天然气地球科学 ›› 2022, Vol. 33 ›› Issue (1): 36–48.doi: 10.11764/j.issn.1672-1926.2021.07.004

• 天然气地质学 • 上一篇    下一篇

塔里木盆地塔中Ⅲ区奥陶系多相态油气藏成因及富集模式

赵星星1,2(),李斌1,2,邬光辉1,2,韩剑发3,关宝珠3,沈春光3   

  1. 1.西南石油大学地球科学与技术学院,四川 成都 610500
    2.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    3.中国石油塔里木油田公司勘探开发研究院,新疆 库尔勒 841000
  • 收稿日期:2021-05-19 修回日期:2021-06-29 出版日期:2022-01-10 发布日期:2022-01-26
  • 作者简介:赵星星(1996-),男,甘肃陇西人,硕士研究生,主要从事油气成藏研究. E-mail: zxxxnsydx@163.com.
  • 基金资助:
    四川省区域创新合作项目“复杂油藏高效开发相关技术研究及推广应用”(21QYCX0050)

Genesis and enrichment model of Ordovician multi-phase oil and gas reservoirs in Tazhong Ⅲ block, Tarim Basin

Xingxing ZHAO1,2(),Bin LI1,2,Guanghui WU1,2,Jianfa HAN3,Baozhu GUAN3,Chunguang SHEN3   

  1. 1.School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
    3.PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2021-05-19 Revised:2021-06-29 Online:2022-01-10 Published:2022-01-26
  • Supported by:
    The Regional Innovation Cooperation Project of Sichuan Province, China(21QYCX0050)

摘要:

针对塔里木盆地塔中Ⅲ区奥陶系多相态油气藏共存的现象,通过对原油物理性质、天然气组分特征及油藏分子地球化学参数的研究发现:塔中Ⅲ区奥陶系存在凝析气藏、挥发性油藏、轻质油藏3种油气藏,原油为成熟—高成熟油,天然气为寒武系盐下古油藏裂解气与奥陶系原油溶解气的混合气。原油物理性质、天然气干燥系数、碳同位素、气油比、硫化氢含量等参数自东北至西南方向具有减小趋势。奥陶系多相态油气藏流体来源相似,轻质原油及挥发油成熟度与油藏埋深具有一定的线性关系,揭示该区存在侧向和垂向油气充注的方式。利用高精度三维地震剖面恢复了塔中Ⅲ区不同时期奥陶系油气藏的形成及其演化过程,认为底部烃源岩的热演化差异、油气的多源多期混合充注和走滑断裂的垂向疏导是造成塔中Ⅲ区多相态油气藏共存的重要原因。塔中Ⅲ区超深层勘探仍具有巨大潜力,其中塔中Ⅰ号断裂带附近及北部坳陷强气侵地区深层气藏大规模存在,中部弱气侵区深部存在挥发性油藏及气藏;西南部未气侵区深层仍可发育轻质油藏。

关键词: 塔中Ⅲ区, 多相态油气藏, 多期油气充注, 走滑断裂, 成藏模式

Abstract:

In view of the coexistence of multi-phase oil and gas reservoirs in the Ordovician System in Tazhong Ⅲ block, Tarim Basin, there are three kinds of oil and gas reservoirs in the Ordovician System in Tazhong Ⅲ block by studying the physical properties of natural gas components and molecular geochemical parameters of oil reservoirs, which are condensate, volatile oil reservoirs and light oil reservoirs, crude oil is mature and high maturity oil, natural gas is a mixture of cracked gas from Cambrian subsalt reservoir and dissolved gas from Ordovician crude oil. The physical property parameters of crude oil, natural gas dryness coefficient, carbon isotopic composition, gas to oil ratio and content of H2S show a decreasing trend from northeast to southwest. There is a linear relationship between the maturity of light crude oil and volatile oil and the depth of reservoir, which indicates that there exists multi-stage oil and gas charging in this area. In this paper, the formation and evolution of the Ordovician reservoirs in different periods in the Tazhong Ⅲ block are recovered by using high-precision three-dimensional seismic profiles. It is considered that the thermal evolution of the bottom source rocks is different. The multi-source and multi-stage mixed charging of oil and gas and the vertical drainage of the strike slip faults are the important reasons for the coexistence of multi-phase reservoirs in the Tazhong Ⅲ block. Deep exploration in Tazhong Ⅲ block still has great potential. Deep gas reservoirs exist on a large scale near the Tazhong Ⅰ fault zone and the strong gas invasion area in the northern depression, while deep volatile oil reservoirs and gas reservoirs exist in the weak gas invasion area in the central area. There are still light oil reservoirs in the deep layer with no gas invasion in the southwest.

Key words: Tazhong Ⅲ block, Multiphase oil and gas reservoirs, Multi-stage oil and gas charging, Strike-slip fault, Accumulation model

中图分类号: 

  • TE122.1

图1

塔中Ⅲ区一间房组构造图"

图2

塔中Ⅲ区奥陶系原油性质交会图"

表1

塔中Ⅲ区奥陶系天然气组分"

油气相态类型项目甲烷/%乙烷/%丙烷/%天然气干燥系数/无量纲氮气/%硫化氢/%
凝析气最大值87.14.681.720.9910.171.51
最小值79.910.720.110.891.040.06
平均值83.722.930.980.943.7560.71
挥发油区天然气最大值89.61270.9416.032
最小值63.42.430.680.610.230.04
平均值79.925.922.440.866.070.62
轻质油区天然气最大值74.2810.357.150.8315.241.75
最小值61.177.473.290.694.20.002
平均值68.58.484.580.798.80.51

图3

塔中Ⅲ区奥陶系天然气性质交会图"

图4

塔中Ⅲ区奥陶系流体PVT实验相图"

图5

塔中Ⅲ区油气藏相态分布及运聚趋势"

图6

塔中Ⅲ区奥陶系原油饱和烃色谱—色质"

表2

塔中Ⅲ区奥陶系天然气碳同位素数据分析"

油气相态

类型

井位δ13C/
C1C2C3iC4nC4
凝析气TZ451-50.6-35.9-30.6-29.7-
TZ86-47.2-34.8-30.6-31-29.8
ZG14-1-48-34.6-28.9-28.9-27.1
ZG14-47.9-34.5-29.1-27.9-27.8
ZG45-H1-45.8-36.7-31.6-28.6-30
ZG16-2H-51-36.5-31.6-29.7-29.9
ZG17-51-34.8-29.7-28.4-30.2
挥发油ZG162-1H-49.9-36.2-30.8-30.7-29.6
ZG15-H6-52.2-36.5-30.8-29.5-
ZG162-2H-51.2-36.5-30.7-30.4-29.2
ZG166H-53.4-36.3-29.5--28.5
ZG26-49.3-37.2-32.6-30.8-31.7
ZG162-51-36.5-31.6-30-29.7
ZG22-51.5-36.7-30.4-29.6-29.5
轻质油ZG15-5H-52.2-36.5-30.8-29.5-
ZG157H-52.9-37.4-31.4-30.9-30
ZG262-54.9-37.9-32.3-30.8-30.2
ZG16-51.6-36.6-31.2-29.8-31.4
ZG15-61.4-40.4-30.9-31.4-30.1

图7

塔中Ⅲ区奥陶系天然气成因鉴别图谱"

图8

塔中Ⅲ区奥陶系原油等效镜质体反射率分布Rc1(%)=0.6×MPI1+0.4,MPI1=1.5×(3-MP+2-MP)/(P+9-MP+1-MP);Rc2(%)=0.35K2?4+0.46, K2?4=2,4-DMDBT/1,4-DMDBT"

表3

塔中Ⅲ区奥陶系原油金刚烷质量色谱分析"

项目凝析油挥发油轻质油
ZG14-1ZG14-H7ZG15ZG27CZG291-H12
AS/(μg/g)132.78138.661 217.1091.8442.47
AD/(μg/g)51.4736.15643.70107.8318.87
(AS+AD)/(μg/g)184.25174.811 861.07199.6761.34

图9

塔中Ⅲ区奥陶系金刚烷化合物分析"

图10

塔中Ⅲ区F117断裂带剖面油气藏演化模式(A—A’剖面)"

图11

塔中Ⅲ区油气富集模式"

1 孙东, 潘建国,胡再元,等. 塔里木盆地塔中Ⅲ区奥陶系碳酸盐岩油气成藏主控因素及有利区带[J]. 沉积学报, 2019, 37(4):868-877.
SUN D, PAN J G, HU Z Y, et al. Main factors controlling carbonate reservoir formation: Case study of Tazhong block III, Tarim Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4): 868-877.
2 ZHU G, LI J, CHI L, et al. The influence of gas invasion on the composition of crude oil and the controlling factors for the reservoir fluid phase[J]. Energy & Fuels, 2020, 34(3): 2710-2725.
3 AKHMADIYAROV A A. Influence of the Composition of Oxygen-Carbon Dioxide Gas Mixture on the Oxidation Process of Heavy Crude Oils[C]. 19th SGEM International Multidisciplinary Scientific Geoconference EXPO Proceedings, 2019.
4 乔桂林, 赵永强,沙旭光,等. 塔里木盆地塔中隆起南坡油气勘探领域[J]. 石油实验地质, 2019, 41(5):630-637.
QIAO G L, ZHAO Y Q, SHA X G, et al. Oil and gas exploration domains on the southern slope of central Tarim Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(5): 630-637.
5 云金表,宁飞,宋海明,等. 塔里木盆地塔中及周边地区下古生界构造样式与成因演化[J]. 地质科学, 2019,54(2):319-329.
YUN J B, NING F, SONG H M, et al. Research on structural kinematics characteristics and mechanism in Lower Paleozoic of the Tazhong and adjacent area in Tarim Basin[J]. Scientia Geologica Sinica, 2019, 54(2):319-329.
6 刘炜博,鞠治学,韩剑发,等. 塔里木盆地塔中Ⅲ区奥陶系碳酸盐岩各层系油气成藏特征及富集规律[J]. 天然气地球科学, 2015, 26(S2):125-137.
LIU W B,JU Z X,HAN J F,et al. Hydrocarbon accumulation characteristics and enrichment law of various carbonate layer series of the Ordovician System in Ⅲ-zone, central Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(S2): 125-137.
7 庞雄奇,林会喜,郑定业,等.中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向[J]. 地质力学学报, 2020, 26(5):673-695.
PANG X Q, LIN H X, ZHENG D Y, et al. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China[J]. Journal of Geomechanics, 2020, 26(5):673-695.
8 LIU D, CAI C, HU Y, et al. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 123:104752.
9 张利明,王小强,侯大力,等.塔里木盆地近临界油气藏相态特征[J]. 天然气地球科学, 2020, 31(3):370-374.
ZHANG L M,WANG X Q, HOU D L, et al. Phase behavior characteristics of near-critical oil and gas reservoirs in Tarim Basin[J]. Natural Gas Geoscience,2020,31(3):370-374.
10 ZHU G Y, CAO Y, YAN L, et al. Potential and favorable areas of petroleum exploration of ultra-deep marine strata more than 8 000 m deep in the Tarim Basin, Northwest China[J]. Journal of Natural Gas Geoscience, 2018, 3(6):321-337.
11 ZHU G Y, CHEN F, WANG M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
12 ZHU G, LI J, ZHANG Z, et al. Stability and cracking threshold depth of crude oil in 8000 m ultra-deep reservoir in the Tarim Basin[J]. Fuel, 2020, 282(3):118777.
13 LORANT F, PRINZHOFER A, BEHAR F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147(3-4): 249-264.
14 LI J, ZENG Y X, WEI G, et al. Geochemical characteristics and exploration potential of natural gas in Anyue Gas Field, the largest uncompartmentalized carbonate gas field in China[C].The 15th National Meeting on Organic Geochemistry in China, 2015.
15 ZHANG Z, ZHANG Y, ZHU G, et al. Impacts of thermochemical sulfate reduction, oil cracking, and gas mixing on the petroleum fluid phase in the Tazhong area, Tarim Basin, China[J]. Energy & Fuels, 2019, 33(FEB·):968-978.
16 马安来,金之钧,李慧莉,等.塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753.
MA A L, JIN Z J, LI H L, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
17 刘华, 景琛, 刘雅利,等. 油气运移表征参数优选及运移方式判识[J]. 石油实验地质, 2018, 40(3):424-430.
LIU H, JING C, LIU Y L, et al. Optimization of hydrocarbon migration parameters and identification of migration pattern[J]. Petroleum Geology & Experiment,2018,40(3):424-430.
18 SHEN W, CHEN J, WANG Y, et al. The origin, migration and accumulation of the Ordovician gas in the Tazhong III region, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2019, 101: 55-77.
19 晏继发,马安来,李贤庆,等. 金刚烷化合物在深层油气地球化学研究中的应用[J]. 现代地质, 2020, 34(4):812-820.
YAN J F, MA A L, LI X Q, et al. Application of diamondoids in geochemical research of deep oil and gas[J]. Geoscience, 2020, 34(4): 812-820.
20 宋换新, 文志刚, 包建平. 金刚烷的形成演化及其在油气勘探领域的应用[J]. 石油天然气学报, 2016, 38(2):1-12.
SONG H X, WEN Z G, BAO J P. Generation and thermal evolution of diamondoids and their application in oil and gas exploration[J]. Journal of Oil and Gas Technology,2016,38(2):1-12.
21 马安来. 金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学, 2016, 27(5):851-860.
MA A L. New advancement in application of diamondoids on organic geochemistry[J]. Natural Gas Geoscience, 2016, 27(5): 851-860.
22 CHEN J H,FU J M,SHENG G Y,et al. Diamondoid hydro⁃carbon ratios:Novel maturity indices for highly mature oils[J].Organic Geochemistry,1996,25(3-4):179-190.
23 马安来,金之钧,朱翠山. 塔里木盆地顺南 1 井原油硫代金刚烷系列的检出及意义[J]. 石油学报,2018,39(1):42-53.
MA A L, JIN Z J, ZHU C S. Detection and research significance of thiadiamondoids from crude oil in Well Shunnan 1,Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53.
24 兰晓东, 吕修祥. 塔中地区下奥陶统鹰山组油气成藏期及其对油气分布的影响[J]. 地质论评, 2015, 61(Z1):144-145.
LAN X D, LÜ X X. Hydrocarbon accumulation period and its influence on hydrocarbon distribution in the Lower Ordovician Yingshan Formation in Tazhong area[J]. Geological Review, 2015, 61(Z1):144-145.
25 杨海军,于双,张海祖,等.塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J].地球化学,2020,49(6):666-682.
YANG H J, YU S, ZHANG H Z, et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of Well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic System in the Tarim Basin[J]. Geochimica, 2020,49(6):666-682.
26 LIU Y C,DONG S Y,ZHAO C H. Thermal evolution and the maturation of the deeply buried Lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. Arabian Journal of Geosciences,2021,14(13):1-19.
27 管文胜,韩剑发,刘永福,等. 塔里木盆地北部YM32下古生界潜山油气藏油气运移[J].地球科学, 2020,45(4):227-238.
GUAN W S, HAN J F, LIU Y F, et al. Characteristics of hydrocarbon migration of YM32 Lower Paleozoic buried hill reservoirs in north Tarim Basin[J]. Earth Science, 2020, 45(4):227-238.
28 ZHU G Y, ZHANG Z Y, ZHOU X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930.
29 任战利, 崔军平, 祁凯,等. 深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40(2):22-30.
REN Z L, CUI J P, QI K, et al. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J]. Natural Gas Industry, 2020,40(2):22-30.
30 CHEN C, WANG Y, BEAGLE J R, et al. Reconstruction of the evolution of deep fluids in light oil reservoirs in the central Tarim Basin by using PVT simulation and basin modeling[J]. Marine and Petroleum Geology, 2019, 107:116-126.
[1] 国建英, 齐雪宁, 侯连华, 郝爱胜, 曾旭, 林世国, 蒲秀刚, 谢增业, 王义凤, 王晓波, 陈大伟. 渤海湾盆地特低渗—致密砂(砾)岩天然气成因及成藏模式[J]. 天然气地球科学, 2022, 33(2): 181-194.
[2] 刘金水, 张书平. 东海盆地西湖凹陷中北部天然气运移特征与成藏模式[J]. 天然气地球科学, 2021, 32(8): 1163-1176.
[3] 钱海涛, 苏东旭, 阿布力米提·依明null, 王学勇, 李宗浩, 王国栋. 准噶尔盆地盆1井西凹陷斜坡区油气地质特征及勘探潜力[J]. 天然气地球科学, 2021, 32(4): 551-561.
[4] 冯树仁, 张聪, 张建国, 乔茂坡, 刘春春, 彭鹤, 毛崇昊. 沁水盆地南部郑庄区块高煤阶煤层气成藏模式[J]. 天然气地球科学, 2021, 32(1): 136-144.
[5] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[6] 李斌, 梅文华, 李琪琪, 卓勤功, 鲁雪松, 郭强. 四川盆地西北部前陆盆地构造演化对古生界海相油气成藏的影响[J]. 天然气地球科学, 2020, 31(7): 993-1003.
[7] 易士威, 李明鹏, 徐淑娟, 崔宝文, 蒙启安, 武雪琼, 程宏岗. 松辽盆地双城断陷结构特征及控藏模式[J]. 天然气地球科学, 2020, 31(6): 761-772.
[8] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[9] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[10] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[11] 李洪辉, 曹颖辉, 陈志勇, 杨敏, 赵一民, 董洪奎, 闫磊, 杜德道, 王珊, 刘伟, 徐兆辉, 马德波, 朱光有, 陈秀艳, 杨鹏飞. 塔里木盆地塔北隆起轮南低凸起断裂与深层油气勘探[J]. 天然气地球科学, 2020, 31(12): 1677-1686.
[12] 易士威, 李明鹏, 徐淑娟, 郭绪杰, 崔宝文, 蒙启安, 程宏岗, 武雪琼, 崔俊峰, 王立贤. 松辽盆地中央隆起潜山成藏条件及模式[J]. 天然气地球科学, 2020, 31(12): 1663-1676.
[13] 刘晓鹏, 赵会涛, 闫小雄, 贾亚妮, . 克拉通盆地致密气成藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J]. 天然气地球科学, 2019, 30(3): 331-343.
[14] 石新朴, 覃建强, 丁艳雪, 杨丹, 史全党, 胡清雄, 李波, 齐洪岩, 张吉辉, 孙德强, 赵振, 饶远, 习成威. 准噶尔盆地滴南凸起火山岩气藏成藏主控因素与成藏模式[J]. 天然气地球科学, 2018, 29(12): 1706-1714.
[15] 尹帅, 李爱荣, 陈梦娜, 赵金利, 丁文龙, 赵靖舟, 曹翔宇. 强变形区走滑断裂带伸展—聚敛应力效应构造解析及控气作用[J]. 天然气地球科学, 2018, 29(11): 1568-1574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[3] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[4] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[5] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[6] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[7] 韩应钧;. 龙门山中南段地区印支运动和天然气勘探目标研究[J]. 天然气地球科学, 2002, 13(5-6): 66 -73 .
[8] 贾成业;夏斌;王核;张胜利;. 东海陆架盆地丽水凹陷构造演化及油气地质分析[J]. 天然气地球科学, 2006, 17(3): 397 -401 .
[9] 袁剑英. 中国西北地区主要油气勘探领域勘探难题与技术对策[J]. 天然气地球科学, 2006, 17(5): 601 -605 .
[10] USGS,郑军卫(译). 美国地质调查局油气资源研究计划[J]. 天然气地球科学, 2002, 13(3-4): 15 .