天然气地球科学 ›› 2021, Vol. 32 ›› Issue (9): 1347–1357.doi: 10.11764/j.issn.1672-1926.2021.04.014

• 天然气地质学 • 上一篇    下一篇

川东地区中二叠统茅口组白云岩储层成因机理及主控因素

李让彬1(),段金宝1,潘磊1,李红2   

  1. 1.中国石化勘探分公司,四川 成都 610041
    2.西北大学地质学系/大陆动力学国家重点实验室,陕西 西安 710069
  • 收稿日期:2021-01-29 修回日期:2021-04-28 出版日期:2021-09-10 发布日期:2021-09-14
  • 作者简介:李让彬(1987-),男,四川成都人,工程师,硕士,主要从事碳酸盐岩沉积储层研究.E-mail:lirb.ktnf@sinopec.com.
  • 基金资助:
    国家自然科学基金项目“海相深层油气富集机理与关键工程技术基础研究”(U19B6003);中国石油化工股份有限公司科技部项目“复杂构造—流体控制下深层优质规模储集体成因与分布预测技术”(P20079KXJGZ)

Genetic mechanism and main controlling factors of the Middle Permian Maokou Formation dolomite reservoirs in the eastern Sichuan Basin

Rangbin LI1(),Jinbao DUAN1,Lei PAN1,Hong LI2   

  1. 1.SINOPEC Exploration Company,Chengdu 610041,China
    2.Department of Geology/State Key Laboratory of Continental Dynamics,Northwest University,Xi’an 710069,China
  • Received:2021-01-29 Revised:2021-04-28 Online:2021-09-10 Published:2021-09-14
  • Supported by:
    NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003);the Project of Science and Technology Department of SINOPEC(P20079KXJGZ)

摘要:

利用露头和岩心资料,通过大量的薄片、扫描电镜和主量元素、微量元素、稀土元素、锶同位素等分析化验资料,深入分析川东地区中二叠统茅口组白云岩储层成因机理,取得3个方面的新认识:①根据晶粒结构及其产状将白云岩进一步细分为三大类,基质镶嵌状白云岩,距构造热液脉相对较远;基质“雾心亮边”白云岩,多与构造热液脉体伴生;构造裂缝白云岩,主要分布在热液破裂形成的张性构造裂缝和孔洞中,半充填;②白云岩主要经历2期白云化改造,均为热液成因,其中基质镶嵌状白云岩形成于同沉积及浅埋条件下,而基质“雾心亮边”白云岩是在早期白云化作用的基础上,后期受到了强烈的热液改造作用形成,构造裂缝白云岩则是由热液流体沉淀形成;③浅滩是白云岩发育的基础,基底断裂为同沉积断裂,且为富镁热液的运移通道,是白云岩“似层状”展布的关键,明确了15#基地断裂南侧为白云岩勘探首选目标区。

关键词: 白云岩, 成因机理, 茅口组, 川东地区

Abstract:

Based on outcrop and core data, a large number of thin section, scanning electron microscope, major element, trace element, rare earth element and strontium isotope analysis data, the formation mechanism of dolomite reservoir of Maokou Formation in eastern Sichuan was analyzed, and three new understandings were obtained: (1) According to the grain structure and occurrence, the dolomite can be further divided into three categories: matrix mosaic dolomite, which is relatively far from the tectonic hydrothermal veins. The matrix "mist core and bright edge" dolomite is mostly associated with the tectonic hydrothermal veins. The structural fracture dolomite is mainly distributed in the tensional tectonic fractures and pores formed by hydrothermal fracture, and is half-filled.(2)The dolomite has undergone two stages of hydrothermal dolomitization. The matrix mosaic dolomite was formed under syndepositional and shallow buried conditions, and the "mist core bright edge" dolomite was formed on the basis of early dolomitization and later hydrothermal reformation. The tectonic fracture dolomites were formed by hydrothermal fluid precipitation.(3)The shoal was the basis of dolomite development, and the basement faults were synsedimentary fault and the migration channels of hydrothermal fluids, which was the key to the formation of dolomite. The south side of the 15# base fault is the preferred target area for dolomite exploration, which provides reference for the Maokou Formation in Sichuan Basin.

Key words: Dolomite reservoir, Genetic mechanism, Maokou Formation, Eastern Sichuan Basin

中图分类号: 

  • TE122.1

图1

研究区位置简图(a)及TL6井地层综合柱状图(b)"

图2

川东地区茅口组白云岩露头、岩心及显微镜下特征(a)茅口组白云岩特征,回龙场剖面;(b)茅口组白云岩岩心特征,TL6井;(c)镶嵌式白云岩,回龙场剖面;(d)“雾心亮边”白云岩,晶间孔发育,二崖剖面;(e)茅口组上部白云化作用结束处,白云岩与含生屑灰岩之间为缝合线接触,二崖剖面;(f)茅口组白云化作用结束处,白云岩与含生屑灰岩为缝合线接触,二崖剖面;(g)茅口组白云岩热液破裂缝洞特征,半充填,TL6井;(h)茅口组白云岩热液白云石脉体,半充填,TL6井"

图3

川东地区不同类型白云石镜下特征(a)镶嵌状白云石,回龙场;(b)电子探针微区电镜特征,回龙场;(c)“雾心亮边”白云石,二崖;(d)“雾心亮边”白云石电镜特征,二崖;(e)构造热液白云石,TL6井;(f)构造热液白云石阴极发光特征,TL6井;(g)构造热液白云石电镜特征,TL6井;(h)镶嵌状白云石电镜特征,TL6井"

表1

川东地区茅口组白云岩不同类型白云石主量元素特征"

剖面/井样品点结构P2O5SO3CaOTiO2MgOSiO2SrOAl2O3MnOFeONiOTotal
回龙场剖面HLC-C-89-001镶嵌状00.07132.180.002 521.127000.001 70.0040.002053.422
HLC-C-89-0020032.14021.8540.0220.0510.3810.0550054.501
HLC-C-89-0030.0130.04232.39021.470.01700.5510.05700.00454.542
HLC-C-89-00400.03332.910.03722.29200.0140.0190.0570.0080.00255.373
HLC-C-89-0050.060.02433.57021.0600.0110.0270.0510054.806
HLC-C-89-0060.0130.03832.67021.85500.0110.0190.0320054.633
HLC-C-89-00700.00532.290.00222.1240.040.0210.020.0320054.536
HLC-C-89-0080.0670.03832.980.00221.872000.0390.0250.0140.03355.074
HLC-C-89-0090.0670.03330.82020.9550.0130.0230.170.0080052.089
二崖剖面ERY2-D-151-014亮边0.033032.7820.00421.330.0070.0040.020.0170.006054.203
ERY2-D-151-0150.053032.859021.0520.0110.0090.1730.0110054.168
ERY2-D-151-016雾心0033.045021.498000.0360.0210.004054.604
ERY2-D-151-0170032.7160.01521.2650.0020.0350.01600.008054.057
ERY2-D-151-01800.00932.3330.00221.6650.020.0120.0380.03600.00454.119
ERY2-D-151-0190.020.06633.0760.02121.3460.0190.0390.0420.0170.0540.0154.71
ERY2-D-151-020亮边0.040.03333.092021.28800.0160.0140.030054.513
ERY2-D-151-0210.0130.00531.990.01921.7490.0270.0070.050.0230053.883
ERY2-D-151-02200.01932.5740.00221.574000.0270.0270.01054.233
ERY2-D-151-0230.020.02832.187021.81700.0250.0690.01900.01254.177
ERY2-D-151-0240.0070.00533.009021.5510.0130.0410.0230.0250.0250.02354.722
ERY2-D-151-0250.0540.04232.405021.27000.0340.0250.0020.01553.847
ERY2-D-151-0260.027032.4960.04421.6380.0330.0110.0260.0340.0140.02754.35
ERY2-D-151-02700.01932.3870.00421.3690.00800.0310.0170.0120.04853.895
ERY2-D-151-0280.0330.00533.515021.5540.0120.0120.03100055.162
TL6井TL6-11-C-016脉体0.0660.07228.248021.4610.0730.0360.0710.060.0390.02150.147
TL6-11-C-0170.033029.7830.04621.1540.010.00500.0560.0510.02651.164
TL6-11-C-0180.013029.596021.5240.0250.007000051.265
TL6-11-C-0190028.9710.01221.670.01000.0090.2550.01550.933
TL6-11-C-0200029.129021.4290.019000.0490.2330.00650.865
TL6-11-C-0210.0070.01429.244021.79900000.153051.217
TL6-11-C-0220.02029.4780.01721.983000.01100051.509
TL6-11-C-0230.033029.024021.980000.0710.149051.257
TL6-11-C-0240029.132022.1790.013000.0190.1780.02151.542
TL6-11-C-0250.073028.998021.8820.0250.0340.0370.0130.0410.00851.111
TL6-18-C-010镶嵌状0.04061.63700.3500.1850000.0152.552
TL6-18-C-0110.0480.06531.9220.01322.6490.0870.060.04300.032054.919
TL6-18-C-0120.0420.00931.3930.01122.0680.0240.0280.020.0270.055053.677
TL6-18-C-0130.0660.00931.693022.0120.1800.01400.0430.02254.039
TL6-18-C-0140.0480.06132.177022.2140.0100.0410.0470.018054.616
TL6-18-C-0150.0060.04431.995022.0990.010.0130.0370.0140054.218
TL6-18-C-0160.03031.7390.00621.5360.03900.0180.02900.02153.418
TL6-18-C-0170.0550.07132.086022.5980.05400.0520.030.054055
TL6-18-C-01800.06731.478021.7480.0330.0170.010.0260.076053.455
TL6-18-C-0190.0180.00432.23022.8560.0530.020.0300.027055.238
TL6-18-C-0200.0490.05331.347021.5640.0270.0170.0380.0490.0020.00753.153

