天然气地球科学 ›› 2022, Vol. 33 ›› Issue (1): 63–77.doi: 10.11764/j.issn.1672-1926.2021.06.001

• 天然气地质学 • 上一篇    下一篇

油气成藏定位研究进展

薛楠1,2(),吕修祥1,2(),朱光有3,韦佳启4,汪瑞1,2,李峰1,2,贺涛1,2,吴郑辉1,2,陈晓1,2,欧阳思琪1,2   

  1. 1.中国石油大学(北京)地球科学学院,北京 102249
    2.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
    3.中国石油勘探开发研究院,北京 100083
    4.克拉玛依红山油田有限责任公司,新疆 克拉玛依 834000
  • 收稿日期:2020-12-20 修回日期:2021-06-08 出版日期:2022-01-10 发布日期:2022-01-26
  • 通讯作者: 吕修祥 E-mail:18409185904@163.com;luxx@cup.edu.cn
  • 作者简介:薛楠(1995-),男,陕西渭南人,硕士研究生,主要从事油气藏形成机理及分布规律研究.E-mail:18409185904@163.com.
  • 基金资助:
    国家科技重大专项(2017ZX05008003-010)

Research progress of oil and gas reservoir positioning

Nan XUE1,2(),Xiuxiang LÜ1,2(),Guangyou ZHU3,Jiaqi WEI4,Rui WANG1,2,Feng LI1,2,Tao HE1,2,Zhenghui WU1,2,Xiao CHEN1,2,Siqi OUYANG1,2   

  1. 1.College of Geosciences,China University of Petroleum,Beijing 102249,China
    2.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China
    3.Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    4.Karamay Hongshan Oilfield Co. ,Ltd. ,Karamay 834000,China
  • Received:2020-12-20 Revised:2021-06-08 Online:2022-01-10 Published:2022-01-26
  • Contact: Xiuxiang Lü E-mail:18409185904@163.com;luxx@cup.edu.cn
  • Supported by:
    The China National Science and Technology Major Projects(2017ZX05008003-010)

摘要:

在含油气盆地演化史研究中,油气运移是一个复杂的过程,由于遗留下的踪迹较少,难以对其进行模拟,又涉及多个学科,因此油气运移路径示踪一直是油气成藏研究中的难题。油气运聚成藏定位技术,即对油气运移的示踪以及聚集空间分布的预测,是研究油气从生烃、运移、聚集及保存等一系列过程中非常关键的技术,无论是对优选勘探目标、重建油气藏形成演化过程、预测油气富集区,还是对丰富与深化油气成藏理论都具有非常重要的实践意义和理论意义。近年来国内外学者在油气运移方面投入了大量研究工作,取得了丰硕的成果,但是其中部分示踪方法的研究仍是石油地质研究中的薄弱环节,有待进一步探索。基于前人的一些主要成果,对油气成藏定位进行系统梳理和综述,认为油气成藏定位主要经历2个阶段,从定性描述阶段发展到定量刻画阶段,并尝试将油气运移示踪的方法分为4个大类。

关键词: 含油气盆地, 成藏定位, 油气示踪, 定量刻画

Abstract:

In the evolution history of petroliferous basins, oil and gas migration is a complicated process. There are few traces left behind, and it is difficult to simulate them, and involves multiple disciplines, therefore, tracing oil and gas migration paths has always been a problem in the study of oil and gas accumulation. Oil and gas migration, accumulation and positioning technology, that is, the tracking of oil and gas migration and the prediction of the spatial distribution of accumulation, is a very critical technology in the study of oil and gas from a series of processes such as hydrocarbon generation, migration, accumulation, and preservation. Whether it is for optimizing exploration targets, reconstructing the formation and evolution process of oil and gas reservoirs, predicting oil and gas enrichment areas, or for enriching and deepening the theory of oil and gas accumulation, it has very important practical and theoretical significance. In recent years, scholars at home and abroad have invested a lot of research in oil and gas migration and achieved fruitful results, but it is still a weak link in petroleum geology research. Based on some of the main achievements of the predecessors, the paper systematically sorts out and summarizes the oil and gas accumulation and positioning, and believes that the oil and gas accumulation and positioning has mainly gone through two stages, from the qualitative description stage to the quantitative characterization stage, and attempts to classify the methods of oil and gas migration tracking into four major categories.

Key words: Petroliferous basin, Reservoir positioning, Oil and gas tracing, Quantitative characterization

中图分类号: 

  • TE122.2

表1

油气成藏定位发展阶段"

发展阶段主要定位技术适用范围意义
20世纪80年代—90年代末(定性描述阶段)随着对石油的依存度加大,地质背景简单、易于开采的油气已无法满足人们的需求,因此复杂盆地、深部层系无疑增加了勘探难度。为了达到最佳勘探效果,油气运移已成为油气成藏的核心问题,国内外主要依靠盆地流体势、油气的物理化学性质以及地层水的矿化度对油气的运移路径作以大致判断只能够定性地指示油气运移的大致方向,无法进行一些细节刻画,在构造稳定、烃源岩单一的油气藏中应用较好。由于多套烃源岩、多期成藏的叠合盆地可能油气物理性质错综复杂,也可能没有一个统一的压力系统,会导致错误判断开启地质学家对地下流体矿产运移路径研究的大门,为后来定位技术的发展奠定了基础
20世纪90年代末至今(定量精细刻画阶段)随着地球化学与同位素技术的发展,测试水平和分析手段的提高,形成了一批精准的定位方法,主要依据生物标志化合物、原油微量元素、含氮含硫化合物以及碳、锶、碘同位素等,铅同位素目前也探索性的用于油气示踪通过测试数据,能够准确地对油气进行定位,但是有的参数提取成本高、时间长,而且需要与盆地实际地质背景紧密结合定位技术得到空前发展,丰富了油气成藏动力学的理论,也提高了油气勘探的成功率

表2

盆地流体势示踪油气运移"

示踪定位方法具体实例适用范围资料来源
流体势法通过对准噶尔盆地东部流体势的恢复,研究了对油气运聚的控制作用。根据现今流体势和古流体势显示,二叠系、中下侏罗统的油气均有从高势区向相对低势区运移聚集的趋势,从而形成现今的油气藏适用于盆地、区带尺度上的含油气评价,油气基本上都是从高势区向低势区运移聚集成藏。但不同类型的油气藏在流体势场内的分布规律有所差异,因此该法具有一定的局限性,对于封闭性好的岩性油气藏、源岩内或者碳酸盐岩储层中的裂缝型油气藏而言,则聚集在高势区18
根据惠民凹陷的流体包裹体数据和热力学计算,结合地质资料,恢复了古流体势分布,根据油气充注期的流体势分布,判断该区油气运移时期的低势区(钱502及曲斜8)是有利的油气聚集区19
将海拉尔盆地贝西地区的流体势值与该区的油藏叠合发现,成藏期流体高势区(贝西北、贝西南次凹)为贝西地区埋藏最深、烃源岩最发育的凹陷沉积中心,低势区(正向构造带)为洼槽区周缘的构造高部位,油气运移的总方向为凹陷沉积中心至构造高部位20
基于柴西地区地层的孔隙演化,计算出古埋深、古压力,进而恢复研究区的古流体势,发现除了封闭及保存条件好的岩性等原生油气藏,其余油气藏都分布在低流体势区域(跃进一号、跃进二号及跃东地区)21

表3

传统地球化学方法示踪油气"

示踪定位方法具体实例适用范围

油气组成与物理性质的变化陈建平等28根据原油物性,探讨了酒西盆地油气运移规律。沿着油气运移方向,极性小的烷烃相对含量增加,极性大、分子量大的芳烃和非烃与沥青质的相对含量降低,因此反映油气由西向东运移,即从柳沟庄油田到石油沟油田。此外,原油的密度、凝固点和含蜡量由高到低变化也指示了运移方向,与烷烃、芳烃等示踪结果一致主要适用于单一油源的油气运移示踪,因为混源的油气,其物理性质沿着运移路径,可能不具备高低变化的规律
生物标志化合物

1、黄继文29基于三环萜烷/17α(H)-藿烷、Ts/(Ts+Tm)等值,分析了塔里木盆地塔河油区下奥陶统油气的运移,结合数据表,由成熟度梯度图和平面等值线图可以看出,油气沿2个通道运移,运移方向上,比值逐渐减小,即沿着成熟度降低的方向运移

2、LI等30通过分析Ts/(Ts+Tm)等值线图,对顺北地区的油气运移进行了分析,其比值随着运移距离的增加而减小,油最初沿顺北1号断裂由西南向东北运移,运移过程中会受到分支断裂的影响,油气产生分流,最终油的剩余部分继续沿顺北1号断裂迁移,到达富源。因此YM6-YM5-YM2-RP3-RP1-(JY2)通道被认为是油气运移的粗通道

①三环萜烷/17α(H)-藿烷、Ts/(Ts+Tm)、C29ααα20S/(20S+20R)等值可作为油气运移指标,主要基于这些比值可以反映油气成熟度这一原理。但这些比值仅适用于判断未熟—低熟油,受次生作用等的影响,无法判断高—过成熟阶段油气的成熟度。因此,不能作为高—过成熟油气的示踪指标。②不同来源的混源油以及同源不同期次的混源油,上述参数不再适用

含氮

化合物

1、王铁冠等31根据新站油田原油中吡咯类化合物的丰度、异构体参数的绝对大小与相对变化情况,发现研究区原油间的运移分馏效应不显著,指示该油田油源具有原地或近源性。结合分析结果指出油气首先沿断裂垂向运移,之后侧向运移,与断层走向一致

2、黎茂稳32基于对阿尔伯塔盆地地质—地球化学的综合研究,采用苯并咔唑类分子参数证实了盆地南部的原油自西向东运移。

3、田涛等34对南堡凹陷原油中含氮化合物的分布和组成特征进行了系统分析。研究表明随着油气运移距离的增加,含氮化合物绝对浓度下降,“屏蔽”型与“暴露”型化合物的比值增大,据此判断出油气沿着1号断层外侧的砂体向构造的高部位运移

①苯并咔唑类分子参数可能基于油气在初次排烃时的均一化,导致其生油区内外差异明显,即在烃源岩中其浓度和相对组成复杂多变,聚集成藏的原油中却极具规律。因此,运用苯并咔唑类分子参数示踪生油区内的二次运移需要注意33。②在轻质油和凝析油等高成熟度原油中,咔唑类含氮化合物含量低,分离和定量过程中不准确会增大参数值存在的误差。③在不同来源的混源油以及同源不同期次的混源油,上述参数不再适用

含硫

化合物

1、FANG等35基于热力学稳定性和分子模拟,通过对噻吩类化合物分析,提出了地下油气运移方向和充填途径的追踪方法。2,4,6-/(1,4,6+1,4,8+3,4,6)-TMDBT和(2,4,7+2,4,8)-/(1,4,6+1,4,8 +3,4,6)–TMDBT值减少的方向可以反映出油气运移方向,等高线的投影轨迹可以指示油气优势运移路径。托甫台地区总体充注方向为南北向,充注点在TP38井和TP313H井附近;在TP20井附近也有一个小的运移方向,显示油从西向东运移。

2、LI等30通过对4-MDBT/1-MDBT的等值线图分析,其比值随着运移距离的增加而减小,这与上述生物标志化合物判断的运移方向一致,具有一定的可信度

①与咔唑类含氮化合物相比,噻吩类化合物在原油中含量高,特别是在轻质油和凝析油等高成熟度原油中,从而降低在分离、定量过程中的参数误差。②不同来源的混源油以及同源不同期次的混源油,不再适用
碳同位素

1、天然气运移距离与δ13C1值呈负相关,刘全有等36通过对苏格里气田天然气进行分析,天然气碳同位素(δ13C1,δ13C2)从西南向东北方向变重,反映了天然气从东北向西南方向运移

2、朱扬明等37根据鄂尔多斯盆地含气砂岩储层中自生方解石与天然气中CO2的碳同位素之间的关系,结合该盆地上古生界天然气的运聚特点,确定了米脂气田石盒子组天然气由南向北运移

主要适用于天然气藏以及裂解后的古老油气藏,可能只适用于碎屑岩储层

表4

原油微量元素示踪油气运移"

示踪定位方法具体实例适用范围
原油微量金属元素及同位素法微量金属元素

1、JIAO等105通过对塔中地区原油的微量金属元素分析,对中古5区块进行了仔细研究,由于中古5区块地质构造复杂、油水关系复杂,各井原油的物理性质相近,无法判断油气运移路径,而且传统的地球化学指标也不能有效地跟踪油气运移。但根据V/Ni比值精确地恢复了原油的运移路径,与野外地质学家基于油气生产和构造发育的认识相一致,运移方向为中古5—中古501,中古5—中古9,中古7—中古9

2、ESCOBAR等109根据Lake Maracaibo盆地Alturitas油田的油样,对其遭受的生物降解、发生的油气运移进行了深入的研究,其中样品中的Ni浓度为(65.0~90.5)×10-6,V浓度为(422~619)×10-6,V、Ni浓度图都显示从南到北具有降低的趋势,结合地质背景,表明极有可能是沿东南—西北方向优先进行二次运移,分析卟啉所得到的结果一致。这也与TALUKDAR等110提出的Lake Maracaibo盆地西部二次运移模型一致

主要适用于单一油源的油气运移示踪,因为混源的油气,其原油的微量金属元素浓度、比值等沿着运移路径,可能不具备高低变化的规律
Pb同位素NADEGE等108通过对来自北海侏罗系黑色页岩产生的原油进行分析得出:Pb同位素不会在原油和地层水之间发生分馏作用,因此Pb同位素具有指示生烃和运移的独特性质。Pb同位素在油气运移过程中相对于其他的稳定同位素C,N,S,V来说变化幅度小1~2个数量级
稀有气体同位素

1.刘全有等36基于苏里格气田天然气3He/4He比值,发现从西南向东北方向,比值略微增加,反映了天然气具有从东北向西南运移的趋势

2.樊然学111根据川西坳陷中段孝泉、新场、合兴场气藏的4He/40Ar值,由于4He的质量较40Ar轻。因此在天然气运移过程中,值逐渐增大,表明该地区的天然气携带基底地壳的4He、40Ar以扩散方式垂直向上覆储层运移

3、WANG等112通过对川西坳陷中段天然气中稀有气体分析,4He/40Ar值表明侏罗系天然气有向上运移的趋势。从须家河组到侏罗系,3He/4He值和δ13C1值呈递减趋势,表明天然气从须家河组向侏罗系运移

主要应用于天然气藏,3He/4He值适用于壳源天然气

表5

地层水示踪油气运移"

示踪定位方法具体实例适用范围、局限性
地层 水法总矿化度

1、渠芳等124以济阳坳陷孤岛油田西南缘的油气为例,对研究区的地层水进行分析测试,垂向来看,高矿化度区总是位于断裂和不整合面附近,从而指示油气沿这些输导体系从深部运移并聚集至此;平面来看,油气总是在砂体中沿着低矿化度向高矿化度地区运移

2、斯扬等125分析了姬塬地区长9油层组地层水化学特征与油藏的关系,研究发现地层水矿化度与其对应的地球化学参数呈较好的正相关性,表明地层水矿化度随着油气运移的方向有增大的趋势。以CH78-CH70油藏剖面为例,F12矿化度最低,油气主要从F12井西部的通源断裂向构造高部位(CH78、CH70)运移,指示油气由低矿化度区域向高矿化度区域运移

3、梅啸寒等126基于松辽盆地扶新隆起带扶杨油层的资料,对其地层水化学特征和油气运聚关系进行了探讨,发现在平面上,扶新隆起带新北和新立鼻状构造带是两大离心流发生集中越流泄水的区域,高矿化度、高钠氯系数区域与油气富集区具有高度的一致性

运用总矿化度示踪,需要与各种离子比值系数相结合。钠氯系数、脱硫系数、碳酸岩平衡系数越低,变质系数越大,越有利于烃类的保存
碘同位素等CHEN等127基于塔中奥陶系地层水中129I和I数据,推断出原油和干气的运移路径。志留纪—泥盆纪,原油和孔隙水从塔中I号断坡带东南侧侵入奥陶系储层,侧向运移至其他奥陶系储层,向上运移至志留系和石炭系储层。在晚新生代沉积时期,干酪根发育过成熟,被孔隙水驱出,由东南地区多个注入点向奥陶系储层运移。塔中I号断坡带是主要的天然气通道
1 李明诚. 石油与天然气运移研究综述[J]. 石油勘探与开发, 2000, 27(4): 3-10.
LI M C. Review of petroleum and natural gas migration research[J]. Petroleum Exploration and Development, 2000, 27(4): 3-10.
2 QIN S J, SUN Y Z, TANG Y G. Early hydrocarbon generation of algae and influences of inorganic environments during low temperature simulation[J]. Energy Exploration & Exploitation, 2008, 26(6): 377-396.
3 SUN Y Z, LIU C Y, LIN M Y, et al. Geochemical evidences of natural gas migration and releasing in the Ordos Basin, China[J]. Energy Exploration & Exploitation,2009,27(1):1-13.
4 罗晓容. 油气成藏动力学研究之我见[J]. 天然气地球科学, 2008, 19(2): 149-156.
LUO X R. Understandings on dynamical studies of hydrocarbon migration and accumulation[J]. Natural Gas Geoscience, 2008, 19(2): 149-156.
5 胡素云, 郭秋麟, 谌卓恒, 等. 油气空间分布预测方法[J]. 石油勘探与开发, 2007, 34(1): 113-117.
HU S Y, GUO Q L, SHEN Z H, et al. A method of predicting petroleum resource spatial distribution and its application[J], Petroleum Exploration and Development, 2007, 34(1): 113-117.
6 马永生, 郭彤楼, 付孝悦, 等. 中国南方海相石油地质特征及勘探潜力[J]. 海相油气地质, 2002, 7(3): 19-27.
MA Y S, GUO T L, FU X Y, et al. Petroleum geology of marine sequences and exploration potential in southern China[J]. Marine Origin Petroleum Geology, 2002, 7(3): 19-27.
7 贾承造, 何登发, 石昕, 等. 中国油气晚期成藏特征[J]. 中国科学(D辑: 地球科学), 2006, 36(5): 412-420.
JIA C Z, HE D F, SHI X, et al. Characteristics of late hydrocarbon accumulation in China[J]. Science in China (Series D: Earth Sciences), 2006, 36(5): 412-420.
8 ZHU G Y, ZHANG Z Y, ZHOU X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Review, 2019, 198, 102930.
9 刘文汇, 王杰, 腾格尔, 等. 中国海相层系多元生烃及其示踪技术[J]. 石油学报, 2012, 33(S1): 115-125.
LIU W H, WANG J, TENGER, et al. Multiple hydrocarbon generation of marine strata and its tracer technique in China[J]. Acta Petrolei Sinica, 2012, 33(S1): 115-125.
10 HUBBERT M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953, 37(8): 1954-2026.
11 ENGLAND W A, MACKENZIE A S, MANN D M, et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society, 1987, 144: 327-347.
12 付广, 薛永超, 吕延防. 断层对流体势空间分布的影响及研究方法[J]. 断块油气田, 2001, 8(2): 1-5.
FU G, XUE Y C, LV Y F. Influence of fractures to spatial distribution of fluid potential and its research methods[J]. Fault-Block Oil & Gas Field, 2001, 8(2): 1-5.
13 王德强, 柳广弟. 歧口凹陷深层流体势场特征与油气运移[J]. 石油勘探与开发, 1999, 26(3): 15-17.
WANG D Q, LIU G D. The characteristics of fluids potential and hydrocarbon migration of deep formations in Qikou Sag[J]. Petroleum Exploration and Development, 1999, 26(3): 15-17.
14 谢启超, 刘震. 渤南坳陷流体势演化与油气运聚[J]. 新疆石油地质, 2004, 25(5): 486-488.
XIE Q C, LIU Z. Paleo-fluid potential evolution and hydrocarbon migration and accumulation in Bonan Depression[J]. Xinjiang Petroleum Geology, 2004, 25(5): 486-488.
15 谈彩萍, 江兴歌, 陈拥锋, 等. 石油运移成藏有利区预测方法研究——以渤海湾盆地东营凹陷为例[J]. 石油实验地质, 2008, 30(6): 629-635.
TAN C P, JIANG X G, CHEN Y F, et al. Investigation on prediction methods of favorable area for petroleum migration and accumulation: Taking the Dongying Sag of Bohai Bay Basin as an example[J].Petroleum Geology & Experiment, 2008, 30(6): 629-635.
16 吴相梅, 李忠权, 段新国. 松辽盆地成藏过程和成藏动力系统[J]. 成都理工大学学报(自然科学版), 2003, 30(4): 362-367.
WU X M, LI Z Q, DUAN X G. The oil accumulation process and accumulation dynamics system of Songliao Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2003, 30(4): 362-367.
17 达江, 宋岩, 陈开远, 等. 沉积盆地流体势的研究[J]. 中国西部油气地质, 2006, 2(4): 385-389.
DA J,SONG Y,CHEN K Y,et al.Study of fluid potential in sedimentary basin[J]. West China Petroleum Geosciences, 2006, 2(4): 385-389.
18 刘震, 金博, 韩军, 等. 准噶尔盆地东部流体势场演化对油气运聚的控制[J]. 石油勘探与开发, 2000, 27(4): 59-63.
LIU Z, JIN B, HAN J, et al. The control of paleo-fluid-potential over migration of oil and gas in the east of Junggar Basin[J]. Petroleum Exploration and Development, 2000, 27(4): 59-63.
19 刘超英, 秦伟军, 金晓辉, 等. 利用流体包裹体分析惠民南斜坡古流体势及油气运移方向[J]. 特种油气藏, 2011, 18(3): 16-19.
LIU C Y, QIN W J, JIN X H, et al. Application of fluid inclusion to analyze paleo-fluid potential and hydrocarbon migration direction in the south slope of Huimin Sag[J]. Special Oil and Gas Reservoirs, 2011, 18(3): 16-19.
20 伍英. 海拉尔盆地贝西地区古流体势及油气运聚特征研究[J]. 石油天然气学报, 2014, 36(3): 24-29.
WU Y. Paleo-fluid potential and characteristics of hydrocarbon migration in the western Bei’er Sag of Haila’er Basin[J]. Journal of Oil and Gas Technology, 2014, 36(3): 24-29.
21 李鹤永, 刘震, 马达德, 等. 柴西地区古流体势场对油气成藏德控制作用[J]. 石油大学学报(自然科学版), 2005, 29(3): 11-16.
LI H Y,LIU Z,MA D D,et al. Control of paleo-fluid potential evolution over accumulation of oil and gas in western Qaidam Basin[J].Journal of the University of Petroleum,China(Edi-tion of Natural Science),2005,29(3):11-16.
22 YAMAMOTO M. Fractionation of azaarenes during oil migration[J]. Organic Geochemistry, 1992, 19(4-6): 389-402.
23 LARTER S R, BOWLER B F J, LI M, et al. Molecular indicators of secondary oil migration distances[J]. Nature, 1996, 383: 593-597.
24 JIN Z J, CAO J, HU W X, et al. Episodic petroleum fluid migration in fault zones of the northwestern Junggar Basin (northwest China): Evidence from hydrocarbon-bearing zoned calcite cement[J]. AAPG Bulletin, 2008, 92(9): 1225-1243.
25 张枝焕, 秦黎明, 李伟, 等. 准噶尔盆地腹部车莫古隆起南北两侧含油构造油源及烃源灶转移[J]. 中国地质, 2009, 36(4): 826-836.
ZHANG Z H, QIN L M, LI W, et al. The distribution of oil sources and the transformation of hydrocarbon kitchens in oil-bearing structural belts on northern and southern sides of the Chemo paleo-uplift within central Junggar Basin[J]. Geology in China, 2009, 36(4): 826-836.
26 郑朝阳, 段毅, 吴保祥, 等. 塔里木盆地塔河油田原油中生物标志化合物成熟度指标特征与石油运移[J]. 沉积学报, 2007, 25(3): 482-486.
ZHENG C Y, DUAN Y, WU B X, et al. The biomarker maturity parameters and migration for oils from Tahe Oil Field in Tarim Basin[J]. Acta Sedimentologica Sinica, 2007, 25(3): 482-486.
27 黄志龙, 高岗. 莫里青断陷天然气成因与运聚模式[J]. 天然气地球科学, 2005, 16(3): 274-277.
HUANG Z L, GAO G. The natural gas origin and the model of oil-gas migration-accumulation in Moliqing Rift[J]. Natural Gas Geoscience, 2005, 16(3): 274-277.
28 陈建平, 陈建军, 张立平, 等. 酒西盆地油气形成与勘探方向新认识(三)——油气运移、成藏规律与勘探方向[J]. 石油勘探与开发, 2001, 28(3): 12-16.
CHEN J P, CHEN J J, ZHANG L P,et al. New opinions on oil and gas generation and exploration in Jiuxi Basin(Ⅲ): Oil and gas migration, pool formation and exploration target[J]. Petroleum Exploration and Development,2001,28(3):12-16.
29 黄继文. 塔里木盆地塔河油区原油生物标志化合物在运移方面的应用探讨[J]. 石油实验地质, 2003, 25(Z1): 573-577.
HUANG J W. An approach to the application of biomarkers to the migration of crude oil Tahe oil district of the Tarim Basin[J]. Petroleum Geology & Experiment, 2003, 25(Z1): 573-577.
30 LI Y, ZHEN L, CHEN Z H, et al. Thermal maturity, source characteristics, and migration directions for the Ordovician oil in the central Tabei Uplift, Tarim Basin: Insight from biomarker geochemistry[J]. Journal of Petroleum Science and Engineering, 2020, 189:106957.
31 王铁冠, 李素梅, 张爱云, 等. 利用原油含氮化合物研究油气运移[J]. 石油大学学报(自然科学版), 2000, 24(4): 83-86.
WANG T G, LI S M, ZHANG A Y, et al. Oil migration analysis with pyrrolic nitrogen compounds[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2000, 24(4): 83-86.
32 黎茂稳. 油气二次运移研究的基本思路和几个应用实例[J]. 石油勘探与开发, 2000, 27(4): 11-19.
LI M W. Quantification of petroleum secondary migration distances: Fundamentals and case histories[J]. Petroleum Exploration and Development, 2000, 27(4): 11-19.
33 纪红, 陈湘飞. 油气运移地球化学示踪研究进展[J]. 广东石油化工学院学报, 2020, 30(6): 19-23.
JI H, CHEN X F. An overview of recent progress in geochemical tracing of hydrocarbon migration[J]. Journal of Guangdong University of Petrochemical Technology, 2020, 30(6): 19-23.
34 田涛, 蒋有录, 徐小龙, 等. 油气运移方向探讨——以南堡凹陷1号构造带为例[J]. 中国地质, 2011, 38(6): 1485-1492.
TIAN T, JIANG Y L, XU X L, et al. A tentative discussion on oil migration orientation: A case study of 1st structural belt of Nanpu Sag[J]. Geology in China, 2011, 38(6): 1485-1492.
35 FANG R H, LI M J, WANG T G, et al. Trimethyldibenzothiophenes: Molecular tracers for filling pathways in oil reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 159: 451-460.
36 刘全有, 刘文汇, 徐永昌, 等. 苏里格气田天然气运移和气源分析[J]. 天然气地球科学, 2007, 18(5): 697-702.
LIU Q Y, LIU W H, XU Y C, et al. Gas migration and gas source analysis in Sulige Gas Field[J]. Natural Gas Geoscience, 2007, 18(5): 697-702.
37 朱扬明, 郑霞, 刘新社, 等. 储层自生方解石碳同位素值应用于油气运移示踪[J]. 天然气工业, 2007, 27(9): 24-27.
ZHU Y M, ZHENG X, LIU X S, et al. Stable carbon isotope of authigenetic calcite used in reservoirs to tracing the hydrocarbon migration[J]. Natural Gas Industry, 2007, 27(9): 24-27.
38 吴楠, 刘显凤, 徐涛. 油气运移路径示踪研究[J]. 特种油气藏, 2007, 14(3): 28-32.
WU N, LIU X F, XU T. Study on the trace of hydrocarbon migration path[J]. Special Oil and Gas Reservoirs, 2007, 14(3): 28-32.
39 SEIFERT W K, MOIDOWAN J M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry[J]. Physics and Chemistry of the Earth, 1980, 12: 229-237.
40 黄第藩, 李晋超, 张大江, 等. 陆相有机质的演化和成烃机理[M]. 北京: 石油工业出版社, 1984.
HUANG D P, LI J C, ZHANG D J, et al. Evolution and Hydrocarbon Generation Mechanism of Terrestrial Organic Matter[M]. Beijing: Petroleum Industry Press, 1984.
41 黄第藩, 李晋超, 张大江. 克拉玛依油田形成中石油运移的地球化学[J]. 中国科学: B辑, 1989, 17(2): 199-206.
HUANG D P, LI J C, ZHANG D J. Geochemistry of petroleum migration in Karamay Oil Field[J]. Science in China: Series B, 1989, 17(2): 199-206.
42 吕修祥, 杨海军, 王祥, 等. 地球化学参数在油气运移研究中的应用——以塔里木盆地塔中地区为例[J]. 石油与天然气地质, 2010, 31(6): 838-846.
LÜ X X, YANG H J, WANG X, et al. Application of geochemical parameters in hydrocarbon migration studies: Taking Tazhong area of the Tarim Basin as an example[J]. Oil & Gas Geology, 2010, 31(6): 838-846.
43 SEIFERT W K, MOIDOWAN J M. Paleoreconstruction by biological markers[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 783-794.
44 LI M, LARTER S R, STODDART D, et al. Fractionation of pyrrolic nitrogen compounds in petroleum during migration: Derivation of migration-related geochemical parameters[J].Geo-logical Society of London Special Publications,1995,86:103-123.
45 刘洛夫. 塔里木盆地群4井原油吡咯类含氮化合物地球化学研究[J]. 沉积学报, 1997, 15(2): 184-187.
LIU L F. Geochemistry of pyrrole nitrogeneous compounds in crude oil from Well Qun 4 of Tarim Basin[J]. Acta Sedimentologica Sinica, 1997, 15(2): 184-187.
46 李素梅, 刘洛夫, 王铁冠. 生物标志化合物和含氮化合物作为油气运移指标有效性的对比研究[J]. 石油勘探与开发, 2000, 27(4): 95-98.
LI S M, LIU L F, WANG T G. A comparison study on the effectiveness of using biomarker and nitrogenous compound as indexes indicating oil and gas migration[J]. Petroleum Exploration and Development, 2000, 27(4): 95-98.
47 刘洛夫, 徐新德. 含氮化合物与石油运移研究[J]. 勘探家, 1996, 1(2):33-37.
LIU L F, XU X D. Study on nitrogen compounds and petroleum migration[J], Explorationist, 1996, 1(2):33-37.
48 LI M, YAO H, FOWLER M G, et al. Geochemical constraints on models for secondary petroleum migration along the Upper Devonian Rimbey-Meadowbrook reef trend in central Alberta, Canada[J]. Organic Geochemistry, 1998, 29(1-3): 163-182.
49 STODDART D P, HALL P B, LARTER S R, et al. The reservoir geochemistry of the Eldfisk Field, Norwegian North Sea[J]. Geological Society of London Special Publications, 1995, 86: 257-279.
50 HORSFIELD B, CLEGG H, WILKES H, et al. Effect of maturity on carbazole distributions in petroleum systems: New insights from the Sondade Campeche, Mexico, and Hils Syncline, Germany[J]. Naturwissenschaften, 1998, 85: 233-237.
51 LARTER S, BOWLER B, CLARKE E, et al. An experimental investigation of geochromatography during secondary migration of petroleum performed under subsurface conditions with a real rock[J].Geochemical Transactions,2000,1:54-60.
52 WANG T G, LI S M, ZHANG S C. Oil migration in the Lunnan region, Tarim Basin, China based on the pyrrolic nitrogen compound distribution[J]. Journal of Petroleum Science and Engineering, 2004, 41: 123-134.
53 ZHANG L P, LI M W, WANG Y, et al. A novel molecular index for secondary oil migration distance[J]. Scientific Reports, 2013, 3: 149-163.
54 李贤庆, 侯读杰, 肖贤明, 等. 应用含氮化合物探讨油气运移和注入方向[J]. 石油实验地质, 2004, 26(2): 200-205.
LI X Q, HOU D J, XIAO X M, et al. Study of oil migration and injection direction by nitrogen compounds[J]. Petroleum Geology & Experiment, 2004, 26(2): 200-205.
55 刘洛夫, 徐新德, 毛东风, 等. 咔唑类化合物在油气运移研究中的应用初探[J]. 科学通报, 1997, 42(4): 420-422.
LIU L F, XU X D, MAO D F, et al. Preliminary study on the application of carbazole compounds in the study of oil and gas migration[J]. Chinese Science Bulletin, 1997, 42(4): 420-422.
56 刘洛夫, 霍红, 李超, 等. 利用咔唑类化合物研究油气的运移——以塔里木盆地环阿瓦提凹陷志留系古油藏为例[J]. 石油实验地质, 2006, 28(4): 366-369.
LIU L F, HUO H, LI C, et al. Study of petroleum migration of the Silurian ancient pools around Awati Sag in the Tarim Basin using carbazole compounds[J]. Petroleum Geology & Experiment, 2006, 28(4): 366-369.
57 LI M J, WANG T G, LIU J, et al. Total alkyl dibenzothiophenes content tracing the filling pathway of condensate reservoir in the Fushan Depression, South China Sea[J]. Science in China Series D: Earth Sciences, 2008, 51(supplement II): 138-145.
58 LI M, FOWLER M G, OBERMAJER M, et al. Geochemical characterisation of Middle Devonian oils in NW Alberta, Canada: Possible source and maturity effect on pyrrolic nitrogen compounds[J]. Organic Geochemistry, 1999, 30: 1039-1057.
59 SILLIMAN J E, LI M W, YAO H X, et al. Molecular distributions and geochemical implications of pyrrolic nitrogen compounds in the Permian Phosphoria Formation derived oils of Wyoming[J]. Organic Geochemistry,2002,33(5):527-544.
60 LI M J, WANG T G, SHI S B, et al. Benzo[b]naphthothiophenes and alkyl dibenzothiophenes: Molecular tracers for oil migration distances[J]. Marine and Petroleum Geology,2014, 57: 403-417.
61 ZHU G Y, WANG M, ZHANG T W, et al. Identification of polycyclic sulfides hexahydrodibenzothiophenes and their implications for heavy oil accumulation in ultra-deep strata in Tarim Basin[J]. Marine and Petroleum Geology, 2016, 78,439-447.
62 RADKE M. Application of aromatic compounds as maturity indicators in source rocks and crude oils[J]. Marine and Petroleum Geology, 1988, 5(3): 224-236.
63 RADKE M, WELTE D H, WILLSCH H. Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in rocks of the Upper Rhine Graben[J]. Chemical Geology, 1991, 93: 325-341.
64 CHAKHMAKHCHEV A, SUZUKI M, TAKAYAMA K. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J].Organic Geochemistry,1997, 26(7): 483-489.
65 KRUGE M A. Determination of thermal maturity and organic matter type by principal components analysis of the distributions of polycyclic aromatic compounds[J]. International Journal of Coal Geology, 2000, 43: 27-51.
66 ZHU G Y, JIANG N H, SU J, et al. The formation mechanism of high dibenzothiophene series concentration in Paleozoic crude oils from Tazhong area, Tarim Basin, China[J]. Energy Exploration & Exploitation, 2011, 29(5): 617-632.
67 LI M J, ZHONG N N, SHI S B, et al. The origin of trimethyldibenzothiophenes and their application as maturity indicators in sediments from the Liaohe Basin, East China[J]. Fuel, 2013, 103: 299-307.
68 LI M J, SIMONEIT B R T, ZHONG N N, et al. The distribution and origin of dimethyldibenzothiophenes in sediment extracts from the Liaohe Basin, East China[J]. Organic Geochemistry, 2013, 65: 63-73.
69 LI M J, WANG T G, SHI S B, et al. Oil maturity assessment using maturity indicators based on methylated dibenzothiophenes[J]. Petroleum Science, 2014, 11: 234-246.
70 吴治君, 罗斌杰, 王有孝, 等. 塔里木盆地原油中二苯并噻吩的分布及主力油源岩类型判识[J]. 沉积学报, 1995, 13(3): 98-106.
WU Z J, LUO B J, WANG Y X, et al. Distribution of dibenzothiophenes in crude oils from Traim Basin and identification of major source rock types[J]. Acta Sedimentologica Sinica, 1995, 13(3): 98-106.
71 HUGHES W B, HOLBA A G, DZOU L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
72 LI M J, WANG T G, ZHONG N N, et al. Ternary diagram of fluorenes, dibenzothiophenes and dibenzofurans: Indicating depositional environment of crude oil source rocks[J]. Energy Exploration & Exploitation, 2013, 31(4): 569-588.
73 WANG T G, HE F Q, LI M J, et al. Alkyldibenzothiophenes: Molecular tracers for filling pathway in oil reservoirs[J]. Chinese Science Bulletin, 2004, 49(22): 2399-2404.
74 张同伟, 陈践发, 王先彬, 等. 天然气运移的气体同位素地球化学示踪[J]. 沉积学报, 1995, 13(2): 70-76.
ZHANG T W, CHEN J F, WANG X B, et al. Isotopic geochemical traces of gaseous hydrocarbon for natural gas migration[J]. Acta Sedimentologica Sinica, 1995, 13(2): 70-76.
75 黄海平, 许晓宏. 天然气同位素特征及作用[J]. 石油与天然气地质, 1997, 18(2): 136-139.
HUANG H P, XU X H. Isotopic properties of natural gas and its effect[J]. Oil & Gas Geology, 1997, 18(2): 136-139.
76 FUEX A N. The use of stable carbon isotopes in hydrocarbon exploration[J]. Journal of Geochemical Exploration, 1997, 7: 155-188.
77 MATYASIK I, STECZKO A, PHILP R P. Biodegradation and migrational fractionation of oils from the eastern Carpathians, Poland[J]. Organic Geochemistry, 2000, 31: 1509-1523.
78 张长年, 罗铸金, 郭秀云. 有机地球化学概论[M]. 北京: 地质出版社, 1993.
ZHANG C N, LUO Z J, GUO X Y. Introduction to Organic Geochemistry[M].Beijing:Geological Publishing House, 1993.
79 CAROTHERS W W, KHARAKA Y K. Stable carbon isotopes of HCO3 in oil-field waters-implications for the origin of CO2[J]. Geochimica et Cosmochimica Acta, 1980,44(2): 232-332.
80 陈安定, 张文正, 徐永昌. 沉积岩成烃热模拟实验产物的同位素特征及应用[J]. 中国科学(B辑),1993,23(2):209-217.
CHEN A D, ZHANG W Z, XU Y C. Isotopic characteristics and application of hydrocarbon-forming products from thermal simulation experiments of sedimentary rocks[J]. Science in China (Series B), 1993, 23(2): 209-217.
81 陈安定. 陕甘宁盆地中部气田奥陶系天然气的成因及运移[J]. 石油学报, 1994, 15(2): 1-10.
CHEN A D. Origin and migration of natural gas in Ordovician reservoir in Shan Gan Ning Basin central gas field[J]. Acta Petrolei Sinica, 1994, 15(2): 1-10.
82 GALIMOV E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks[J]. Chemical Geology, 1988, 71(1-3): 77-95.
83 戴金星. 碳、氢同位素组成研究在油气运移上的意义[J]. 石油学报, 1988, 9(4): 27-32.
DAI J X. A study of the composition of C and H2 isotopes and their significance in the migration of oil and gas[J]. Acta Petrolei Sinica, 1988, 9(4): 27-32.
84 张建博, 陶明信. 煤层甲烷碳同位素在煤层气勘探中的地质意义——以沁水盆地为例[J]. 沉积学报, 2000, 18(4): 611-614.
ZHANG J B, TAO M X. Geological significances of coalbed methane carbon isotope in coalbed methane exploration: Taking Qinshui Basin as an example[J]. Acta Sedimentologica Sinica, 2000, 18(4): 611-614.
85 ZHANG T W, KROOSS B M. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2723-2742.
86 SCHLOEMER S, KROOSS B M. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J]. Geofluids, 2004, 4(1): 81-108.
87 XIA X Y, TANG Y C. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 2012, 77: 489-503.
88 张玉红, 周世新, 左亚彬. 碳同位素在天然气运移路径示踪中的应用研究进展[J]. 矿物岩石地球化学通报, 2018, 37(6): 1198-1204.
ZHANG Y H, ZHOU S X, ZUO Y B. A review of the application of carbon isotopes in tracing the pathway of natural gas migration[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(6): 1198-1204.
89 WENDT I. Fractionation of carbon isotopes and its temperature dependence in the system CO2-Gas-CO2 in solution and HCO3-CO2 in solution[J]. Earth and Planetary Science Letters, 1968, 4(1): 64-68.
90 ZHANG J Z, QUAY P, WILBUR D. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 1995, 59(1): 107-114.
91 AMIOTTE-SUCHET P, AUBERT D, PROBST J L, et al. δ13C pattern of dissolved inorganic carbon in a small granitic catchment: The strengbach case study (Vosges mountains, France) [J]. Chemical Geology, 1999, 159(1-4): 129-145.
92 张晓宝, 徐永昌, 刘文汇, 等. 吐哈盆地水溶气组分与同位素特征形成机理及意义探讨[J].沉积学报, 2002, 20(4): 705-709.
ZHANG X B, XU Y C, LIU W H, et al. A discussion of formation mechanism and its significance of characteristics of chemical composition and isotope of water-dissolved gas in Turpan-Hami Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 705-709.
93 秦胜飞, 赵靖舟, 李梅, 等. 水溶天然气运移地球化学示踪——以塔里木盆地和田河气田为例[J]. 地学前缘, 2006, 13(5): 524-532.
QIN S F, ZHAO J Z, LI M, et al. A case study: Geochemical tracing indices on the migration of water-soluble gases in Hetianhe Gas Field, Tarim Basin[J]. Earth Science Frontiers, 2006, 13(5): 524-532.
94 黄志龙, 柳广第, 郝石生, 等. 东方1-1气田天然气运移地球化学特征[J]. 沉积学报, 1997, 15(2): 66-69.
HUANG Z L, LIU G D, HAO S S, et al. Geochemical characteristics of the natural gas migration in the Dongfang1-1 Gas Field,South China Sea[J].Acta Sedimentologica Sinica,1997, 15(2): 66-69.
95 张厚福, 方朝亮, 高先志, 等. 石油地质学[M]. 北京: 石油工业出版社, 1999.
ZHANG H F, FANG C L, GAO X Z, et al. Petroleum Geology[M]. Beijing: Petroleum Industry Press, 1999.
96 李广之, 胡斌, 邓天龙, 等. 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13-17.
LI G Z, HU B, DENG T L, et al. Petroleum geological significance of microelements V and Ni[J]. Natural Gas Geoscience, 2008, 19(1): 13-17.
97 刘小薇, 程克明. 微量元素在煤成烃研究中的应用[J]. 石油勘探与开发, 1995, 22(5): 40-44.
LIU X W, CHENG K M. Application of trace element in the study of petroleum from coals[J]. Petroleum Exploration and Development, 1995, 22(5): 40-44.
98 赵孟军, 黄第藩, 廖志勤, 等. 原油中微量元素地球化学特征[J]. 石油勘探与开发, 1996, 23(3): 19-23.
ZHAO M J, HUANG D P, LIAO Z Q, et al. Geochemistry of trace elements in crude oils[J]. Petroleum Exploration and Development, 1996, 23(3): 19-23.
99 李扬, 朱建华, 武本成, 等. 格尔木混合原油中金属元素的赋存状态研究[J]. 武汉工程大学学报, 2009, 31(1): 1-4.
LI Y, ZHU J H, WU B C, et al. Study on the occurence state of metallic elements in Geermu mixed crude oil[J]. Journal of Wuhan Institute of Technology, 2009, 31(1): 1-4.
100 王祥, 吕修祥, 张艳萍, 等. 流体包裹体微量元素在油气勘探中的应用——以塔里木盆地塔中地区为例[J]. 沉积学报, 2011, 29(5): 986-993.
WANG X, LÜ X X, ZHANG Y P, et al. Application of inclusion trace elements in oil and gas exploration: A case from central Tarim Basin[J]. Acta Sedimentologica Sinica, 2011, 29(5): 986-993.
101 金强, 田海芹, 戴俊生. 微量元素组成在固体沥青—源岩对比中的应用[J]. 石油实验地质, 2001, 23(3): 285-290.
JIN Q, TIAN H Q, DAI J S. Application of microelement composition to the correlation of solid bitumen with source rocks[J]. Petroleum Geology & Experiment, 2001, 23(3): 285-290.
102 张作祥, 金大伟, 白凤有, 等. 原油中微量金属元素分析技术及其在勘探中的应用[J]. 大庆石油地质与开发, 2014, 33(5): 70-75.
ZHANG Z X, JIN D W, BAI F Y, et al. Analyzing techniques of the trace metallic elements in the crude oil and their application in the exploration[J]. Petroleum Geology and Oilfield Development in Daqing, 2014, 33(5): 70-75.
103 SUN Y Z, JIAO W W, ZHANG S C. Gold enrichment mechanism in crude oils and source rocks in Jiyang Depression[J]. Energy Exploration & Exploitation, 2009, 27(2): 133-142.
104 TANG Y G, CHANG C X, ZHANG Y Z, et al. Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield, Hebei Province, China[J]. Energy Exploration and Exploitation, 2009, 27(2): 143-152.
105 JIAO W W, YANG H J, ZHAO Y, et al. Application of trace elements in the study of oil-source correlation and hydrocarbon migration in the Tarim Basin, China[J]. Energy Exploration & Exploitation, 2010, 28(6): 451-466.
106 周景田. 松辽盆地南部原油中微量金属元素分布特征并判断油气运移方向[J]. 大庆石油学院学报, 1983, 18(2): 44-53.
ZHOU J T. Distribution characteristics of trace metallic elements and determination of oil and gas migration direction in crude oil in southern Songliao Basin[J]. Journal of Daqing Petroleum Institute, 1983, 18(2): 44-53.
107 LEVENTHAL J S. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States[J]. Mineralium Deposita, 1991, 26: 104-112.
108 NADÈGE F, JANNE B T, JOHN L, et al. Lead isotopes as tracers of crude oil migration within deep crustal fluid systems[J]. Earth and Planetary Science Letters, 2019, 525: 115747.
109 ESCOBAR M, MÁRQUEZ G, AZUAJE V, et al. Use of biomarkers, porphyrins, and trace elements to assess the origin, maturity, biodegradation, and migration of Alturitas oils in Venezuela[J]. Fuel, 2012,97: 186-196.
110 TALUKDAR S, GALLANGO O, CHIN-A-LIEN M. Generation and migration of hydrocarbons in the Maracaibo Basin, Venezuela: An integrated basin study[J]. Organic Geochemistry, 1986, 10: 261-279.
111 樊然学. 川西拗陷中段气藏稀有气体来源与烃类运移研究[J]. 矿物岩石地球化学通报, 2001, 20(4):323-327.
PAN R X. Study on source of rare gases and hydrocarbon migration of gas reservoir in the middle part of western Sichuan Depression[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4):323-327.
112 WANG P, SHEN Z M, LIU S B. Geochemical characteristics of noble gases in natural gas and their application in tracing natural gas migration in the middle part of the western Sichuan Depression, China[J]. Petroleum Science, 2013, 10(3): 327-335.
113 BALLENTINE C J, BURNARD P. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry. 2002, 47(1): 481-538.
114 武丽艳. 稀有气体同位素地球化学在矿床学研究中的应用进展[J]. 岩石学报, 2019, 35(1): 215-232.
WU L Y. Advances of noble gas isotope geochemistry application in the study of ore deposits[J]. Acta Petrologica Sinica, 2019, 35(1): 215-232.
115 孙向阳, 刘方槐. 沉积盆地中地层水化学特征及其地质意义[J]. 天然气勘探与开发, 2001, 24(4): 47-53.
SUN X Y, LIU F H. Chemical characteristics of formation water and its geological significance in sedimentary basin[J]. Natural Gas Exploration and Development, 2001, 24(4): 47-53.
116 李继宏, 李荣西, 韩天佑, 等. 鄂尔多斯盆地西缘马家滩地区地层水与油气成藏关系研究[J]. 石油实验地质, 2009, 31(3): 253-257.
LI J H, LI R X, HAN T Y, et al. Study of stratum water and oil and gas accumulation relations of Majiagou area in the western Ordos Basin[J]. Petroleum Geology & Experiment, 2009, 31(3): 253-257.
117 VARSANYI I, KOVACS O L. Origin, chemical and isotopic evolution of formation water in geopressured zones in the Pannonian Basin, Hungary[J]. Chemical Geology,2009,264:187-196.
118 MUNZ I A, JOHANSEN H, HUSEBY H O, et al. Water flooding of the Oseberg Ost Oil Field, Norwegian North Sea: Application of formation water chemistry and isotopic composition for production monitoring[J]. Marine and Petroleum Geology, 2010, 27: 838-852.
119 徐德英, 周江羽, 王华, 等. 渤海湾盆地南堡凹陷东营组地层水化学特征的成藏指示意义[J]. 石油实验地质, 2010, 32(3): 285-289.
XU D Y, ZHOU J Y, WANG H, et al, Chemical characteristics of formation water significant to oil reservoir in Dongying Formation, Nanpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2010, 32(3): 285-289.
120 李梅, 金爱民, 楼章华, 等. 准噶尔盆地地层流体特征与油气运聚成藏[J]. 石油与天然气地质, 2012, 33(4): 607-615.
LI M, JIN A M, LOU Z H, et al. Formation fluid characteristics and hydrocarbon migration and accumulation in Junggar Basin[J]. Oil & Gas Geology, 2012, 33(4): 607-615.
121 李梅, 金爱民, 楼章华, 等. 高邮凹陷南部真武地区地层水化学特征与油气运聚的关系[J]. 中国石油大学学报(自然科学版),2010,34(5):50-56.
LI M, JIN A M, LOU Z H, et al. Hydrochemical properties of formation water and its relationship with oil and gas migration and accumulation in Zhenwu area of southern Gaoyou Sag[J]. Journal of China University of Petroleum(Edition of Natural Science),2010,34(5):50-56.
122 史建南, 姜建群, 张福功, 等. 大民屯凹陷地层水水文地质特征与油气聚集关系[J]. 海洋地质动态, 2003, 19(11): 24-30.
SHI J N, JIANG J Q, ZHANG F G, et al. Relation between hydro-geologic characteristics of formation water and oil migration and accumulation in Damintun Depression[J]. Marine Geology Letters, 2003, 19(11): 24-30.
123 张宗峰, 查明, 高长海. 大港油田埕北断阶区地层水化学特征与油气成藏[J]. 石油与天然气地质, 2009, 30(3): 268-274.
ZHANG Z F, ZHA M, GAO C H. Hydrochemical characteristics and hydrocarbon accumulation in the Chengbei fault terrace zone of Dagang Oilfield[J]. Oil & Gas Geology, 2009, 30(3): 268-274.
124 渠芳, 连承波, 陈清华, 等. 济阳坳陷孤岛油田西南缘油气运聚方向研究[J]. 地质论评, 2011, 57(2): 223-233.
QU F, LIAN C B, CHEN Q H, et al. Research on the direction of hydrocarbon migration and accumulation in the southwest part of Gudao Oil Field, Jiyang Depression[J]. Geological Review, 2011, 57(2): 223-233.
125 斯扬, 张文选, 罗安湘, 等. 姬塬地区长9油层组地层水化学特征及其与油藏的关系[J]. 中国石油大学学报(自然科学版),2019,43(2):25-36.
SI Y, ZHANG W X, LUO A X, et al. Hydrochemical characteristics and relationship between formation water and hydrocarbon reservoirs for Chang 9 in Jiyuan area[J]. Journal of China University of Petroleum(Edition of Natural Science),2019,43(2):25-36.
126 梅啸寒, 张琴, 王雅芸, 等. 松辽盆地扶新隆起带扶杨油层地层水化学特征及其与油气运聚关系[J]. 石油与天然气地质, 2020, 41(2): 328-338.
MEI X H, ZHANG Q, WANG Y Y, et al. Hydrochemical characteristics of formation water and its relationship with hydrocarbon migration and accumulation in Fuyang oil layer in Fuxin Uplift, Songliao Basin[J]. Oil & Gas Geology, 2020, 41(2): 328-338.
127 CHEN J, LIU D Y, HOU X L, et al. Origin and evolution of oilfield waters in the Tazhong Oilfield, Tarim Basin, China, and their relationship to multiple hydrocarbon charging events[J]. Marine and Petroleum Geology, 2018, 98: 554-568.
128 OSBORN S G, MCINTOSH J C, HANOR J S, et al. Iodine-129, 87Sr/86Sr, and trace elemental geochemistry of northern Appalachian Basin brines: Evidence for basinal-scale fluid migration and clay mineral diagenesis[J]. American Journal of Science, 2012, 312(3): 263-287.
129 BROECKER W S, PENG T H. Tracers in the Sea[M]. New York: Eldigio Press, 1982.
130 WONG G T F. The marine geochemistry of iodine[J]. Reviews in Aquatic Science, 1991,4:45-73.
131 MORAN J E,FEHN U,HANOR J S.Determination of source ages and migration patterns of brine from the U.S. Gulf Coast basin using 129I[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5055-5069.
132 TOMARU H, LU Z, FEHN U, et al. Origin of hydrocarbons in the Green Tuff region of Japan: 129I results from oil field brines and hot springs in the Akita and Niigata Basins[J]. Chemical Geology, 2009, 264: 221-231.
133 FEHN U. Tracing crustal fluids: Applications of natural 129I and 36Cl[J]. Annual Review of Earth and Planetary Sciences, 2012, 40:45-67.
134 HUMMEL S. The Use of Iodine to Characterize Formation Waters in Oil and Gas Fields[D]. New York: Syracuse University, 2011.
[1] 麻伟娇, 陶士振, 韩文学. 北极地区油气成藏条件、资源分布规律与重点含油气盆地分析[J]. 天然气地球科学, 2016, 27(6): 1046-1056.
[2] 郑建京,高占冬,王亚东,郑有伟,刘兴旺,关宝文. 构造—热年代学在含油气盆地分析中的应用进展[J]. 天然气地球科学, 2014, 25(10): 1491-1498.
[3] 赵民, 张晓宝, 吉利明, 张功成. 琼东南盆地构造演化特征及其对油气藏的控制浅析[J]. 天然气地球科学, 2010, 21(3): 494-502.
[4] 高岗;刚文哲;范泓澈;桑廷义;聂朝强 . 含油气盆地异常低压成因研究现状[J]. 天然气地球科学, 2008, 19(3): 311-315.
[5] 李晓斌,陶明信,王作栋,史宝光,李中平. 我国西北地区含油气盆地构造反转研究进展[J]. 天然气地球科学, 2007, 18(5): 678-683.
[6] 陈启林. 中国西北地区含油气盆地天然气有利勘探区带和成藏条件[J]. 天然气地球科学, 2006, 17(5): 606-611.
[7] 米敬奎;戴金星;张水昌;. 含油气盆地包裹体研究中存在的问题[J]. 天然气地球科学, 2005, 16(5): 602-605.
[8] 李双泉. 潮水盆地与酒西盆地中新生代构造对比[J]. 天然气地球科学, 2005, 16(4): 464-468.
[9] Е В Захарое;Н Б Кулибадин;师东(译). 地下地热状态是决定含油气盆地远景大小的主要因素之一[J]. 天然气地球科学, 2002, 13(5-6): 84-87.
[10] 王雅丽;刘喜杰;张红霞. 微型含油气盆地的基本地质特征及其勘探意义[J]. 天然气地球科学, 2000, 11(1): 19-21.
[11] А.И.Анцыфоров; Ю.В.Головченко; И.В.Чернова; 史斗. 航天摄影资料法含油气性定量预测[J]. 天然气地球科学, 1996, 7(5): 29-37.
[12] 彭作林; 郑建京. 中国中西部寻找大中型气田的方向[J]. 天然气地球科学, 1996, 7(2): 1-8.
[13] 周总瑛; 张博全; 谢泰俊; 杨学昌; 张群英. 莺-琼盆地天然气(油)初次运移模式[J]. 天然气地球科学, 1996, 7(2): 9-14.
[14] 刘震; 张万选; 曾宪斌; 邵新军. 含油气盆地地温-地压系统浅析[J]. 天然气地球科学, 1996, 7(1): 34-38.
[15] 史斗; . 浅层油气的形成[J]. 天然气地球科学, 1993, 4(6): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[3] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[4] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[5] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[6] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[7] 张宝,包建平,江凤梅. 三塘湖盆地侏罗系煤岩倾油倾气性探讨[J]. 天然气地球科学, 2006, 17(2): 183 -186 .
[8] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .
[9] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[10] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .