天然气地球科学 ›› 2022, Vol. 33 ›› Issue (5): 720–730.doi: 10.11764/j.issn.1672-1926.2021.07.011

• 天然气地质学 • 上一篇    下一篇

柴北缘下干柴沟组深部碎屑岩储层发育特征及主控因素

田继先1(),纪宝强2,曾旭1,王晔桐3,4,李曜良3,孙国强3   

  1. 1.中国石油勘探开发研究院,河北 廊坊 065007
    2.中国石油新疆油田分公司石西油田作业区,新疆 克拉玛依 834000
    3.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    4.中国科学院大学,北京 100049
  • 收稿日期:2021-04-23 修回日期:2021-06-22 出版日期:2022-05-10 发布日期:2022-05-12
  • 作者简介:田继先(1981-).男,甘肃庄浪人,高级工程师,博士,主要从事油气综合地质研究.E-mail: tjx69@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司前瞻性与基础性重大科技课题(2021DJ0605)

Development characteristics and main controlling factors of deep clastic reservoir of Xiaganchaigou Formation in the northern margin of Qaidam Basin

Jixian TIAN1(),Baoqiang JI2,Xu ZENG1,Yetong WANG3,4,Yaoliang LI3,Guoqiang SUN3   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development, Langfang 065007,China
    2.Shixi Operation District,Xinjiang Oilfield Company,PetroChina,Karamay 834000, China
    3.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    4.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-04-23 Revised:2021-06-22 Online:2022-05-10 Published:2022-05-12
  • Supported by:
    Prospective and Fundamental Major Scientific and Technological Project of CNPC(2021DJ0605)

摘要:

柴达木盆地北缘(简称柴北缘)深层勘探程度低,资源潜力大,为明确柴北缘深层砂岩储层特征和控制因素,利用铸体薄片、扫描电镜、物性数据和测录井资料等对柴北缘下干柴沟组深部储层进行了综合研究。结果显示:柴北缘下干柴沟组深部储集岩主要以长石岩屑砂岩和岩屑长石砂岩为主,分选好,磨圆中等,成分成熟度和结构成熟度较高,原生孔隙发育,孔—渗相关性较好,平均孔隙度和渗透率分别可达10.7%和25.74×10-3 μm2。孔隙喉道中等—偏细,连通性好。辫状河三角洲前缘水下分流河道砂和滨湖—浅湖席状砂是形成优良储层的基础条件;碳酸盐胶结物在成岩阶段早期长期浅埋藏,晚期快速深埋,有效保护了原生孔隙;部分长石颗粒和早期碳酸盐胶结物在成岩阶段后期被溶蚀,形成了一定量的粒内和粒间溶蚀孔隙,对储集岩物性也有一定程度的改善;储集砂岩上、下部发育大套厚层泥岩,在沉积—成岩并快速埋藏的过程中,储集岩中的孔隙流体排出受阻而滞留在孔隙空间,孔隙流体承担了部分负荷,从而消弱了正常压实作用对储集岩的影响,保存了大部分原生孔隙。柴北缘腹部地区古近系下干柴沟组辫状河三角洲欠压实泥岩发育的异常高压带是天然气勘探开发的有利区带。

关键词: 碳酸盐胶结, 异常压力, 沉积环境, 深部储层, 柴达木盆地

Abstract:

The northern margin of Qaidam Basin is low in exploration degree and has high resources potential. In order to determine the characteristics and controlling factors of deep sandstone reservoir in the northern margin of Qaidam Basin, a comprehensive study on the reservoir of the Xiaganchaigou Formation in the northern margin of Qaidam Basin was carried out by using the cast thin section, scanning electron microscope, physical property data and logging data. The results showed that the deep reservoir in Qaidam Basin of Xiaganchaigou Formation is mainly composed of feldspathic lithic sandstone and lithic arkose, good separation, grinding medium, with relatively high composition maturity and structural maturity. The primary pores were developed, porosity and permeability are well correlated, with average porosity and permeability up to 10.7% and 25.74×10-3 μm2. The pore throat was medium to slants thin, with good connectivity. Subaqueous distributary channel sand and shore-shallow lake mat sand are the basic conditions for forming excellent reservoirs in braided river delta front. In the early diagenesis stage, the content of carbonate cement is less than 15%. In the early diagenesis stage, it is buried shallowly for a long time, and in the late diagenesis stage, it is buried deep quickly, which was effectively protecting the primary pores. Some feldspar particles and early carbonate cement were dissolved in the later stage of diagenesis, forming a certain amount of dissolution pores in and between grains, and improving the reservoir petrophysical properties to a certain extent. A large set of thick mudstone is developed in the upper and lower part of the reservoir sandstone. In the process of sedimentation-diagenesis and rapid burial, the pore fluid in the reservoir rock is blocked out and stays in the pore space. Abnormal high pressure zone developed by braided river delta of Xiaganchaigou Formation in Paleogene is a favorable zone for natural gas exploration and development in the central area of northern margin of Qaidam Basin

Key words: Carbonate cementation, Abnormal pressure, Sedimentary environment, Deep reservoir, Qaidam Basin

中图分类号: 

  • TE122.2

图1

柴北缘下干柴沟组沉积相(a)与深层生储盖组合(b)"

图2

储集砂岩结构及成岩作用特征(a)仙西1井,4 208.02 m,E32,中—粗粒岩屑砂岩,分选性和磨圆好,发育板状交错层理;(b)仙西1井,4 848.8 m,中粒岩屑长石砂岩,分选性和磨圆好,发育板状交错层理;(c)北2井,3 535.8 m,E31,浅红棕色中砂岩;(d)仙东1井,3 087.06 m,E31,中—细粒岩屑长石砂岩,分选中等,次圆状,颗粒间以点接触为主,粒间孔发育,少量粒内溶孔,孔隙连通性好,(-),×100;(e)仙西1井,4 211.72 m,E32,中—粗粒长石岩屑砂岩,分选中等—差,次棱角状,颗粒间以点—线接触为主,粒间孔发育,其次为粒间溶孔和粒内溶孔,孔隙连通性好,(-),×100;(f)仙西1井,4 210.77 m,E32,中—粗粒岩屑长石砂岩,分选中等,次棱角状,颗粒间以点接触为主,粒间孔发育,其次为粒间溶孔和粒内溶孔,(-), ×100;(g)仙西1井,4 111.84 m,E32,细砂岩,方解石充填裂隙,可见微裂隙;(h)北2井,3 070.35 m,E31,砂岩,粒间、粒表微晶石英、伊/蒙混层及残余孔隙;(i)北2井,3 274.27 m,E31,中粒长石岩屑砂岩,方解石胶结,多为粒间孔,(+),×100"

图3

研究区砂岩粒度概率曲线"

图4

柴北缘深部储层砂岩岩石类型"

图5

柴北缘深部下干柴沟组储层孔—渗特征"

图6

柴北缘深部储层压汞曲线"

图7

柴达木盆地冷湖七号碳酸盐胶结物含量和孔隙度分布特征"

图8

碳酸盐胶结物含量与孔隙度关系"

图9

北1井异常高压带测井显示以及对应的岩石镜下变化情况"

图10

过仙西1井—仙3井路乐河组—下干柴沟组上段沉积相连井剖面及有利储层预测图"

1 钟大康,朱筱敏,王红军.中国深层优质碎屑岩储层特征与形成机理分析[J].中国科学(D辑:地球科学),2008,38(增刊1):11-18.
ZHONG D K, ZHU X M, WANG H J. Analysis on the characteristics and formation mechanism of deep quality clastic reservoirs in China[J]. Science China(Series D:Earth Sciences),2008,38(S1):11-18.
2 张光亚,马锋,梁英波,等.全球深层油气勘探领域及理论技术进展[J].石油学报,2015,36(9):1156-1166.
ZHANG G Y, MA F, LIANG Y B, et al. Global deep-seated oil and gas exploration fields and theoretical and technological progress[J]. Acta Petrolei Sinica,2015,36(9):1156-1166.
3 张凯逊,白国平,曹斌风,等.深层碎屑岩含油气储层发育特征[J].工程科学学报,2016,38(1):1-10.
ZHANG K X, BAI G P,CAO B F,et al. Development characteristics of deep clastic hydrocarbon reservoirs[J].Chinese Journal of Engineering,2016,38(1):1-10.
4 李彦举,张婷,许泰,等.深部优质储层成因机理——以准噶尔盆地阜东斜坡区侏罗系三工河组碎屑岩储层为例[J].西北地质,2019,52(3):151-161.
LI Y J, ZHANG T, XU T, et al. Formation mechanism of deeply buried high-quality reservoir: Example from clastic reservoir of Sangonghe Formation in Fudong Slope Zone, Junggar Basin[J].Northwestern Geology, 2019,52(3):151-161.
5 陈戈,赵继龙,杨宪彰,等.塔里木盆地秋里塔格构造带深部碎屑岩储层特征及控制因素[J].天然气工业,2019,39(4):18-27.
CHEN G, ZHAO J L, YANG X Z, et al. Characteristics and controlling factors of deep-buried clastic reservoirs in the Qiulitage structural belt,Tarim Basin[J].Natural Gas Industry,2019,39(4):18-27.
6 李楚琦.关于松辽盆地深部储层岩石特征研究[J].石化技术,2018,25(12):98.
LI C Q. Study on rock characteristics of deep reservoirs in Songliao Basin[J]. Petrochemical Industry Technology,2018,25(12):98.
7 郭佳佳,孙国强,门宏建,等.柴北缘腹部深层异常高孔—渗储层成因分析[J].沉积学报,2018,36(4):777-786.
GUO J J, SUN G Q, MEN H J, et al. Genesis analysis of abnormal high porosity-permeability reservoirs in the abdomen of northern Qaidam Basin[J].Acta Sedimentologica Sinica,2018,36(4):777-786.
8 孙国强,陈波,郑永仙,等.柴北缘冷湖五号构造中新统成岩作用及沉积环境[J].天然气地球科学,2015,26(4):679-688.
SUN G Q, CHEN B, ZHENG Y X, et al. Diagenesis and sedimentary environment of Miocene in Lenghu Ⅴ tectonic belt[J]. Natural Gas Geoscience,2015,26(4):679-688.
9 陈吉,谢梅,史基安,等.柴北缘马北地区下干柴沟组储层特征[J].天然气地球科学,2011,22(5):821-826.
CHEN J, XIE M, SHI J A, et al. Reservoir characteristics of Xiaganchaigou Formation in Mabei area of northern Qaidam Basin[J]. Natural Gas Geoscience,2011,22(5):821-826.
10 孙国强,马进业,司丹,等.地震属性在马仙地区下干柴沟组下段沉积环境分析中的应用[J].天然气地球科学,2013,24(6):1246-1252.
SUN G Q, MA J Y, SI D, et al. Application of seismic attributes to analysis of depositional environment: Taking lower member of Xiaganchaigou Formation of the Paleogene system of Maxian region as an example[J]. Natural Gas Geoscience,2013,24(6):1246-1252.
11 田继先,李剑,曾旭,等.柴达木盆地东坪地区原油裂解气的发现及成藏模式[J].石油学报,2020,41(2):154-162,225.
TIAN J X, LI J, ZENG X, et al. Discovery and forming model of oil-cracking gas reserviors in Dongping area, Qaidam Basin[J]. Acta Petrolei Sinica,2020,41(2):154-162,225.
12 付锁堂,张道伟,薛建勤,等.柴达木盆地致密油形成的地质条件及勘探潜力分析[J].沉积学报,2013,31(4):672-682.
FU S T, ZHANG D W, XUE J Q, et al. Exploration potential and geological conditions of tight oil in the Qaidam Basin[J]. Acta Sedimentologica Sinica,2013,31(4):672-682.
13 张满郎,李熙喆,谢武仁.鄂尔多斯盆地山2段砂岩储层的孔隙类型与孔隙结构[J].天然气地球科学,2008,19(4):480-486.
ZHANG M L, LI X Z, XIE W R. Pore types and pore structure of sandstone reservoirs in the second member of Shan, Ordos Basin[J].Natural Gas Geoscience,2008,19(4):480-486.
14 朱筱敏.沉积岩石学[M].北京:石油工业出版社,2008.
ZHU X M. Sedimentary Petrology[M].Beijing: Petroleum Industry Press,2008.
15 陈国俊,吕成福,王琪,等.珠江口盆地深水区白云凹陷储层孔隙特征及影响因素[J].石油学报,2010, 31(4):566-572.
CHEN G J, LV C F, WANG Q, et al. Pore characteristics and influencing factors of the Baiyun Sag in the deep water area of the Pearl River Mouth Basin[J].Acta Petrolei Sinica,2010,31(4):566-572.
16 PAXTON S T, SZABO J O, AJDUKIEWICZ J M, et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J]. AAPG Bulletin,2002,86(12):2047-2067.
17 王晔桐,孙国强,杨永恒,等.柴北缘冷湖七号地区碳酸盐胶结物特征及其意义[J].西南石油大学学报:自然科学版,2020,42(1):45-56.
WANG Y T, SUN G Q, YANG Y H, et al. Characteristics and significance of carbonate cements in Lenghu No. 7 area on the northern margin of Qaidam Basin[J]. Journal of Southwest Petroleum University: Science & Technology Edition,2020,42(1):45-56.
18 高志勇,崔京钢,冯佳睿,等.埋藏压实作用对前陆盆地深部储层的作用过程与改造机制[J].石油学报,2013,34(5):867-876.
GAO Z Y, CUI J G, FENG J R, et al. The process and reformation mechanism of burial compaction on deep reservoirs in foreland basins[J]. Acta Petrolei Sinica,2013,34(5):867-876.
19 潘荣,朱筱敏,王星星,等.深层有效碎屑岩储层形成机理研究进展[J].岩性油气藏,2014,26(4):73-80.
PAN R, ZHU X M, WANG X X, et al. Research progress in the formation mechanism of deep effective clastic reservoirs[J]. Lithologic Reservoirs,2014,26(4):73-80.
20 崔周旗,李莉,王宏霞,等.霸县凹陷古近系深层砂岩储层特征与岩性油气藏勘探[J].岩性油气藏, 2017,29(2):51-58.
CUI Z Q,LI L,WANG H X, et al. Paleogene deep sandstone reservoir characteristics and lithologic reservoir exploration in Baxian Sag[J]. Lithologic Reservoirs,2017,29(2):51-58.
21 金凤鸣,张凯逊,王权,等.断陷盆地深层优质碎屑岩储集层发育机理——以渤海湾盆地饶阳凹陷为例[J].石油勘探与开发,2018,45(2):247-256.
JIN F M, ZHANG K X, WANG Q, et al. Development mechanism of deep-seated high-quality clastic rock reservoirs in faulted basins: Taking Raoyang Sag in Bohai Bay Basin as an example[J].Petroleum Exploration and Development,2018,45(2):247-256.
22 远光辉,操应长,贾珍臻,等.含油气盆地中深层碎屑岩储层异常高孔带研究进展[J].天然气地球科学,2015,26(1):28-42.
YUAN G H, CAO Y C, JIA Z Z, et al. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience,2015,26(1):28-42.
23 金振奎,苏奎,苏妮娜.准噶尔盆地腹部侏罗系深部优质储层成因[J].石油学报,2011,32(1):25-31.
JIN Z K, SU K, SU N N. Origin of high quality deep Jurassic reservoirs in the central Junggar Basin[J]. Acta Petrolei Sinica.2011,32(1):25-31.
24 赵新民,李国平,王树寅,等.欠压实带与超压带的测井识别[J].石油与天然气地质,2002,23(1):63-65.
ZHAO X M, LI G P, WANG S Y, et al. Logging identification of undercompaction zone and overpressure zone[J].Oil & Gas Geology,2002,23(1):63-65.
25 杨智,何生,何治亮,等.准噶尔盆地腹部超压层分布与油气成藏[J].石油学报,2008,29(2):199-205.
YANG Z, HE S, HE Z L, et al. Distribution and hydrocarbon accumulation of overpressured strata in the central Junggar Basin[J]. Acta Petrolei Sinica,2008,29(2):199-205.
[1] 陆统智, 曾溅辉, 王濡岳, 伍坤宇, 曹喆, 王鑫, 梁晓宇, 李庆波, 郭正权. 柴达木盆地英西地区致密油成藏物理模拟实验[J]. 天然气地球科学, 2022, 33(2): 256-266.
[2] 宁诗坦, 夏鹏, 郝芳, 田金强, 钟毅, 邹妞妞, 付勇. 贵州牛蹄塘组黑色页岩岩相划分及岩相—沉积环境—有机质耦合关系[J]. 天然气地球科学, 2021, 32(9): 1297-1307.
[3] 苟迎春, 张小军, 李延丽, 张世铭, 秦九妹, 吴梁宇. 酒西盆地砂岩储层碳酸盐胶结物分布及碳、氧稳定同位素富集特征[J]. 天然气地球科学, 2021, 32(9): 1393-1402.
[4] 田继先, 姜晓华, 国建英, 孔骅, 任世霞, 周飞, 沈晓双, 沙威, 乔柏翰, 张娜, 周胤男. 柴西湖相碳酸盐岩致密气藏地质特征及规模富集条件[J]. 天然气地球科学, 2021, 32(8): 1223-1234.
[5] 王晔桐, 孙国强, 张顺存, 陈波, 朱文军, 蒋赟. 柴北缘腹部砂岩中碳酸盐胶结物特征及成因探讨[J]. 天然气地球科学, 2021, 32(7): 1037-1046.
[6] 唐鑫萍, 雷栋, 宋效文. 三水盆地布心组湖相碳酸盐岩沉积特征及相模式[J]. 天然气地球科学, 2021, 32(5): 675-684.
[7] 蒙炳坤, 周世新, 李靖, 陈克非, 张臣, 李朋朋, 孙泽祥. 柴达木盆地西北部原油芳烃分子标志化合物分布特征及意义[J]. 天然气地球科学, 2021, 32(5): 738-753.
[8] 郭飞飞, 柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征[J]. 天然气地球科学, 2021, 32(3): 405-415.
[9] 孙豪飞, 罗冰, 文龙, 王锦西, 周刚, 文华国, 霍飞, 戴鑫, 何昌龙. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247.
[10] 代全齐, 王贵文, 张连昌, 李纲, 马丽娟, 高树芳, 程志超, 张迪, 刘国良. 致密储层孔隙结构相测井表征及对经济可采储量的约束——以柴达木盆地英西地区湖相混积岩为例[J]. 天然气地球科学, 2021, 32(2): 308-318.
[11] 李继宏, 侯景涛, 杨艳宁, 谢先奎, 李程善, 刘广林, 李树同. 鄂尔多斯盆地志丹地区长73亚段泥页岩地球化学特征及页岩油地质意义[J]. 天然气地球科学, 2021, 32(12): 1839-1848.
[12] 曾旭, 林潼, 周飞, 李洁, 张懿, 沈晓双, 房永生, 王科. 柴达木盆地一里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J]. 天然气地球科学, 2021, 32(1): 73-85.
[13] 张昭丰, 王良军, 张立强, 黎承银. 川东南回龙场地区小河坝组砂岩元素特征及古环境意义[J]. 天然气地球科学, 2020, 31(9): 1239-1249.
[14] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[15] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李振宏;郑聪斌;. 古岩溶演化过程及对油气储集空间的影响――以鄂尔多斯盆地奥陶系为例[J]. 天然气地球科学, 2004, 15(3): 247 -252 .
[2] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .
[3] 王强;付晓文;徐志明;胡守志;胡雄;. 稳定碳同位素在油气地球化学中的应用及存在的问题[J]. 天然气地球科学, 2005, 16(2): 233 -237 .
[4] 杜斌山 贺振华 曹正林 石兰亭 周惠文. 地震地质多信息融合的井震标定方法研究[J]. 天然气地球科学, 2009, 20(2): 254 -257 .
[5] 杨学锋, 黄先平, 钟兵, 杜志敏, 张地洪, 郭平. 高含硫气体中元素硫溶解度实验测定及计算方法研究[J]. 天然气地球科学, 2009, 20(3): 416 -419 .
[6] 班凡生, 高树生, 王皆明. 枯竭油藏改建储气库注采运行机理研究[J]. 天然气地球科学, 2009, 20(6): 1005 -1008 .
[7] 林会喜, 程付启, 金强. 天然气组分、同位素分馏机理及实例分析[J]. 天然气地球科学, 2011, 22(2): 195 -200 .
[8] 孙颖, 卢异, 佘晓宇, 梁斌, 丁小辉, 韩祥海. 地层(体)切片技术及其应用[J]. 天然气地球科学, 2011, 22(5): 884 -888 .
[9] 胡俊坤,李晓平,张健涛,张修明. 计算水驱气藏动态储量和水侵量的简易新方法[J]. 天然气地球科学, 2012, 23(6): 1175 -1178 .
[10] 王海应,刘煌,昌伦杰,魏聪,王海波,孙长宇. 凝析气藏流体露点压力预测模型对比与开发[J]. 天然气地球科学, 2013, 24(4): 853 -858 .