
40 ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids[J]. Pure Apply Chemistry, 1994, 66 (8): 1739-1758.
41 CHEN J,XU Y H, GAI H F, et al. Understanding water accessibility and pore information of overmature marine shales using water vapor sorption[J].Marine and Petroleum Geology,2021,130: 105120.
42 ROUQUEROL F, ROUQUEROL J, SING K S W, et al. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications[M]. Marseille: Academic Press,1999:35-78.
43 李阳阳,李贤庆,张学庆,等. 沁水盆地阳泉区块上古生界煤系页岩气储层特征[J]. 煤田地质与勘探,2021,49(2):142-151.
LI Y Y,LI X Q,ZHANG X Q,et al. Characteristics of shale gas reservoir in Upper Paleozoic coal measures in Yangquan block,Qinshui Basin[J]. Coal Geology and Exploration,2021,49(2):142-151.
44 袁余洋,李卓沛,钟明洋,等. 沁水盆地中南部太原组煤系页岩孔隙结构特征[J]. 煤炭科学技术, 2021, 49(9):184-192
YUAN Y Y, LI Z P, ZHONG M Y,et al. Pore structure characteristics of Taiyuan Formation coal measures shale in south central Qinshui Basin[J]. Coal Science and Technology,2021, 49(9):184-192.
45 DUBININ M M, ERASHKO I T, KADLEC O, et al. Kinetics of physical adsorption by carbonaceous adsorbents of biporous structure[J].Carbon,1975,13(3):193-200.
46 SUN J, XIAO X M, WEI Q, et al. Occurrence of irreducible water and its influences on gas-bearing property of gas shales from shallow Longmaxi Formation in the Xishui area, Guizhou, southern China[J]. Frontiers in Earth Science, 2021,9: 654136.
47 TIAN H, LI T F, ZHANG TW, et al. Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications[J].International Jou-rnal of Coal Geology, 2016, 156: 36-49.
48 张晋言. 页岩油测井评价方法及其应用[J]. 地球物理学进展,2012,27(3): 1154-1162.
ZHANG J Y. Well logging evaluation method of shale oil reservoirs and its applications[J]. Progress in Geophysics, 2012, 27(3):1154-1162.
49 王敏,王永诗,朱家俊,等. 基于孔隙度-饱和度参数分析页岩油富集程度——以沾化凹陷沙三下亚段为例[J]. 科学技术与工程, 2016,32(16): 36-41.
WANG M, WANG Y S, ZHU J J,et al. Enrichment evaluation of shale oil reservoir based on porosity-oil saturation analysis: A case study of Shasan Formation in Zhanhua Sag[J]. Science and Technology Engineering, 2016, 32 (16):36-41.
50 CHENG P, XIAO X M, WANG X, et al. Evolution of water content in organic-rich shales with increasing maturity and its controlling factors: Implications from a pyrolysis experiment on a water-saturated shale core sample[J]. Marine and Petroleum Geology, 2019, 109: 291-303.
[1] 李小明, 王亚蓉, 吝文, 马丽红, 刘德勋, 柳吉荣, 张宇. 湖北荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J]. 天然气地球科学, 2022, 33(4): 629-641.
[2] 马元稹,王猛,李嘉敏,赵健光,贾腾飞,朱俊卿. 沁水盆地上古生界煤系页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(3): 441-450.
[3] 王剑, 周路, 刘金, 陈俊, 郑孟林, 蒋欢, 张宝真. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩层系甜点体烃类可流动性影响因素[J]. 天然气地球科学, 2022, 33(1): 116-124.
[4] 宋腾, 包书景, 陈科, 周志, 李浩涵, 雷玉雪, 段轲. 鄂西北神农架地区下寒武统泥页岩微观储集结构特征及其影响因素[J]. 天然气地球科学, 2021, 32(6): 871-887.
[5] 郭春礼, 杨爽, 王安东, 王一婷, 章双龙, 祁星. 修武盆地下寒武统海相页岩储层及CH4吸附特征[J]. 天然气地球科学, 2021, 32(4): 598-610.
[6] 徐洁, 郭维华, 刘皓天, 秦臻, 孟强, 陶辉飞. 湘鄂西地区志留系龙马溪组页岩微观孔隙结构特征及定量表征[J]. 天然气地球科学, 2021, 32(4): 611-622.
[7] 吴一雄, 胡向阳, 易娟子, 杨冬, 梁玉楠. 莺歌海盆地高温超压气藏声波时差响应特征及孔隙度评价[J]. 天然气地球科学, 2021, 32(2): 298-307.
[8] 代全齐, 王贵文, 张连昌, 李纲, 马丽娟, 高树芳, 程志超, 张迪, 刘国良. 致密储层孔隙结构相测井表征及对经济可采储量的约束——以柴达木盆地英西地区湖相混积岩为例[J]. 天然气地球科学, 2021, 32(2): 308-318.
[9] 李腾, 吴财芳. 甲烷吸附前后高煤级煤孔隙结构粒径效应[J]. 天然气地球科学, 2021, 32(1): 125-135.
[10] 冯树仁, 张聪, 张建国, 乔茂坡, 刘春春, 彭鹤, 毛崇昊. 沁水盆地南部郑庄区块高煤阶煤层气成藏模式[J]. 天然气地球科学, 2021, 32(1): 136-144.
[11] 马继胜, 蔡亚, 胡振秦, 卢冲, 王伟. 沁水盆地榆社区块太原组煤系页岩中水含量及其对孔隙特征影响[J]. 天然气地球科学, 2021, 32(1): 145-154.
[12] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[13] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[14] 梅青燕, 邹成, 杨山, 杨胜来, 赵益, 郑伟. 孔隙结构特征和非均质性对碳酸盐岩气藏开发的影响[J]. 天然气地球科学, 2020, 31(12): 1757-1765.
[15] 符宏斌, 苑坤, 卢树藩, 陈相霖, 林拓, 杜胜江, 何犇, 罗香建. 黔西上二叠统龙潭组高煤级煤微观孔隙结构特征及其对含气性的影响[J]. 天然气地球科学, 2020, 31(12): 1814-1825.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[7] . 柴达木盆地――中国第四大气区[J]. 天然气地球科学, 0, (): 9 .
[8] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .