天然气地球科学 ›› 2022, Vol. 33 ›› Issue (1): 13–23.doi: 10.11764/j.issn.1672-1926.2021.09.002

• 天然气地质学 • 上一篇    下一篇

塔里木盆地库车坳陷超深层现今地应力对储层品质的影响及实践应用

徐珂1(),田军1,杨海军1,张辉1,鞠玮2,刘新宇1,王志民1,房璐1   

  1. 1.中国石油塔里木油田公司,新疆 库尔勒 841000
    2.中国矿业大学资源与地球科学学院,江苏 徐州 221116
  • 收稿日期:2021-03-02 修回日期:2021-09-07 出版日期:2022-01-10 发布日期:2021-03-10
  • 作者简介:徐珂(1991-),男,四川遂宁人,高级工程师,博士,主要从事构造地质学与地质力学研究.E-mail:xuke-tlm@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项“库车坳陷深层—超深层天然气田开发关键技术研究与应用”(2018E-1803);中国博士后科学基金“博孜大北区带地应力对构造和储层影响机理研究”(2019M660269)

Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression, Tarim Basin

Ke XU1(),Jun TIAN1,Haijun YANG1,Hui ZHANG1,Wei JU2,Xinyu LIU1,Zhimin WANG1,Lu FANG1   

  1. 1.PetroChina Tarim Oilfield Company,Korla 841000,China
    2.School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221116,China
  • Received:2021-03-02 Revised:2021-09-07 Online:2022-01-10 Published:2021-03-10
  • Supported by:
    The Major Science and Technology Project of CNPC(2018E-1803);the China Postdoctoral Science Foundation(2019M660269)

摘要:

塔里木盆地库车坳陷油气资源埋藏深度大,储层非均质性强、井间产能差异大。现今地应力对储层品质具有重要影响和控制,但当前研究方法存在不足。为了革新储层评价的理论认识与技术方法,从地应力角度出发,基于岩石测试和测井数据,结合区域演化和构造变形综合分析,开展系统的地质力学研究,并提出了量化表征应力集中的参数,实现有利区带的优选。结果表明:①现今地应力及其控制下的裂缝渗透性是决定超深层产能的重要因素,低应力和裂缝活动性好的位置是有利优选区,要避免以井壁连续崩落为特征的局部应力集中区这类不利位置;②“强应力”由地应力和岩石强度之间“博弈”导致,根据二者平衡关系确定的应力集中参数有效表征了“强应力”的分布,将地应力影响下的相关参数纳入储层品质评价提高了储层分级的精度;③宜充分利用大斜度井有多穿有利区、多垂直穿裂缝的多重优势,解决复杂问题,提高勘探开发效率。

关键词: 库车坳陷, 超深储层, 现今地应力, 非均质性, 大斜度井

Abstract:

There is an important relationship between in-situ stress and reservoir quality, in order to innovate the theoretical understanding and technical methods of reservoir evaluation from the perspective of in-situ stress. Based on the rock mechanical test and logging data, combined with regional evolution and structural deformation, this study carried out systematic geomechanics research, and proposed the quantitative characterization of stress concentration parameters, so as to realize the optimization of favorable zones. The results show that the in-situ stress and the fracture permeability under its control are important factors to determine the productivity in ultra-deep reservoir. The favorable location with low stress and good fracture activity should be selected, and the unfavorable location such as local stress concentration area characterized by continuous borehole breakouts should be avoided. The strong stress is caused by the imbalance between in-situ stress and rock strength. The stress concentration parameters determined according to the equilibrium relationship effectively characterize the distribution of strong stress. The accuracy of reservoir classification is improved by incorporating the relevant parameters under the influence of in-situ stress into the evaluation method of reservoir quality. It is necessary to make full use of the multiple advantages of highly deviated wells with multiple favorable areas and multiple vertical fractures to solve complex problems and improve the efficiency of exploration and development.

Key words: Kuqa Depression, Ultra-deep reservoir, In-situ stress, Heterogeneity, Highly deviated well

中图分类号: 

  • TE122.1

图1

库车坳陷构造单元(a)及构造剖面(b)"

表1

库车坳陷诸井参数对比"

井名深度/m厚度/m孔隙度/%现今最小水平主应力/MPa裂缝密度/(条/m)裂缝活动性日产气量/(104 m3
K15 1251556.51440.360.22>40
K25 1301507.21520.910.19<10
D15 0802057.81040.110.28≈30
D24 8002557.6990.120.36>50
D35 0502807.71060.100.23≈10

图2

库车坳陷某口井的现今地应力及产气剖面"

图3

库车坳陷诸多井中的“强应力”现象"

图4

库车坳陷A8井岩石力学实验分析和基于CT扫描的岩石重构模型"

图5

单井地应力测井解释和应力集中参数"

