天然气地球科学 ›› 2021, Vol. 32 ›› Issue (12): 1762–1770.doi: 10.11764/j.issn.1672-1926.2021.04.007

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地延长组湖相页岩油赋存状态评价与定量表征

刘显阳1,2(),杨伟伟1,3(),李士祥1,3,孙林1,3,常睿1,3   

  1. 1.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
    2.中国石油长庆油田分公司,陕西 西安 710018
    3.中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
  • 收稿日期:2021-03-17 修回日期:2021-04-09 出版日期:2021-12-10 发布日期:2021-12-27
  • 通讯作者: 杨伟伟 E-mail:lxy3_cq@petrochina.com.cn;yww1_cq@petrochina.com.cn
  • 作者简介:刘显阳(1969-),男,甘肃庆阳人,教授级高级工程师,博士,主要从事油气地质勘探综合研究.E-mail:lxy3_cq@petrochina.com.cn.
  • 基金资助:
    国家自然科学基金(41773035);中国石油勘探与生产分公司课题“鄂尔多斯盆地延长组长7烃源岩层系重大勘探领域综合地质研究及关键技术攻关”(kt2020-06-01)

Occurrence states and quantitative characterization of lacustrine shale oil from Yanchang Formation in Ordos Basin

Xianyang LIU1,2(),Weiwei YANG1,3(),Shixiang LI1,3,Lin SUN1,3,Rui CHANG1,3   

  1. 1.National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields,Xi’an 710018,China
    2.PetroChina Changqing Oilfield Company,Xi’an 710018,China
    3.Research Institute of Exploration and Development of PetroChina Changqing Oilfield Company,Xi’an 710018,China
  • Received:2021-03-17 Revised:2021-04-09 Online:2021-12-10 Published:2021-12-27
  • Contact: Weiwei YANG E-mail:lxy3_cq@petrochina.com.cn;yww1_cq@petrochina.com.cn
  • Supported by:
    The National Natural Science Foundation of China(41773035);the Project of Exploration and Production Branch of CNPC(KT2020-06-01)

摘要:

鄂尔多斯盆地长7段源内夹层型页岩油已取得勘探突破并实现规模效益开发,但泥页岩层系是否具有勘探潜力,页理型页岩油的烃类赋存状态与表征方法仍然不够明确。通过对比页岩层产出的页岩油与滞留烃性质发现,鄂尔多斯盆地延长组长7页岩层产出的页岩油具有中轻质烃类组分(nC25-)显著优势、沥青质组分很低的特征,属于轻质油,而滞留烃中大分子化合物含量较高。各项分析测试与试验研究表明,油质组分与沥青质相容性差,两者赋存状态差异明显,沥青质组分主要被干酪根所吸附,油质组分主要以游离态赋存于孔裂隙中。长7段富有机质泥页岩中较高的沥青质含量不会明显影响页岩油的可流动性。同时建立的“泥页岩中分离提取游离烃的方法”,可作为页岩含油性快速评价的实用技术,定量表征结果表明长7 泥页岩中游离烃含量较高,平均在5 mg/g左右,页理型页岩油勘探潜力很大。

关键词: 页岩油, 滞留烃, 赋存状态, 定量, 长7段, 鄂尔多斯盆地

Abstract:

The exploration breakthrough of Chang 7 Member shale oil from sandstones in Ordos Basin has been made and scale effect has been realized, however, whether the mudstone and shale series have exploration potential and how to characterize the hydrocarbon occurrence states are still questions. Contrast between the shale oil and residual hydrocarbons shows that the test shale oil has high content of light and medium hydrocarbons (nC25-) but very low abundance of asphaltene, while the retained hydrocarbons has high concentrations of macromolecular compounds. Analytical tests and experimental studies suggest that the oily components have poor compatibility with asphaltene, their occurrence stats are distinct, the asphaltene components are mainly adsorbed by kerogen while the oily constituents occur in the pores and fractures as free hydrocarbons. Therefore, high contents of asphaltene will not affect the mobility of shale oil. Moreover, the method of separating and extracting free hydrocarbons from shale and mudstones is not only a rapid technique for shale oil resources evaluation, but also reveals that the free hydrocarbon contents of Chang 7 Member shale and mudstones are very high with an average content of 5 mg/g, showing a significant potential of shale oil exploration from mud shales.

Key words: Shale oil, Residual hydrocarbons, Occurrence state, Quantify, Chang 7 Member, Ordos Basin

中图分类号: 

  • TE122.1+2

表1

鄂尔多斯盆地延长组长7段页岩层所产出页岩油物性与族组成分析数据"

井号产层样品密度/(g/cm3,50 ℃)动力黏度/(mPa·s,50 ℃)凝固点/℃族组成/%
饱和烃芳烃非烃沥青质
耿295长7段页岩油0.8246.182148.518.969.950.00
木81长7段页岩油0.8284.801766.4610.063.980.50
木78长7段页岩油0.8345.271253.4710.835.920.68

图1

木81井长73亚段岩层产出页岩油全烃色谱"

图2

长7段富有机质页岩氯仿沥青“A”含量频率分布(226个样品)"

图3

长7段富有机质页岩游离烃(S1)频率分布(226个样品)"

表2

鄂尔多斯盆地长7段泥页岩氯仿沥青“A”族组成数据"

岩性TOC/%岩石热解S1/(mg/g)氯仿沥青“A”/%氯仿沥青“A”族组成/%
饱和烃芳烃非烃沥青质
黑色页岩14.96(226)4.11(226)0.839 2(90)27.4919.0717.4435.99
暗色泥岩3.78(135)2.19(135)0.617 1(63)57.1816.9713.1512.70

表3

鄂尔多斯盆地木78井长7段页岩油与黑色页岩沥青质互溶性试验结果(1个月)"

实验编号实验后称取 页岩油量/g沉淀沥青质/g实验后页岩油中沥青质含量/%
10.051 30.000 81.56
20.104 20.000 40.38
30.106 40.001 91.79
40.107 00.000 90.84
50.102 10.000 50.49
60.104 70.000 10.10

图4

三组岩样残留游离烃二氯甲烷萃取实验结果"

图5

二氯甲烷快速萃取物(a)与页岩油(b)饱和烃色谱对比(a)里57井,长7段,黑色页岩二氯甲烷快速萃取物;(b) 木78井,长7段,页岩油"

表4

鄂尔多斯盆地长7段代表性样品二氯甲烷萃取物及其残渣三氯甲烷抽提物含量与族组成数据"

井号井深/m岩性二氯甲烷萃取物/%二氯甲烷萃取后岩样三氯甲烷抽提物/%
萃取物饱和烃芳烃非烃沥青质萃取物饱和烃芳烃非烃沥青质
里572 330.20黑色页岩0.48337.7238.8921.641.750.3358.7711.1119.8852.63
里572 338.70黑色页岩0.28637.8942.6317.891.580.1636.2112.4217.3961.49
悦672 029.32黑色页岩0.29880.089.969.960.000.07442.8623.3820.7820.78
悦672 047.85黑色页岩0.5090.50942.8115.659.270.5134.689.656.7373.68
盐563 037.30暗色泥岩0.86958.9128.0311.561.500.29215.1411.9517.1354.18
盐563 057.45暗色泥岩0.64850.8133.6314.131.430.16714.3812.3319.8652.74
罗1962 659.08暗色泥岩0.55723.9136.3014.577.170.4068.7612.3710.8271.13
罗1962 663.62暗色泥岩0.63434.2735.7815.525.390.29711.1114.8115.4360.49

图6

二氯甲烷萃取物含量(游离烃)与有机碳含量关系"

图7

二氯甲烷萃取物含量(游离烃)与核磁共振孔隙度关系"

图8

二氯甲烷萃取物(游离烃)及其残渣三氯甲烷萃取物(吸附烃)含量与有机碳含量关系"

图9

残渣中三氯甲烷萃取物(吸附烃)饱和烃色谱"

图10

重液分离—有机溶剂抽提法测试吸附烃流程"

表5

鄂尔多斯盆地长7段页岩不同密度组分的地球化学参数对比"

井号层位井深/m岩性分类

TOC

/%

氯仿沥青“A”

/%

(氯仿沥青“A”/TOC

/%

氯仿沥青“A”族组成/%

干酪根吸附可溶有机质容量

/(mg/g)

饱和烃芳烃非烃沥青质
里231长72 114.0黑色页岩密度<1.7 g/mL51.392.585.0210.8113.9612.1663.0641.17
密度>2.5 g/mL9.560.484.9916.6713.1618.4251.75
里231长72 108.4黑色页岩密度<1.8 g/mL43.902.886.569.6810.8911.2968.1554.02
密度>2.5 g/mL6.730.426.2016.8211.2118.6953.27
里231长72 112.63黑色页岩密度<1.6 g/mL49.253.136.366.728.5810.0774.6353.02
密度>2.5 g/mL10.550.565.3110.0010.0016.6763.33
里57长72 342.80黑色页岩密度<1.8 g/mL40.051.513.783.9311.4814.1058.3630.73
密度>2.5 g/mL9.480.383.984.1311.5719.8354.55
白522长71 951.36黑色页岩密度<1.8 g/mL49.131.753.576.8313.9812.1154.9728.50
密度>2.5 g/mL11.190.494.369.2412.8714.8554.46
白522长71 952.6黑色页岩密度<1.6 g/mL52.032.254.328.7415.8516.3959.0234.15
密度>2.6 g/mL9.800.616.1915.8512.2017.6854.27

图11

长7段富有机质页岩有机碳含量与氯仿沥青“A”中沥青质含量关系"

图12

长7段富有机质页岩有机碳含量与氯仿沥青“A”关系"

1 贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):121-136.
JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):121-136.
2 宋岩,李卓,姜振学,等.非常规油气地质研究进展与发展趋势[J].石油勘探与开发,2017,44(4):638-648.
SONG Y, LI Z, JIANG Z X, et al. Progress and development trend of unconventional oil and gas geological research[J]. Petroleum Exploration and Development,2017,44(4): 638-648.
3 王红军,马锋,童晓光,等.全球非常规油气资源评价[J].石油勘探与开发,2016,43(6):850-862.
WANG H J, MA F, TONG X G, et al. Assessment of global unconventional oil and gas resources[J].Petroleum Exploration and Development,2016,43(6):850-862.
4 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M].Berlin: Springer Verlag,1984:699.
5 侯连华,邹才能,于志超,等.页岩油气最终采收量地质主控因素研究:以美国海湾盆地鹰滩页岩为例[J].石油勘探与开发,2021, 48(3):1-12.
HOU L H, ZOU C N, YU Z C, et al. Key geological factors controlling the Estimated Ultimate Recovery(EUR)of shale oil and gas: Examples of the Eagle Ford Shale, Gulf Coast Basin, USA[J]. Petroleum Exploration and Development, 2021,48(3): 1-12.
6 HOU L H, MA W J, LUO X, et al. Characteristics and quantitative models for hydrocarbon generation-retention-production of shale under ICP conditions: Example from Chang 7 member in the Ordos Basin[J]. Fuel, 2020, 279: 118497.
7 HOU L H, MA W J, LUO X, et al. Chemical structure changes of lacustrine Type-II kerogen under semi-open pyrolysis as investigated by solid-state 13C NMR and FT-IR spectroscopy[J]. Marine and Petroleum Geology, 2020, 116: 104348.
8 MA W J, HOU L H, LUO X, et al. Role of bitumen and NSOs during the decomposition process of a lacustrine Type-II kerogen in semi-open pyrolysis system[J]. Fuel, 2020, 259: 116211.
9 MA W J, HOU L H, LUO X, et al. Generation and expulsion process of the Chang 7 oil shale in the Ordos Basin based on temperature-based semi-open pyrolysis: Implications for in-situ conversion process[J]. Journal of Petroleum Science and Engineering, 2020, 190: 106710.
10 GB/T 38718-2020页岩油地质评价方法[S].北京:中国标准出版社,2020.
GB/T 38718-2020 Geological Evaluating Methods for Shale Oil[S].Beijing: China Standards Press, 2020.
11 付金华,李士祥,牛小兵,等.鄂尔多斯盆地三叠系长7段源内油藏地质特征与勘探实践[J].石油勘探与开发, 2020,47(5):870-883.
FU J H, LI S X, NIU X B, et al. Geological characteristics and exploration practice of the self-sourced reservoir in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J].Petroleum Exploration and Development,2020,47(5):870-883.
12 付金华,李士祥,侯雨庭,等.鄂尔多斯盆地延长组长7段Ⅱ类页岩油风险勘探突破及其意义[J].中国石油勘探,2020,25(1):78-92.
FU J H, LI S X, HOU Y T, et al. Breakthrough of risk exploration of Class Ⅱ shale oil in Chang 7 member of Yanchang Formation in the Ordos Basin and its significance[J]. China Petroleum Exploration, 2020,25(1):78-92.
13 任战利,李文厚,梁宇,等.鄂尔多斯盆地东南部延长组致密油成藏条件及主控因素[J].石油与天然气地质,2014,35(2):190-198.
REN Z L, LI W H, LIANG Y, et al. Conditions and main controlling factors of oil accumulation in Yanchang Formation of southeastern Ordos Basin[J]. Oil and Gas Geology,2014,35(2):190-198.
14 邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1): 14-26.
ZOU C N, YANG Z, CUI J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J].Petroleum Exploration and Development,2013,40(1):14-26.
15 HOU L H, LUO X, ZHAO Z Y, et al. Identification of oil produced from shale and tight reservoirs in the Permian Lucaogou shale sequence, Jimsar Sag, Junggar Basin, NW China[J]. ACS Omega,2021,6(3): 2127-2142.
16 张金功,袁政文.泥质岩裂缝油气藏的成藏条件及资源潜力[J].石油与天然气地质,2002,23(4):336-338,347.
ZHANG J G, YUAN Z W. Formation and potential of fractured mudstone reservoirs[J]. Oil and Gas Geology,2002,23(4):336-338,347.
17 李士祥,牛小兵,柳广弟,等.鄂尔多斯盆地延长组长7段页岩油形成富集机理[J].石油与天然气地质,2020,41(4):719-729.
LI S Y, NIU X B, LIU G D, et al. Formation and accumulation mechanism of shale oil in the 7th member of Yanchang Formation, Ordos Basin[J].Oil and Gas Geology, 2020,41(4):719-729.
18 YANG W W, LIU G D, FENG Y. Geochemical significance of 17α(H)-diahopane and its application in oil-source correlation of Yanchang Formation in Longdong area, Ordos Basin, China[J]. Marine and Petroleum Geology, 2016,71:238-249.
19 ZHANG W Z, YANG W W, XIE L Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China[J]. International Journal of Coal Geology, 2017,183:38-51.
20 张文正,杨华,杨伟伟,等. 鄂尔多斯盆地延长组长7湖相页岩油地质特征评价[J].地球化学,2015,44(5):505-515.
ZHANG W Z, YANG H, YANG W W, et al. Assessment of geological characteristics of lascustrine shale oil reservoir in Chang 7 member of Yanchang Formation, Ordos Basin[J]. Geochimica,2015,44(5):505-515.
21 HOU L H, MA W J, LUO X, et al. Hydrocarbon generation-retention-expulsion mechanism and shale oil producibility of the Permian Lucaogou shale in the Junggar Basin as simulated by semi-open pyrolysis experiments[J]. Marine and Petroleum Geology, 2021, 125: 104880.
22 邹才能,朱如凯,白斌,等.致密油与页岩油内涵、特征、潜力及挑战[J].矿物岩石地球化学通报,2015,34(1):3-17.
ZOU C N, ZHU R K, BAI B, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(1):3-17.
23 张文正,杨伟伟,罗丽荣,等.一种泥页岩中游离烃的分离提取方法[P]. 中国, 11020499.8.2016.
ZHANG W Z, YANG W W, LUO L R, et al. A method for separating and extracting free hydrocarbons from mudstones and shale[P]. China, 11020499.8. 2016.
[1] 陈俊霖, 王朋, 郜元元, 李开, 杨明, 张家强, 李家程, 李树同. 多元逐步回归法在致密砂岩储层矿物与孔隙度关系分析中的应用[J]. 天然气地球科学, 2021, 32(9): 1372-1383.
[2] 王万春, 吉利明, 宋董军, 张东伟, 吕成福, 苏龙. 不同比例砂岩/油页岩热模拟实验滞留油量及其地质意义——以鄂尔多斯盆地三叠系延长组7段为例[J]. 天然气地球科学, 2021, 32(8): 1142-1150.
[3] 刘显阳, 李士祥, 郭芪恒, 周新平, 刘江艳. 鄂尔多斯盆地延长组长73亚段泥页岩层系岩石类型特征及勘探意义[J]. 天然气地球科学, 2021, 32(8): 1177-1189.
[4] 席胜利, 莫午零, 刘新社, 张雷, 李剑, 黄正良, 王民, 张春林, 朱秋影, 言语, 周能武. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力——以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.
[5] 刘刚, 李建忠, 齐雪峰, 朱明, 袁波, 庞志超. 准噶尔盆地南缘西段下部成藏组合油气藏形成过程[J]. 天然气地球科学, 2021, 32(7): 1009-1021.
[6] 刘雅慧, 王才志, 刘忠华, 王浩, 刘英明. 一种评价页岩油含油性的测井方法[J]. 天然气地球科学, 2021, 32(7): 1084-1092.
[7] 于洲, 周进高, 李程善, 宋晓娇, 罗超, 吴兴宁, 吴东旭, 胡琮. 鄂尔多斯盆地西缘奥陶纪克里摩里期—乌拉力克期构造—岩相古地理特征[J]. 天然气地球科学, 2021, 32(6): 816-825.
[8] 郭轩豪, 谭成仟, 赵军辉, 赵信, 王进. 成岩作用对致密砂岩储层微观结构的影响差异[J]. 天然气地球科学, 2021, 32(6): 826-835.
[9] 焦方正. 陆相低压页岩油体积开发理论技术及实践[J]. 天然气地球科学, 2021, 32(6): 836-844.
[10] 陈诚, 齐宇, 喻梓靓, 王波. 浅水三角洲河道砂体叠置关系的地震识别——以鄂尔多斯盆地东缘临兴S区为例[J]. 天然气地球科学, 2021, 32(5): 772-780.
[11] 王华, 崔越华, 刘雪玲, 强阵阵, 王世成. 致密砂岩气藏多层系水平井立体开发技术——以鄂尔多斯盆地致密气示范区为例[J]. 天然气地球科学, 2021, 32(4): 472-480.
[12] 刘桂珍, 高伟, 尉加盛, 唐文. 混积层系沉积、层序特征——以鄂尔多斯盆地高桥地区本溪组为例[J]. 天然气地球科学, 2021, 32(3): 382-392.
[13] 郭广山, 柳迎红, 李林涛. 鄂尔多斯盆地东缘北段煤层含气量变化规律及控制因素[J]. 天然气地球科学, 2021, 32(3): 416-422.
[14] 韦腾强, 吴长江, 黄亚浩, 洪海涛, 王小娟, 唐友军, 潘珂. 流体包裹体拉曼定量技术在致密砂岩气藏研究中的应用——以四川盆地中部侏罗系沙溪庙组为例[J]. 天然气地球科学, 2021, 32(2): 164-173.
[15] 付金华, 郭雯, 李士祥, 刘显阳, 程党性, 周新平. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学, 2021, 32(12): 1749-1761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[2] 张荣虎;张惠良;马玉杰;沈扬;李昌;张丽娟 . 特低孔特低渗高产储层成因机制—以库车坳陷大北1气田巴什基奇克组储层为例[J]. 天然气地球科学, 2008, 19(1): 75 -82 .
[3] 魏立花, 郭精义, 杨占龙, 黄云峰. 测井约束岩性反演关键技术分析[J]. 天然气地球科学, 2006, 17(5): 731 -735 .
[4] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .
[5] 王卫红,沈平平,马新华,何东博 . 非均质低渗透气藏储层动用能力及影响因素研究[J]. 天然气地球科学, 2005, 16(1): 93 -97 .
[6] 张浩,康毅力,陈一健,李前贵,高波 . 致密砂岩气藏超低含水饱和度形成地质过程及实验模拟研究[J]. 天然气地球科学, 2005, 16(2): 186 -189 .
[7] 滑双君;李会慎;翟桂云;王莉;肖枚;. 沧县隆起大港探区煤层气勘探前景分析[J]. 天然气地球科学, 2003, 14(4): 323 -326 .
[8] 赵靖舟. 论幕式成藏[J]. 天然气地球科学, 2005, 16(4): 469 -476 .
[9] 宋全友;秦勇. 惠民凹陷深部煤层含气性预测[J]. 天然气地球科学, 2005, 16(6): 764 -767 .
[10] 穆亚蓬,;王万春;宋振响, . 生物气源岩评价指标研究现状及展望[J]. 天然气地球科学, 2008, 19(06): 775 -779 .