图4

川东地区茅口组不同组构白云岩Al—Fe—Mn三角图解"

图5

川东地区茅口组碳酸盐岩微量元素蛛网图(原始地幔标准化据文献[12])"

图6

川东地区茅口组不同组构白云石稀土元素的北美页岩标准化配分曲线(玄武岩数据引自文献[13])"

图7

川东地区TL6井茅三段白云岩取心段综合柱状图"

图8

川东地区基底断裂+浅滩联合控制的热液白云岩模式"

1 陈宗清.四川盆地中二叠统茅口组天然气勘探[J].中国石油勘探,2007,12(5):1-11.
CHEN Z Q. Exploration for natural gas in Middle Permian Maokou Formation of Sichuan Basin[J].China Petroleum Exploration, 2007,12(5): 1-11.
2 胡东风,王良军,黄仁春,等.四川盆地东部地区中二叠统茅口组白云岩储层特征及其主控因素[J].天然气工业,2019,36(6):13-21.
HU D F,WANG L J,HUANG R C,et al. Characteristics and main controlling factors of the Middle Permian Maokou dolomite reservoirs in the eastern Sichuan Basin[J]. Natural Gas Industry, 2019,36(6):13-21.
3 陈轩, 赵文智, 张利萍,等.川中地区中二叠统构造热液白云岩的发现及其勘探意义[J].石油学报, 2012,33(4): 562-569.
CHEN X, ZHAO W Z, ZHANG L P,et al. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin[J]. Acta Petrolei Sinica, 2012, 33(4): 562-569.
4 汪华,沈浩,黄东,等.四川盆地中二叠统热水白云岩成因及其分布[J].天然气工业, 2014, 34(9): 25-32.
WANG H, SHEN H, HUANG D, et al. Origin and distribution of hydrothermal dolomites of the Middle Permian in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(9): 25-32.
5 刘宏,马腾,谭秀成,等.表生岩溶系统中浅埋藏构造—热液白云岩成因——以四川盆地中部中二叠统茅口组为例[J].石油勘探与开发,2016,43(6):916-927.
LIU H,MA T,TAN X C, et al.Origin of structurally controlled hydrothermal dolomite in epigenetic karst system during shallow burial: An example from Middle Permian Maokou Formation, central Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2016,43(6):916-927.
6 蒋裕强,谷一凡,李开鸿,等.四川盆地中部中二叠统热液白云岩储渗空间类型及成因[J].天然气工业,2018,38(2):16-24.
JIANG Y Q, GU Y F, LI K H, et al. Space types and origins of hydrothermal dolomite reservoirs in the Middle Permian strata, central Sichuan Basin[J].Natural Gas Industry, 2018,38(2):16-24.
7 QI L,GU Y F,HE P W, et al. Hydrothermal dolomitization in the Middle Permian in the central Sichuan Basin, SW China: Evidence from petrology, geochemistry, and fluid inclusions[J]. Arabian Journal of Geosciences,2021,14(1):55.
8 LIU X, GAO S, DIWU C R, et al. Simultaneous in-situ determination of U-Pb age ad trace elements in zircon by LA-ICP-MS in 20 μm spot size[J]. Chinese Science Bulletin, 2007, 52(9): 1257-1264.
9 HE R,NING M,HUANG K J, et al. Mg isotopic systematics during early diagenetic aragonite-calcite transition:Insights from the Key Largo Limestone[J]. Chemical Geology,2020,558:119876.
10 张荫本.四川盆地二叠系中的白云岩化[J]. 石油学报, 1982,3(1): 29-33.
ZHANG Y B.Dolomitization in Permian rocks in Sichuan Basin[J]. Acta Petrolei Sinica,1982,3(1): 29-33.
11 ADACHI M,YAMAMOTO K,SUGISAKI R.Hydrothermal chert and associated siliceous rocks from the northern Pacific:The geological significance and indication of ocean ridge activity[J].Sediment Geology,1986,47(1/2):125-148.
12 SUN S S, MC DONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J].Geological Society London Special Publication, 1989, 42: 313-345.
13 LI H B, ZHANG Z C, SANTOSH M, et al. Late Permian basalts in Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction[J].Journal of Asian Earth Sciences, 2017,134:293-308.
14 KORTE C, JASPER T, KOZUR H W, et al. 87Sr/86Sr record of Permian seawater[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 240(1):89-107.
15 黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报, 1997,71(1): 45-53.
HUANG S J.A study on carbon and strontium isotopes of Late Paleozoic carbonate rocks in the Upper Yangtze Platform[J].Acta Geologica Sinica,1997,71(1):45-53.
16 张招崇,王福生,范蔚茗,等.峨眉山玄武岩研究中的一些问题的讨论[J].岩石矿物学杂志, 2001,20(3): 239-246.
ZHANG Z C,WANG F S,FAN W M,et al. A discussion on some problems concerning the study of the Emeishan Basalts[J].Acta Petrologica et Mineralogica, 2001,20(3): 239-246.
17 李大军,陈辉,陈洪德,等.四川盆地中二叠统茅口组储层形成与古构造演化关系[J].石油与天然气地质,2016,37(5):756-763.
LI D J,CHEN H,CHEN H D,et al. Relationship between reservoir development in the Middle Permian Maokou Formation and paleostructure evolution in the Sichuan Basin[J]. Oil & Gas Geology,2016, 37(5):756-763.
18 王英民, 童崇光, 徐国强, 等. 川中地区基底断裂的发育特征及成因机制[J]. 成都地质学院学报, 1991,18(3): 51-60.
WANG Y M,TONG C G,XU G Q,et al.On the characteristics and mechanism of basement faults in central Sichuan Basin[J].Journal of Chengdu College of Geology,1991,18(3): 51-60.
[1] 林怡, 陈聪, 徐诗雨, 杨帆, 曾乙洋, 黎洋, 赵春妮, 杨京, 何开来. 川西北部泥盆系观雾山组超深层碳酸盐岩储层特征及形成机制[J]. 天然气地球科学, 2021, 32(6): 794-805.
[2] 李蓉, 苏成鹏, 石国山, 贾霍甫, 李素华, 余洋. 川南地区二叠系茅口组一段瘤状灰岩储层成因[J]. 天然气地球科学, 2021, 32(6): 806-815.
[3] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[4] 曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
[5] 王晓雪,熊益学,陈永权,刘鑫,黄金华,胡方杰,房璐,王新新,罗海宁. 塔里木盆地塔中东部潜山区上寒武统白云岩储集层特征与主控因素[J]. 天然气地球科学, 2020, 31(10): 1404-1414.
[6] 高博乐, 金吉能, 鄢杰, 黎洋, 赵丹, 王建一. 四川盆地东部卧龙河地区中二叠统茅口组白云岩岩石物理特征及分布预测[J]. 天然气地球科学, 2019, 30(2): 168-175.
[7] 蒋裕强,周亚东,陈智雍,谷一凡,付永红,易娟子,张洁伟,蒋增政. 川东地区台内洼地二叠系生物礁、滩沉积格局及勘探意义[J]. 天然气地球科学, 2019, 30(11): 1539-1550.
[8] 陈永权, 严威, 韩长伟, 闫磊, 冉启贵, 亢茜, 何皓, 马源. 塔里木盆地寒武纪/前寒武纪构造—沉积转换及其勘探意义[J]. 天然气地球科学, 2019, 30(1): 39-50.
[9] 张道锋, 姚泾利, 高星, 席明利, 赵会涛, 闫小雄, 付勋勋. 鄂尔多斯盆地奥陶系马五5亚段白云岩储层形成机理与展布规律[J]. 天然气地球科学, 2019, 30(1): 74-82.
[10] 王帅, 王甘露, 秦政, 高泽远, 罗腾. 黔北地区茅口组古岩溶储层稀土元素地球化学特征[J]. 天然气地球科学, 2019, 30(1): 143-150.
[11] 周波, 曹颖辉, 齐井顺, 黄世伟, 刘策, 贾进华, 陈秀艳. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学, 2018, 29(6): 773-783.
[12] 谢武仁, 杨威, 李熙喆, 魏国齐, 马石玉, 文龙, 郭振华. 四川盆地川中地区寒武系龙王庙组颗粒滩储层成因及其影响[J]. 天然气地球科学, 2018, 29(12): 1715-1726.
[13] 张建勇,倪新峰,吴兴宁,李文正,郝毅,陈娅娜,吕学菊,谷明峰,田瀚,朱茂. 中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J]. 天然气地球科学, 2017, 28(8): 1165-1175.
[14] 沈安江,陈娅娜,潘立银,王龙,佘敏. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学, 2017, 28(8): 1176-1190.
[15] 翟秀芬,汪泽成,罗平,王铜山,石书缘,张洪. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1199-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹成,李天太,王晖,许小强,高潮. 页岩渗透率测试方法研究与应用[J]. 天然气地球科学, 2016, 27(3): 503 -512 .
[2] 《天然气地球科学》年期封面及目次. 《天然气地球科学》2021年6期封面及目次[J]. 天然气地球科学, 2021, 32(6): 2161 -2162 .
[3] 刘刚, 李建忠, 齐雪峰, 朱明, 袁波, 庞志超. 准噶尔盆地南缘西段下部成藏组合油气藏形成过程[J]. 天然气地球科学, 2021, 32(7): 1009 -1021 .
[4] 卢晓林, 李美俊, 王小娟, 唐友军, 韦腾强, 何大祥, 洪海涛, 吴长江, 冉子超. 川中地区侏罗系天然气与原油轻烃地球化学特征对比[J]. 天然气地球科学, 2021, 32(7): 1073 -1083 .
[5] 文卓, 康永尚, 康刘旭, 李昀, 赵群, 王红岩. 页岩气工业建产区选区地质评价指标及其下限标准[J]. 天然气地球科学, 2021, 32(7): 950 -960 .
[6] 刘世明, 谭富荣, 唐书恒, 王金喜, 王伟超, 李永红. 南祁连盆地木里坳陷中侏罗统烃源岩原始有机碳含量恢复及与微孔隙演化的相关性[J]. 天然气地球科学, 2021, 32(7): 982 -992 .
[7] 《天然气地球科学》年期封面及目次. 《天然气地球科学》2021年7期封面及目次[J]. 天然气地球科学, 2021, 32(7): 2171 -2172 .
[8] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093 -1106 .
[9] 蔡灵慧, 余烨, 郭建华, 黄俨然, 郭原草. 湘中南地区中奥陶统烟溪组页岩气勘探潜力[J]. 天然气地球科学, 2021, 32(8): 1247 -1260 .
[10] 《天然气地球科学》年第期封面及目次. 《天然气地球科学》2021年第8期封面及目次[J]. 天然气地球科学, 2021, 32(8): 2181 -2182 .