表2

基于地应力及相关参数的量化分级方案"

最小水平主应力相对值 /无量纲

应力集中参数Qe

/无量纲

最大水平主应力方位和裂缝走向夹角/(°)

裂缝活动性(τ/σn

/无量纲

裂缝密度

/(条/m)

分级
低于平均值4%<0.5<30>0.35>0.4一级
平均值±2%0.5~0.730~450.25~0.35>0.3二级
高于平均值2%~6%0.7~0.960左右0.15~0.25>0.1三级
高于平均值6%>0.9近于垂直<0.15近于无四级

图6

库车坳陷储层具有极强的非均质性"

图7

库车坳陷失利井侧钻增产的实践"

1 杨学文,王招明,何文渊,等.塔里木盆地超深油气勘探实践与创新[M].北京:石油工业出版社,2019.
YANG X W, WANG Z M, HE W Y, et al. The Ultra-deep Oil and Gas Practice and Innovation in the Tarim Basin[M]. Beijing: Petroleum Industry Press, 2019.
2 田军,杨海军,吴超,等.博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J].天然气工业,2020,40(1):11-19.
TIAN J, YANG H J, WU C, et al. Discovery of Well Bozi 9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J]. Natural Gas Industry, 2020,40(1):11-19.
3 曾联波,刘国平,朱如凯,等.库车前陆盆地深层致密砂岩储层构造成岩强度的定量评价方法[J].石油学报,2020,41(12):1601-1609.
ZENG L B, LIU G P, ZHU R K, et al. A quantitative evaluation method of structural diagenetic strength of deep tight sandstone reservoirs in Kuqa foreland basin[J]. Acta Petrolei Sinica,2020,41(12):1601-1609.
4 曾庆鲁,莫涛,赵继龙,等.7000 m以深优质砂岩储层的特征、成因机制及油气勘探意义——以库车坳陷下白垩统巴什基奇克组为例[J].天然气工业,2020,40(1):38-47.
ZENG Q L, MO T, ZHAO J L, et al. Characteristics, genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7 000 m: A case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry, 2020,40(1):38-47.
5 SUN S, HOU G T, ZHENG C F. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression[J]. Journal of Structural Geology, 2017, 104:112-124.
6 刘春,赵继龙,章学歧,等.应力垂向分带对储层的控制作用——以库车前陆冲断带为例[J].天然气勘探与开发,2019,42(3):21-31.
LIU C, ZHAO J L, ZHANG X Q, et al. Effect of stress vertical zoning on reservoirs: An example from Kuqa foreland thrust belt[J]. Natural Gas Exploration and Development,2019,42(3):21-31.
7 唐雁刚,周鹏,徐振平,等.应力环境对克拉苏构造带盐下储层的影响[J].高校地质学报,2017,23(1):95-103.
TANG Y G, ZHOU P, XU Z P, et al. The influence of stress environment on reservoir under salt in Kelasu structure belt[J]. Geological Journal of China Universities,2017,23(1):95-103.
8 江同文,张辉,徐珂,等.克深气田储层地质力学特征及其对开发的影响[J].西南石油大学学报(自然科学版),2020,42(4):1-12.
JIANG T W, ZHANG H, XU K, et al. Reservoir geomechanical characteristics and the influence on development in Keshen Gas Field[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020,42(4):1-12.
9 张辉,尹国庆,王海应.塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J].天然气地球科学,2018,30(3):379-388.
ZHANG H, YIN G Q, WANG H Y. Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018,30(3):379-388.
10 田军,刘洪涛,滕学清,等.塔里木盆地克拉苏构造带超深复杂气田井全生命周期地质工程一体化实践[J].中国石油勘探,2019,24(2):165-173.
TIAN J, LIU H T. TENG X Q, et al. Geology-engineering integration practices throughout well lifecycle in ultra-deep complex gas reservoirs of Kelasu tectonic belt, Tarim Basin[J]. China Petroleum Exploration,2019,24(2):165-173.
11 杨海军,张辉,尹国庆,等.基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例[J].中国石油勘探,2018,23(2):27-36.
YANG H J, ZHANG H, YIN G Q, et al. Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs: A case study on West Yueman block, northern Tarim Basin[J]. China Petroleum Exploration, 2018,23(2):27-36.
12 漆家福,雷刚林,李明刚,等.库车坳陷—南天山盆山过渡带的收缩构造变形模式[J].地学前缘,2009,16(3):120-128.
QI J F, LEI G L, LI M G, et al. A model of contractional structure for transition belt between Kuche Depression and southern Tianshan Uplift[J]. Earth Science Frontiers, 2009, 16 (3):120-128.
13 能源,李勇,谢会文,等.库车前陆盆地盐下冲断带构造变换特征[J].新疆石油地质,2019, 40(1): 54-60.
NENG Y, LI Y, XIE H W, et al. Tectonic transformation characteristics of subsalt thrut belts in Kuqa foreland basin[J]. Xinjiang Petroleum Geology, 2019, 40(1): 54-60.
14 王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.
WANG Z M. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience,2014,25(2):153-166.
15 能源,漆家福,谢会文,等.塔里木盆地库车坳陷北部边缘构造特征[J].地质通报,2012,31(9):1510-1519.
NENG Y, QI J F, XIE H W, et al. Structural characteristics of northern margin of Kuqa Depression, Tarim Basin[J]. Geological Bulletin of China, 2012, 31(9):1510-1519.
16 漆家福,李勇,吴超,等.塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论[J].中国地质,2013,40(1):106-120.
QI J F, LI Y, WU C, et al. The interpretation models and discussion on the contractive structure deformation of Kuqa Depression, Tarim Basin[J]. Geology in China, 2013,40(1):106-120.
17 汪新,王招明,谢会文,等.塔里木库车坳陷新生代盐构造解析及其变形模拟[J].中国科学:地球科学,2010,40(12):1655-1668.
WANG X, WANG Z M, XIE H W, et al. Cenozoic salt tectonics and physical models in the Kuqa Depression of Tarim Basin, China[J]. Scientia Sinica Terrae, 2010,40(12):1655-1668.
18 何登发,贾承造.冲断构造与油气聚集[J].石油勘探与开发,2005,32(2):55-62.
HE D F, JIA C Z. Thrust tectonics and hydrocarbon accumulation[J].Petroleum Exploration and Development,2005,32(2):55-62.
19 曾联波, 谭成轩, 张明利. 塔里木盆地库车坳陷中新生代构造应力场及其油气运聚效应[J]. 中国科学(D辑: 地球科学), 2004, 34(增刊I): 98-106.
ZENG L B, TAN C X, ZHANG M L. Mesozoic-Cenozoictectonic stress field and its effect on hydrocarbon accumulation in Kuqa Depression, Tarim Basin[J]. Science China(Series D: Earth Science), 2004, 34(supplement I): 98-106.
20 张仲培, 王清晨. 库车坳陷节理和剪切破裂发育特征及其对区域应力场转换的指示[J]. 中国科学(D辑: 地球科学), 2004, 34(增刊I): 63-73.
ZHANG Z P, WANG Q C. Development of joints and shear fractures in Kuqa Depression and its implication to regional stress field switching[J]. Science China(Series D: Earth Science), 2004,34 (supplement I):63-73.
21 曾联波, 柯式镇, 刘洋. 低渗透油气储层裂缝研究方法[M]. 北京: 石油工业出版社, 2010.
ZENG L B, KE S Z, LIU Y. Fractures in Low Permeability Reservoirs[M]. Beijing: Petroleum Industry Press,2010.
22 张志镇. 岩石变形破坏过程中的能量演化机制[D].徐州:中国矿业大学,2013.
ZHANG Z Z. Energy Evolution Mechanism during Rock Deformation and Failure[D]. Xuzhou:China University of Mining and Technology, 2013.
23 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥:中国科学技术大学出版社, 2009.
CHEN Y,HUANG T F,LIU E R. Rock Physics[M]. Hefei:Press of University of Science and Technology of China,2009.
24 周青春.温度、孔隙水和应力作用下砂岩的力学特性研究[D]. 武汉:中国科学院研究生院(武汉岩土力学研究所), 2006.
ZHOU Q C. Study on the Mechanical Property of a Sandstone under Geothermal-Mechanical and Hydraulic-Mechanical Coupling[D]. Wuhan: Chinese Academy of Science, P.R.China (Institute of Rock and Soil Mechanics),2006.
25 孙珂,陈清华,徐珂,等.油水比例变化对岩石力学性质的影响及出砂分析——以金湖凹陷秦营断块区阜宁组储层为例[J].中国矿业大学学报, 2021,50(5):909-922.
SUN K, CHEN Q H, XU K, et al. Influence of change in oil-water ratio on rock mechanical properties and sand production analysis:A case study on Funing Formation reservoir of Qinying fault block area in Jinhu Sag[J]. Journal of China University of Mining & Technology, 2021,50(5):909-922.
26 YANG H J, ZHANG H, CAI Z Z, et al. The Relationship between Geomechanical Response of Natural Fractures and Reservoir Productivity in Keshen Tight Sandstone Gas Field, Tarim Basin, China[C]. SPE-176840-MS. Presented at the SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia, 9-11, November, 2015.
27 ZHANG H, WANG L , WANG Z , et al. Using Geomechanics to Reveal the Production Controlling Factors of the Tectonically Stressed Jurassic Tight Gas Reservoir in Western China[C]. SPE-195453-MS. Presented at the SPE Europec featured at 81st EAGE Conference and Exhibition, 3-6, June, 2019.
28 ZOBACK M D, KOHLI A, DAS I, et al. The Importance of Slow Slip on Faults During Hydraulic Fracturing Stimulation of Shale Gas Reservoirs[C].SPE-155476-MS. Presented at the SPE Americas Unconventional Resources Conference, 5-7, Pittsburgh, Pennsylvania USA,June, 2012.
29 徐珂,田军,杨海军,等.深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例[J].中国矿业大学学报,2020,49(4):708-720.
XU K, TIAN J, YANG H J, et al. Prediction of current in-situ stress filed and its application of deeply buried tight reservoir: A case study of Keshen 10 gas reservoir in Kelasu structural belt, Tarim Basin[J]. Journal of China University of Mining & Technology,2020,49(4):708-720.
30 李玉飞,付永强,唐庚,等.地应力类型影响定向井井壁稳定的规律[J].天然气工业,2012,32(3):78-80,130-131.
LI Y F, FU Y Q, TANG G, et al. Laws of the effects of earth stress patterns on wellbore stability in a directional well[J]. Natural Gas Industry, 2012,32(3):78-80,130-131.
[1] 胡勇, 贾玉泽, 何东博, 王继平, 李忠诚, 周梦飞, 魏克颖, 江良冀, 徐轩, 焦春艳, 郭长敏. 气藏储层非均质性表征方法及开采物理模拟实验[J]. 天然气地球科学, 2022, 33(2): 297-302.
[2] 王万春, 吉利明, 宋董军, 张东伟, 吕成福, 苏龙. 不同比例砂岩/油页岩热模拟实验滞留油量及其地质意义——以鄂尔多斯盆地三叠系延长组7段为例[J]. 天然气地球科学, 2021, 32(8): 1142-1150.
[3] 李谨, 李剑, 王超, 李德江, 韩中喜, 张海祖, 周慧, 卢玉红, 刘满仓. 塔里木盆地库车坳陷致密砂岩气地球化学特征[J]. 天然气地球科学, 2021, 32(8): 1151-1162.
[4] 李明强, 张立强, 李政宏, 张亮, 毛礼鑫, 徐小童. 塔里木盆地下侏罗统阿合组下砂砾岩段致密砂岩成岩相划分及测井识别——以库车坳陷依奇克里克地区为例[J]. 天然气地球科学, 2021, 32(10): 1559-1570.
[5] 史超群, 张慧芳, 周思宇, 王佐涛, 蒋俊, 章学岐, 左小军, 娄洪, 王振鸿, 陈常超. 塔里木盆地库车坳陷克拉苏构造带—秋里塔格构造带白垩系巴什基奇克组深层、高产储层特征及控制因素[J]. 天然气地球科学, 2020, 31(8): 1126-1138.
[6] 闫海军, 邓惠, 万玉金, 俞霁晨, 夏钦禹, 徐伟, 罗瑞兰, 程敏华, 鄢友军, 张林, 邵艳伟. 四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J]. 天然气地球科学, 2020, 31(8): 1152-1160.
[7] 史超群, 王佐涛, 朱文慧, 蒋俊, 张慧芳, 周思宇, 娄洪, 左小军, 李刚, 王振鸿. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J]. 天然气地球科学, 2020, 31(12): 1687-1699.
[8] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[9] 庞正炼, 陶士振, 张景建, 张琴, 袁苗, 吴因业, 张天舒, 杨晓萍, 范建玮, 孙菲菲. 四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J]. 天然气地球科学, 2019, 30(9): 1301-1311.
[10] 魏强, 李贤庆, 孙可欣, 李瑾, 肖中尧, 梁万乐, 张亚超, . 塔里木盆地库车坳陷克深大气田深层天然气成藏地球化学特征[J]. 天然气地球科学, 2019, 30(6): 897-907.
[11] 贾爱林, 唐海发, 韩永新, 吕志凯, 刘群明, 张永忠, 孙贺东, 黄伟岗, 王泽龙. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918.
[12] 张辉, 尹国庆, 王海应. 塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J]. 天然气地球科学, 2019, 30(3): 379-388.
[13] 沈瑛楚,宋新民,刘波,王根久,郭睿,罗清清,石开波,王欢,刘航宇. 伊拉克AD油田上白垩统Kh2段生物扰动与储层非均质性[J]. 天然气地球科学, 2019, 30(12): 1755-1770.
[14] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217-1230.
[15] 张荣虎, 王珂, 王俊鹏, 孙雄伟, 李君, 杨学君, 周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 赵生才;. 香山科学会议第268次学术讨论会“中国煤层气资源及产业化”召开[J]. 天然气地球科学, 0, (): 6 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .