天然气地球科学 ›› 2022, Vol. 33 ›› Issue (3): 441–450.doi: 10.11764/j.issn.1672-1926.2021.09.007

• 非常规天然气 • 上一篇    下一篇

沁水盆地上古生界煤系页岩储层特征和含气性

马元稹1(),王猛2(),李嘉敏1,赵健光1,贾腾飞1,朱俊卿1   

  1. 1.新疆大学地质与矿业工程学院,新疆 乌鲁木齐 830046
    2.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221008
  • 收稿日期:2021-07-06 修回日期:2021-09-23 出版日期:2022-03-10 发布日期:2022-03-22
  • 通讯作者: 王猛 E-mail:05152115@cumt.edu.cn;wangm@cumt.edu.cn
  • 作者简介:马元稹(1997-),男,青海西宁人,硕士研究生,主要从事页岩气、煤层气地质研究.E-mail:05152115@cumt.edu.cn.
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2018D01C062);中央高校基本科研业务费专项资金资助项目(2020ZDPYMS09)

Characteristics and gas-bearing characteristics of coal-measure shale reservoirs in the Upper Paleozoic of Qinshui Basin

Yuanzhen MA1(),Meng WANG2(),Jiamin LI1,Jianguang ZHAO1,Tengfei JIA1,Junqing ZHU1   

  1. 1.College of Geology and Mining Engineering,Xinjiang University,Urumqi 830046,China
    2.Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,Ministry of Education,Xuzhou 221008,China
  • Received:2021-07-06 Revised:2021-09-23 Online:2022-03-10 Published:2022-03-22
  • Contact: Meng WANG E-mail:05152115@cumt.edu.cn;wangm@cumt.edu.cn
  • Supported by:
    The Natural Science Foundation Project of Xinjiang Uygur Autonomous Region, China(2018D01C062);the Special Fund Project of the Central University Basic Research Fund(2020ZDPYMS09)

摘要:

以沁水盆地中的暗色页岩为主要研究对象,在盆地北部Y2井、中部Y5井、中南部Y3井3口调查井资料分析、钻孔采样、实验测试等相关工作基础上,分层段系统研究了沁水盆地煤系页岩气有机地球化学及储层物性特征。结果表明:研究区钻孔煤系页岩样TOC平均值大于2.0%,干酪根类型均以Ⅲ型干酪根为主,页岩显微组分主要为镜质组与惰质组,同时页岩有机质热演化程度较高,在地史时期中已有大量的热解气生成。研究区页岩形成于海陆过渡相沉积环境,矿物成分中黏土矿物含量较高,石英含量较低。各层段页岩脆性系数一般在30%~40%之间,脆性系数Ⅳ>III>Ⅰ>Ⅱ;气测异常层、含气层和气层厚度比例分别为30.80%、16.09%和53.11%,气测显示以气层为主,气测显示级别依次为IV>II>III>I。综合煤系页岩有机碳含量、有机质成熟度、页岩有效厚度、脆性特征和含气性特征等参数得出各层段页岩气的勘探开发潜力有利顺序依次为II>IV>III>I。

关键词: 页岩气, 海陆过渡相, 煤系页岩, 矿物组成, 沁水盆地

Abstract:

Taking the black shale in Qinshui Basin as the main research target, based on the analysis of the data, borehole sampling and experimental testing of three investigation wells, including Well Y2 in the north, Well Y5 in the middle and Well Y3 in the middle and south, the organic geochemistry and reservoir physical properties of coal measure shale gas in Qinshui Basin were systematically studied in the stratified section. The results show that the average TOC of coal measure shale samples in the study area is greater than 2.0%, and the kerogen type is mainly type Ⅲ kerogen. The brittleness coefficient of each shale is generally between 30% and 40%, and the brittleness index is Ⅳ>Ⅲ>Ⅰ>Ⅱ. The gas survey shows that the gas layer is mainly the gas layer, and the gas survey shows the grade Ⅳ>Ⅱ>Ⅲ>Ⅰ. Based on the thickness, total organic carbon content, organic matter maturity, brittleness characteristics and gas bearing characteristics of coal measure shale, the favorable sequence of shale gas exploration and development potential is Ⅱ>Ⅳ>Ⅲ>Ⅰ.

Key words: Shale gas, Marine-continental transitional facies, Coal measure shale, Mineral composition, Qinshui Basin

中图分类号: 

  • TE122.2

图1

沁水盆地构造纲要[19]和采样钻孔分布图(a)以及3口井煤系页岩层段划分柱状图(b)"

表1

研究区页岩样品实验测试"

检测项目样品数量/件检测依据主要仪器
总有机碳含量131GB/T19145—2003《沉积岩中总有机碳的测定》CS-230、CS-800红外碳硫仪
岩石热解35SYT5117—96《岩石热解分析方法》OG-2000V
干酪根显微组分及类型14SY/T 5125—1996Leica DM4500p
镜质组随机反射率14SY/T5124—1995《沉积岩中镜质组反射率的测定方法》LeicaDM4500p/DFC450C仪器
岩矿鉴定与扫描电镜13

DZ/T 0275.4—2015

SY/T 5162—1997

SY/T 6189—1996

Leica DM4500p

Tescan/OXFORD

全岩及黏土矿物 X-射线衍射34SY/T5163-2010《沉积岩中黏土矿物; 常见非黏土矿物X-射线衍射分析方法》。D/Max-3B型X-射线衍射仪、理学SmartLab
渗透率6《岩心常规分析方法》SY/T5336—1996

Ultrapore-200A氦孔隙仪 KFSY/J95-036

ULTRA-PERMTM200渗透率仪 KFSY/J95-031

兰氏体积和兰氏压力10GB/T 19560—2008TerraTek-300等温吸附仪

表2

煤系页岩各层段有机地球化学参数"

参数第Ⅰ层段第Ⅱ层段第Ⅲ层段第Ⅳ层段
TOC/%(0.32~11.40)/2.33(0.27~20.52)/2.71(0.85~3.09)/1.76(0.13~14.31)/2.55
RO/%(2.35~2.80)/2.62(2.23~3.25)/2.682.42(2.65~3.36)/2.96
Tmax/℃(311~565.59)/489.06(434.34~575.20)/524.26(436.8~557.26)/497.03(304.75~575.17)/497.81
S2/(mg/g)(0.017~0.52)/0.258 5(0.02~1.486 4)/0.476 9(0.052 1~0.241 1)/0.146 6(0.001 1~0.681 3)/0.169 6
氢指数(IH)/(mg/g)(2.36~29.14)/16.89(1.69~77.98)/19.19(2.88~14.52)/8.70(0.03~22.79)/8.36
壳质组/%(0~3.3)/0.7(0~14.6)2.900
镜质组/%(79.3~94.3)/88.4(73.0~97.7)/84.2(93.7~96.3)/95.0(74.3~97.7)/88.9
惰质组/%(3.0~20.7)/10.9(2.3~13.0)/12.9(3.7~6.3)/5.0(2.3~25.7)/11.1
TI指数(-80~-73)/-76.6(-82~-57)/-73.8(-77~-76)/-76.5-76.5

图2

煤系页岩各层段TOC分布频率柱状图"

图3

Y2井、Y3井、Y5井钻孔埋深与TOC关系"

图4

煤系页岩RO分布箱形图"

表3

研究区煤系页岩矿物组成成分"

层段黏土矿物/%石英/%白云石/%菱铁矿/%黄铁矿/%石膏/%浊沸石/%透辉石/%BI/%
52.1635.5441.652.826.89
57.2535.6610.476.93.4913.69.528.60
56.837.3510.90.836.04
54.9436.384.918.073.5511.930.78

图5

研究区煤系页岩样品矿物组分"

图6

脆性系数(BI)分布柱状图"

表4

Y2井、Y3井、Y5井实测含气量值(m3/t)"

调查井第Ⅰ层段第Ⅱ层段第Ⅲ层段第Ⅳ层段
Y2井1.50.750.5-
Y3井0.610.6460.450.8
Y5井0.741.010.560.95

图7

Y2井、Y3井、Y5井各层段等温吸附图"

图8

研究区页岩样品绝对吸附量校正结果"

图9

各层段气测各级别厚度占各级别总厚度百分比柱状图"

1 赵靖舟,方朝强,张洁,等. 由北美页岩气勘探开发看我国页岩气选区评价[J]. 西安石油大学学报(自然科学版),2011,26(2):1-7,110,117.
ZHAO J Z,FANG C Q, ZHANG J, et al. Evaluation of shale gas selection in China from North American shale gas exploration and development[J]. Journal of Xi′an Petroleum University(Natural Science Edition),2011,26(2):1-7,110,117.
2 张跃磊,李大华,郭东鑫.页岩气储层压裂改造技术综述[J]. 非常规油气,2015,2(1):76-82.
ZHANG Y L, LI D H, GUO D X. Overview of shale gas reservoir fracturing technology[J]. Unconventional Oil and Gas, 2015, 2(1): 76-82.
3 张金川,陶佳,李振,等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业,2021,41(1):15-28.
ZHANG J C,TAO J,LI Z,et al. Prospect of deep shale gas re-sources in China[J].Natural Gas Industry,2021,41(1):15-28.
4 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1-14.
ZOU C N, ZHAO Q, CONG L Z, et al. Development pro-gress, potential and prospect of shale gas in China[J]. Natural Gas Industry,2021,41(1):1-14.
5 郭少斌,王子龙,马啸. 中国重点地区二叠系海陆过渡相页岩气勘探前景[J]. 石油实验地质,2021,43(3):377-385,414.
GUO S B, WANG Z L, MA X. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J]. Petroleum Geology and Experiment,2021,43(3):377-385,414.
6 蔡光银,蒋裕强,李星涛,等. 海陆过渡相与海相富有机质页岩储层特征差异[J/OL]. 沉积学报,2021:1-16.[2021-11-13].https://doi.org/10.14027/j.issn.1000-0550.2021.069.
CAI G Y, JIANG Y Q, LI X T, et al. Comparison of Characteristics of Transitional and Marine Organic-rich Shale Reservoirs[J/OL]. Acta Sedimentologica Sinica,2021:1-16.[2021-11-13].https://doi.org/10.14027/j.issn.1000-0550.2021.069.
7 尹开贵,张朝,单长安,等. 昭通国家级页岩气示范区海陆过渡相页岩气的地质特征与资源潜力[J]. 天然气工业,2021,41(S1):30-35.
YIN K G, ZHANG C, SHAN C A, et al. Geological characteristics and resource potential of the transitional shale gas in the Zhaotong National Shale Gas Demonstration area[J]. Natural Gas Industry, 2021, 41(S1): 30-35.
8 董大忠,邱振,张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29-45.
DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J].Acta Sedimentologica Sinica,2021,39(1): 29-45.
9 匡立春,董大忠,何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435-446.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446.
10 谢卫东,王猛,代旭光,等. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学,2019,30(4):512-525.
XIE W D, WANG M, DAI X G, et al. Microscopic characteristics of shale gas reservoirs in middle and southern coal measures of Hedong Coalfield, Shanxi Province[J]. Natural Gas Geoscience, 2019, 30(4): 512-525.
11 谢卫东,王猛,代旭光. 渝东南地区下志留统龙马溪组页岩吸附CO2特征及影响因素分析[J]. 河南理工大学学报(自然科学版),2018,37(6):85-93.
XIE W D, WANG M, DAI X G. CO2 adsorption characteristics and its affecting factors of Lower Silurian, Longmaxi Formation shale in southeast Chongqing[J]. Journal of Henan Polytechnic University(Natural Science),2018,37(6):85-93.
12 李阳阳,李贤庆,张学庆,等.沁水盆地阳泉区块上古生界煤系页岩气储层特征[J]. 煤田地质与勘探,2021,49(2):142-151.
LI Y Y, LI X Q, ZHANG X Q, et al. Characteristics of shale gas reservoir in Upper Paleozoic coal measures in Yangquan Block, Qinshui Basin[J]. Coal Geology & Exploration, 2021, 49(2): 142-151.
13 钟秋,傅雪海,张苗,等. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学,2020,31(1):110-121.
ZHONG Q,FU X H,ZHANG M,et al.Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield[J].Natural Gas Geoscience,2020,31(1):110-121.
14 马如英,张健,王猛,等. 沁水盆地海陆过渡相页岩储层微观孔隙特征及含气性特征[J]. 河南理工大学学报(自然科学版),2021,40(4):66-77.
MA R Y, ZHANG J, WANG M. et al. Micropore characterstics and gas bearing characteristics of the shale reservoirs in the transitional facies in the Qinshui Basin[J].Journal of Henan Polytechnic University(Natural Science),2021,40(4): 66-77.
15 贾腾飞,王猛,赵健光. 沁水盆地石炭-二叠系煤系页岩气储层特征及生烃潜力分析——以山西省临汾市Y1井为例[J]. 科学技术与工程,2020,20(6):2169-2178.
JIA T F, WANG M, ZHAO J G. Physical characters of coal shale reservoirs and potential analysis of Qinshui Basin:An example from Y1 Well linfen City, Shanxi Province[J]. Science Technology and Engineering, 2020, 20(6): 2169-2178.
16 李琨杰. 沁水盆地中南部太原组煤系页岩孔隙特征研究[D]. 太原:太原理工大学,2019.
LI K J. Investigation of Pore Structure of Taiyuan Formation Coal-series Shale in South Central Qinshui Basin[D].Taiyuan: Taiyuan University of Technology, 2019.
17 郑贵强. 不同煤阶煤的吸附、扩散及渗流特征实验和模拟研究[D]. 北京:中国地质大学(北京),2012.
ZHENG G Q. Experimental and Simulation Study on the Sorption,Diffusion and Seepage Characters in Different-ranked Coals[D]. Beijing:China University of Geosciences(Beijing),2012.
18 苏育飞,张庆辉,屈晓荣,等. 山西省海陆过渡相页岩气地质评价及有利区优选[J]. 天然气勘探与开发,2016,39(3):1-5,10,7.
SU Y F, ZHANG Q H, QU X R, et al. Geological evaluation of marine-continental transitional facies shale gas and optimal selection of favorable areas, Shanxi Province[J]. Natural Gas Exploration & Development, 2016, 39(3): 1-5, 10, 7.
19 张泽. 沁水盆地榆社区块页岩气储层含气量特征研究[D]. 西安:西安石油大学,2018.
ZHANG Z. Research on Gas Content Characteristics of Shale Gas Reservoirs in Yushe Area of Qinshui Basin[D]. Xi’an :Xi’an Shiyou University, 2018.
20 苏育飞,张庆辉,魏子聪. 沁水盆地石炭系—二叠系页岩气资源潜力评价[J].中国煤炭地质,2016,28(4):27-34.
SU Y F, ZHANG Q H, WEI Z C. Evaluation of Carboniferous-Permian shale gas resources potential in Qinshui Basin[J]. Chinese Coal Geology, 2016, 28(4): 27-34.
21 曹庆英. 透射光下干酪根显微组分鉴定及类型划分[J]. 石油勘探与开发,1985,12(5):14-23,81-88.
CAO Q Y. Identification of micro-components and types of kerogen under the transmitted light[J]. Petroleum Exploration and Development, 1985, 12(5): 14-23,81-88.
22 JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one mondel for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007, 91(4): 475-499.
23 周尚文,王红岩,薛华庆,等.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J]. 天然气工业,2016,36(11):12-20.
ZHOU S W, WANG H Y, XUE H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016, 36(11): 12-20.
24 ROSS D J K, BUSTIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86(17-18): 2696-2706.
25 LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
26 秦勇,梁建设,申建,等. 沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J]. 煤炭学报,2014,39(8):1559-1565.
QIN Y, LIANG J S, SHEN J, et al. Gas logging shows and gas reservoir types in tight sandstones and shales from Southern Qinshui Basin[J]. Journal of China Coal Society, 2014, 39(8): 1559-1565.
27 傅雪海,张苗,张庆辉,等. 山西省域石炭二叠纪煤系泥页岩气储层评价指标体系[J]. 煤炭学报,2018,43(6):1654-1660.
FU X H, ZHANG M, ZHANG Q H, et al. Evaluation index system of Permo-Carboniferous coal-bearing shale gas reservoir in Shanxi Province[J]. Journal of Coal Science, 2018, 43(6): 1654-1660.
[1] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.
[2] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[3] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[4] 单国鑫, 程鹏, 肖贤明, 孙健, 高平. 过成熟煤系页岩平衡水吸附特征及其地质意义[J]. 天然气地球科学, 2022, 33(4): 666-676.
[5] 张琴,邱振,张磊夫,王玉满,肖玉峰,刘丹,刘雯,李树新,李星涛. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407.
[6] 梁岳立,葛家旺,赵晓明,张喜,李树新,聂志宏. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.
[7] 王以城,张磊夫,邱振,彭思钟,封从军,孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[8] 王鹏威,刘光祥,刘忠宝,陈筱,李鹏,蔡钡钡. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440.
[9] 谢卫东, 王猛, 王华, 段宏跃. 海陆过渡相页岩气储层孔隙多尺度分形特征[J]. 天然气地球科学, 2022, 33(3): 451-460.
[10] 方镕慧, 刘晓强, 张聪, 李美俊, 夏响华, 黄志龙, 杨程宇, 韩秋雅, 汤韩琴. 温度压力耦合作用下的页岩气吸附分子模拟[J]. 天然气地球科学, 2022, 33(1): 138-152.
[11] 谢菁, 陈建洲, 徐永锋, 王国仓, 王瑾, 李青, 王琪玮. 青藏高原北部东昆仑地区三叠系八宝山组页岩储层测井评价[J]. 天然气地球科学, 2021, 32(9): 1285-1296.
[12] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[13] 席胜利, 莫午零, 刘新社, 张雷, 李剑, 黄正良, 王民, 张春林, 朱秋影, 言语, 周能武. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力——以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.
[14] 蔡灵慧, 余烨, 郭建华, 黄俨然, 郭原草. 湘中南地区中奥陶统烟溪组页岩气勘探潜力[J]. 天然气地球科学, 2021, 32(8): 1247-1260.
[15] 文卓, 康永尚, 康刘旭, 李昀, 赵群, 王红岩. 页岩气工业建产区选区地质评价指标及其下限标准[J]. 天然气地球科学, 2021, 32(7): 950-960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[4] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[5] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[6] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[7] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[8] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[9] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[10] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .