天然气地球科学 ›› 2022, Vol. 33 ›› Issue (3): 396–407.doi: 10.11764/j.issn.1672-1926.2021.07.002

• 非常规天然气 • 上一篇    下一篇

海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例

张琴1,2(),邱振1,2(),张磊夫1,2,王玉满1,2,肖玉峰1,2,刘丹1,2,刘雯1,2,李树新3,李星涛3   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.国家能源页岩气研发(实验)中心,河北 廊坊 065007
    3.中石油煤层气有限责任公司,北京 100028
  • 收稿日期:2021-04-28 修回日期:2021-07-04 出版日期:2022-03-10 发布日期:2022-03-22
  • 通讯作者: 邱振 E-mail:zhangqin2169@petrochina.com.cn;qiuzhen316@163.com
  • 作者简介:张琴(1985-),女,湖北荆门人,高级工程师,博士,主要从事页岩气沉积储层研究.E-mail: zhangqin2169@petrochina.com.cn.
  • 基金资助:
    中国石油勘探开发研究院院级项目“中国典型盆地页岩油气重点层系有机质富集机理研究与主控因素分析”(2021yjcq02);中国石油十四五前瞻性基础性项目“海陆过渡相页岩气成藏条件及勘探前景评价研究”(2021DJ2001)

Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin

Qin ZHANG1,2(),Zhen QIU1,2(),Leifu ZHANG1,2,Yuman WANG1,2,Yufeng XIAO1,2,Dan LIU1,2,Wen LIU1,2,Shuxin LI3,Xingtao LI3   

  1. 1.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    2.China National Energy Shale Gas Research (Experiment) Center,Langfang 065007,China
    3.PetroChina Coalbed Methane Company,Beijing 100028,China
  • Received:2021-04-28 Revised:2021-07-04 Online:2022-03-10 Published:2022-03-22
  • Contact: Zhen QIU E-mail:zhangqin2169@petrochina.com.cn;qiuzhen316@163.com
  • Supported by:
    The Scientific Research and Technological Development Programs of RIPED(2021yjcq02);the 14th Five-Year Prospective Basic Project of CNPC(2021DJ2001)

摘要:

鄂尔多斯盆地东缘大宁—吉县地区二叠系山西组山2段为海陆过渡相沉积,其中山23亚段具有页岩厚度大、夹层少而薄的特点,是目前中国海陆过渡相页岩气勘探开发的重点目标层段,但其储层特征等相关研究相对较少,特别是优质储层发育的主控因素有待进一步明确。综合利用有机地球化学分析、矿物成分分析以及储层微观刻画等技术手段,对大宁—吉县区块山23亚段的储层特征进行系统研究并探讨优质储层发育的主控因素。研究结果表明:山西组山23亚段上部潟湖相(底部)页岩层段具有高TOC含量、高脆性矿物含量、高BET和高BJH的特征,是最优质的页岩气储集层段;山23亚段页岩孔隙构成以黏土矿物晶间孔为主体,占总孔隙体积的76.9%,有机质孔占18.7%;扫描电镜观察显示不同矿物组分的孔隙大小分布特征不同,其中有机质孔和方解石溶蚀孔以中孔为主,黏土矿物与石英则主要发育中孔与宏孔,黄铁矿与长石孔径范围分布广,且分布较为均匀。单因素分析显示黏土矿物含量是影响山23亚段海陆过渡相页岩孔隙发育的第一控制要素,有机质含量对页岩孔隙发育存在着一定影响,有机质类型则对页岩孔隙发育的影响不明显。

关键词: 海陆过渡相, 页岩气, 二叠系山西组, 储层特征

Abstract:

The shales in the 2nd member of Shanxi Formation in the Daning-Jixian blocks, east margin of the Ordos Basin were deposited in a marine-continental transitional environment during the Permian. The Shan23 sub-member is characterized by large thickness, few and thin interlayers, which is the key target for transitional shale gas exploration and development. However, there are relatively few related studies on the reservoir characteristics, especially the main controlling factors for the development of the high quality reservoirs need to be further clarified. In this paper, the reservoir characteristics of Shan23 sub-member in Daning-Jixian blocks are systematically studied and the main controlling factors of high quality reservoir development are discussed by using geochemical analysis, compositional analysis and microscopic characterization method. The results indicate that the lower section of the upper lagoon facies in the Shan23 sub-member has the characteristics of high TOC content, high brittle mineral content, high values of BET and BJH, which is the sweet spot for shale gas exploration and development. Pores developed in clay minerals and in organic matter contribute most to the porosity of the Shan23 sub-member, accounting for 76.9% and 18.7% of the total porosity respectively. SEM observation (resolution>6 nm) discloses that different components in shale have great difference in pore size distribution, and the pores developed in organic matter and calcite are mainly in meso-scale. The pore size distribution characteristics of clay minerals are similar with quartz pores where pores developed both in meso and macro scale. The pores developed in feldspar and pyrite distribute in a wide range and the distribution is relatively uniform. Single factor analysis shows that the content of the clay minerals is the dominant controlling factor for pore development in the Shan23 sub-member. The organic matter content has a certain effect on the pore development of shale, but the influence of the organic matter type on the pore development is not obvious.

Key words: Transitional facies, Shale gas, Permian Shanxi Formation, Reservoir characteristics

中图分类号: 

  • TE122.2

图1

鄂尔多斯盆地大宁—吉县区块构造纲要图[21](a)及山西组山2段地层综合柱状图(b)"

图2

大吉3-4井山23亚段TOC与主要矿物成分综合柱状图(数据引自参考文献[26])"

图3

不同沉积相带主要矿物成分分布柱状图"

图4

山23亚段页岩孔隙构成分布"

图5

山23亚段不同沉积相页岩BET比表面积、BJH孔体积以及孔径分布"

图6

海陆过渡相页岩孔隙的全孔径分布(数据引自参考文献[26])"

图7

典型矿物孔隙发育特征(a)石英孔隙,样品205,孔隙大小均有分布,孔隙边缘呈棱角状;(b)方解石孔隙,样品183,溶蚀孔隙密集发育,尺寸较为均一;(c)黏土晶间孔,样品229,孔隙非常发育,以条形孔为主;(d)长石孔隙,样品199,孔隙为解理缝,长条形为主;(e)黄铁矿晶间孔,样品225,孔隙形态不规则,三角形为主;(f)有机质孔,样品179,孔隙形态较为均一,孔隙尺寸小"

图8

不同矿物组分孔径分布特征"

图9

山23亚段页岩主要组分与孔隙度相关关系"

图10

山23亚段页岩BJH与主要页岩组分相关关系"

图11

黏土含量相近但干酪根类型不同页岩样品的BET与BJH分布特征"

图12

山23亚段不同干酪根类型孔隙发育特征(a)TOC=3.53%,Ⅲ型, 有机质孔呈线装分布,以圆形孔为主; (b)TOC=4.04%,Ⅲ型, 有机质孔形态不规则,孔隙尺寸较大;(c)TOC=14.6%,Ⅲ型,孔隙形态椭圆形为主,具有定向排列特征; (d)TOC=3.38%,Ⅱ2型,多个孔隙相互连接成较大孔隙,孔隙以圆形孔为主;(e)TOC=4.19%,Ⅱ2型,孔隙形态不规则;(f)TOC=14.4%,Ⅱ2型,孔隙形态不规则,有圆形,椭圆形和三角形,定向性不明显"

1 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
QIU Z, ZOU C N. Unconventional petroleum sedimentology: Connotation and prospect[J].Acta Sedimentologica Sinica,2020, 38(1):1-29.
2 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.
ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14.
3 马新华, 谢军,雍锐.四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J].石油勘探与开发, 2020,47 (5):1-15.
MA X H, XIE J, YONG R. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development. 2020, 47(5):1-15.
4 张吉振. 煤系页岩孔隙结构表征及其对页岩气赋存的影响研究[D]. 北京:中国矿业大学(北京), 2019:2-10.
ZHANG J Z. Pore Structure Characterization of Coal-bearing Shale and its Effect on Shale Gas Occurrence[D]. Beijing: China University of Mining & Technology, 2019:2-10.
5 国土资源部油气资源战略研究中心.全国页岩气资源潜力调查评价及有利区优选(2009—2011年)[R]. 北京:科学出版社,2014:10-15.
Strategic Research Center of Oil and Gas Resources, MNR. Survey and Evaluation of National Shale Gas Resource Potential and Optimization of Favorable Areas (2009-2011)[R]. Beijing: Science Press, 2014:10-15.
6 郑民, 李建忠, 吴晓智, 等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J]. 天然气地球科学,2018.29(10): 1383-1397.
ZHENG M, LI J H, WU X Z, et al. China's conventional and unconventional natural gas resource potential, key exploration fields and direction[J].Natural Gas Geoscience,2018,29(10): 1383-1397.
7 匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020,47(3):435-446.
KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development,2020,47(3):435-446.
8 陈亚光, 朱崇林, 张锟, 等.鄂尔多斯盆地东缘上古生界煤系页岩气成藏地质条件[J].地质学刊, 2017, 41(1):54-61.
CHEN Y G, ZHU C L, ZHANG K, et al. Shale gas accumulations of the Upper Paleozoic coal measures in the eastern margin of the Ordos Basin[J]. Journal of Geology, 2017, 41(1):54-61.
9 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.
DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J].Acta Sedimentologica Sinica,2021,39(1):29-45.
10 范文田, 胡国华, 王涛. 鄂尔多斯盆地东缘海陆过渡相页岩孔隙结构定量化表征[J]. 中国科技论文, 2019, 14(4): 429-434.
FAN W T, HU G H, WANG T. Quantitative characterization of pore structure of marine-continental transitional facies shale in the eastern margin of Ordos Basin[J]. China Science Papers,2019, 14(4): 429-434.
11 赵可英,郭少斌. 海陆过渡相页岩气储层孔隙特征及主控因素分析——以鄂尔多斯盆地上古生界为例[J].石油实验地质, 2015, 37(2):141-149.
ZHAO K Y, GUO S B. Characteristics and main controlling factors of shale gas reservoirs in transitional facies[J]. Petroleum Geology & Experiment, 2015, 37(2):141-149.
12 LI G, QIN Y, WU M, et al. The pore structure of the transitional shale in the Taiyuan Formation, Linxing area, Ordos Basin[J].Journal of Petroleum Science and Engineering,2019, 181: 106183.
13 LI Y, WANG Z, PAN Z, et al. Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China[J]. Fuel, 2019, 241: 417-431.
14 WEI Z, WANG Y, WANG G, et al. Enrichment mechanism of the Upper Carboniferous-Lower Permian Transitional shale in the east margin of the Ordos Basin, China: Evidence from geochemical proxies[J]. Geofluids, 2020, 12 : 1-14.
15 曹涛涛, 曹清古, 刘虎, 等. 川东地区海陆过渡相泥页岩地球化学特征及吸附性能[J]. 煤炭学报, 2020, 45(4): 1445-1456.
CAO T T, CAO Q G, LIU H, et al. Geochemical characteristics and adsorption capacity of marine-continental transitional mudrock in eastern Sichuan Basin[J]. Journal of China Coal Society,2020, 45(4): 1445-1456.
16 XI Z, TANG S, WANG J, et al. Formation and development of pore structure in marine-continental transitional shale from northern China across a maturation gradient: Insights from gas adsorption and mercury intrusion[J]. International Journal of Coal Geology,2018,200:87-102.
17 何治亮, 聂海宽, 李双建, 等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质, 2021, 42(1): 1-15.
HE Z L, NIE H K, LI S J, et al. Differential occurrence of shale gas in the Permian Longtan Formation of Upper Yangtze region constrained by plate tectonics in the Tethyan domain[J]. Oil & Gas Geology, 2021, 42(1): 1-15.
18 陈斐然, 魏祥峰, 刘珠江, 等. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学,2020,31(11): 1593-1602.
CHEN F R, WEI X F, LIU Z J, et al. Pore development characteristics and main controlling factors of the Permian marine-continent transitional shale in the Sichuan Basin[J] Natural Gas Geoscience,2020,31(11):1593-1602.
19 马如英, 张健, 王猛, 等. 沁水盆地海陆过渡相页岩储层微观孔隙特征及含气性特征[J]. 河南理工大学学报(自然科学版), 2020,40(4):1-11.
MA R Y, ZHANG J, WANG M, et al. Micro-pore characteristics and gas-bearing characteristics of the shale reservoirs in the transitional facies in the Qinshui Basin[J].Journal of Henan Polytechnic University (Natural Science),2020,40(4):1-11.
20 郭乐乐, 李忠百, 张稳, 等. 鄂尔多斯盆地大宁—吉县区块主力致密砂岩储层孔隙结构分析[J]. 天然气工业, 2018, 38(S1): 18-23.
GUO L L, LI Z B, ZHANG W, et al. Pore structure characteristics of tight sand in Daning-Jixian block, Ordos Basin[J]. Natural Gas Industry. 2018, 38(S1): 18-23.
21 赵龙梅, 文桂华, 李星涛, 等. 鄂尔多斯盆地大宁—吉县区块山西组23亚段致密砂岩气储层“甜点区”评价[J]. 天然气工业, 2018, 38(S1): 5-10.
ZHAO L M, WEN G H, LI X T, et al. Sweet spot evaluation of tight sand gas in the 2-3 sub-member of Shanxi Formation, Daning-Jixian block, Ordos Basin[J]. Natural Gas Industry,2018,38(S1):5-10.
22 李永洲, 文桂华, 李星涛, 等. 沉积微相控制下的煤系地层致密砂岩气储层预测方法——以鄂尔多斯盆地大宁—吉县区块下二叠统山西组为例[J]. 天然气工业,2018,38(S1):11-17.
LI Y Z, WEN G H, LI X T, et al. Tight sand gas reservoir prediciton method of coal bearing formation under the control of sedimentary microfacies: Taking the Lower Permian Shanxi Formation in Daning-Jixian blocks, Ordos Basin as an example[J]. Natural Gas Industry, 2018, 38(S1): 11-17.
23 聂志宏, 巢海燕, 刘莹, 等. 鄂尔多斯盆地东缘深部煤层气生产特征及开发对策——以大宁—吉县区块为例[J]. 煤炭学报, 2018, 43(6): 1738-1746.
NIE Z H, CHAO H Y, LIU Y, et al. Development strategy and production charcteristics of deep coalbed methane in the east Ordos Basin: Taking Daning-Jixian block for example[J]. Journal of China Coal Society,2018,43(6):1738-1746.
24 李五忠,陈刚,孙斌,等.大宁—吉县地区煤层气成藏条件及富集规律[J].天然气地球科学,2011, 22(2):352-360.
LI W Z, CHEN G, SUN B, et al. Geological controls of coalbed methane enrichment in Daning-Jixian area, southeastern Ordos Basin[J].Natural Gas Geoscience,2011,22(2):352-360.
25 兰朝利, 郭伟, 王奇, 等.鄂尔多斯盆地东部二叠系山西组页岩气成藏条件与有利区筛选[J].地质学报, 2016, 90(1):177-188.
LAN C L, GUO W, WANG Q, et al. Shale gas accumulation condition and favorable area optimization of the Permian Shanxi Formation, eatern Ordos Basin[J]. Acta Geologica Sinica,2016, 90(1):177-188.
26 ZHANG Q, QIU Z, ZHAO Q, et al. Composition effect on the pore structure of transitional shale: A case study of the Permian Shanxi Formation in the Daning-Jixian block at the eastern margin of the Ordos Basin[J]. Frontiers in Earth Science, 2022. doi:10.3389/feart.2021.802713.
27 王玉满, 黄金亮, 李新景, 等.四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J].天然气工业, 2015, 35(9):8-15.
WANG Y M, HUANG J L, LI X J, et al. Quantitative characterization of fractures and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9):8-15.
28 WASGBURN E W. Note on the method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences, 1921,7(4):115-116.
29 LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
30 WANG F P, REED R M, Geology E. Pore Networks and Fluid Flow in Gas Shales[C]. SPE 124253. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 2009.
31 SONDERGELD C H. AMBROSE R J. RAI C S. Micro-Structural Studies of Gas Shales[C]. SPE Paper 131771. SPE Unconventional Gas Conference. Pittsburgh, Pennsylvania, USA, 2010.
32 JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014,12(4):307-325.
33 吉利明, 马向贤, 夏燕青, 等.黏土矿物甲烷吸附性能与微孔隙体积关系[J].天然气地球科学, 2014, 25(2):141-152.
JI L M, MA X X, XIA Y Q, et al. Relationship between methane adsorption capacity of clay minerals and micropore volume[J]. Natural Gas Geoscience,2014, 25(2):141-152.
34 吉利明, 邱军利, 夏燕青, 等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报, 2012, 33(2):249-256.
JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica,2012, 33(2):249-256.
[1] 樊怀才, 张鉴, 岳圣杰, 胡浩然. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学, 2022, 33(4): 512-519.
[2] 吴建发, 赵圣贤, 张瑛堃, 夏自强, 李博, 苑术生, 张鉴, 张成林, 何沅翰, 陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义[J]. 天然气地球科学, 2022, 33(4): 642-653.
[3] 邹晓艳, 李贤庆, 王元, 张吉振, 赵佩. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
[4] 梁岳立, 葛家旺, 赵晓明, 张喜, 李树新, 聂志宏. 鄂尔多斯盆地东缘山西组2段海陆过渡相页岩高分辨率层序划分及勘探地质意义[J]. 天然气地球科学, 2022, 33(3): 408-417.
[5] 王以城, 张磊夫, 邱振, 彭思钟, 封从军, 孙萌思. 鄂尔多斯盆地东缘二叠系山23亚段海陆过渡相页岩岩相类型与储层发育特征[J]. 天然气地球科学, 2022, 33(3): 418-430.
[6] 王鹏威, 刘光祥, 刘忠宝, 陈筱, 李鹏, 蔡钡钡. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素[J]. 天然气地球科学, 2022, 33(3): 431-440.
[7] 马元稹, 王猛, 李嘉敏, 赵健光, 贾腾飞, 朱俊卿. 沁水盆地上古生界煤系页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(3): 441-450.
[8] 谢卫东, 王猛, 王华, 段宏跃. 海陆过渡相页岩气储层孔隙多尺度分形特征[J]. 天然气地球科学, 2022, 33(3): 451-460.
[9] 孟颖, 靳军, 高崇龙, 李际, 刘明, 刘可, 王柯, 任影, 邓毅. 准噶尔盆地南缘西段白垩系深层储层特征及物性保存机制[J]. 天然气地球科学, 2022, 33(2): 218-232.
[10] 杨佳颖, 蒋有录, 蔡国钢, 赵承锦, 张东伟. 深层砂岩储层特征及成岩差异演化过程[J]. 天然气地球科学, 2022, 33(2): 233-242.
[11] 方镕慧, 刘晓强, 张聪, 李美俊, 夏响华, 黄志龙, 杨程宇, 韩秋雅, 汤韩琴. 温度压力耦合作用下的页岩气吸附分子模拟[J]. 天然气地球科学, 2022, 33(1): 138-152.
[12] 谢菁, 陈建洲, 徐永锋, 王国仓, 王瑾, 李青, 王琪玮. 青藏高原北部东昆仑地区三叠系八宝山组页岩储层测井评价[J]. 天然气地球科学, 2021, 32(9): 1285-1296.
[13] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[14] 席胜利, 莫午零, 刘新社, 张雷, 李剑, 黄正良, 王民, 张春林, 朱秋影, 言语, 周能武. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力——以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.
[15] 蔡灵慧, 余烨, 郭建华, 黄俨然, 郭原草. 湘中南地区中奥陶统烟溪组页岩气勘探潜力[J]. 天然气地球科学, 2021, 32(8): 1247-1260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[4] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[5] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[6] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[7] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[8] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[9] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[10] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .