天然气地球科学 ›› 2021, Vol. 32 ›› Issue (9): 1270–1284.doi: 10.11764/j.issn.1672-1926.2021.04.005

• 非常规天然气 • 上一篇    下一篇

天然气中氢气成因及能源意义

韩双彪1(),唐致远1,杨春龙2,谢林丰1,向朝涵1,HORSFIELD Brian3,王成善4   

  1. 1.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
    2.中国石油勘探开发研究院,河北 廊坊 065007
    3.德国地学研究中心,勃兰登堡州 波茨坦 14473
    4.中国地质大学(北京)生物地质与环境地质国家重点实验室,北京 100083
  • 收稿日期:2021-01-28 修回日期:2021-03-31 出版日期:2021-09-10 发布日期:2021-09-14
  • 作者简介:韩双彪(1987-),男,河北衡水人,副教授,博士,主要从事非常规油气地质评价研究和教学工作. E-mail:bjcuphan@163.com.
  • 基金资助:
    国家自然科学基金项目(42072168);国家重点研发计划项目(2019YFC0605405);中央高校基本科研业务费专项(2021YQDC04)

Genesis and energy significance of hydrogen in natural gas

Shuangbiao HAN1(),Zhiyuan TANG1,Chunlong YANG2,Linfeng XIE1,Chaohan XIANG1,Brian HORSFIELD3,Chengshan WANG4   

  1. 1.College of Geoscience and Surveying Engineering,China University of Mining and Technology,Beijing 100083,China
    2.PetroChina Research Institute of Petroleum Exploration & Development,Langfang 065007,China
    3.German Research Centre for Geosciences,Potsdam,Brandenburg 14473,Germany
    4.State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences,Beijing 100083,China
  • Received:2021-01-28 Revised:2021-03-31 Online:2021-09-10 Published:2021-09-14
  • Supported by:
    The National Natural Science Foundation of China(42072168);the National Key Research and Development Program of China(2019YFC0605405);the Fundamental Research Funds for the Central Universities(2021YQDC04)

摘要:

长期以来,随着油气成因理论的不断拓展和全球对清洁能源需求的日益扩大,氢气作为连接无机与有机生烃学说的重要纽带,同时也作为一种极具前景的清洁能源,逐渐引发了学术界的广泛关注。天然气中氢气的成因相对复杂多样,根据其反应机理分为无机、有机成因两大类,无机成因以地球脱气、水岩反应及水辐射分解为主,而有机成因以生物作用和有机质热解为主。目前主要利用氢同位素和伴生气体地球化学特征等方法判识氢气成因,但是由于氢气本身复杂多样的来源及其活泼的化学性质,目前尚不能系统地准确判识氢气成因。由于氢气成因的广泛性,全球各地不同地质条件下均发现了不同氢浓度的天然气,且氢气含量变化极大(0.1%~99%)。氢气既可以作为还原剂在费托合成中参与生烃,又可以作为氢源在有机质热演化过程中提高烃类物质产率,因此氢气的存在将可能延伸深层天然气勘探开发的深度下限。在系统总结氢气成因机理和分布规律的基础上,探讨了天然气中氢气的能源意义,为未来富含氢气天然气资源的研究提供了参考。

关键词: 天然气, 氢气, 成因类型, 分布规律, 能源意义

Abstract:

For a long time, with the continuous expansion of the oil and gas genesis theory and the increasing global demand for clean energy, hydrogen, as an important link connecting the theory of inorganic and organic hydrocarbon generation, as well as a promising clean energy, has gradually attracted widespread academic attention. The genesis of hydrogen in natural gas is relatively complex and diverse. According to its reaction mechanism, it can be divided into two categories: inorganic and organic. Inorganic genesis is mainly earth degassing, water rock reaction and water radiation decomposition, while organic genesis is dominated by biological action and organic matter pyrolysis. At present, hydrogen isotope and geochemical characteristics of associated gases are mainly used to identify the origin of hydrogen. However, due to the complex and diverse sources of hydrogen and its active chemical properties, it is still unable to identify the origin of hydrogen systematically and accurately. Due to the extensive genesis of hydrogen, natural gas with different hydrogen concentrations has been found in different geological conditions around the world, and the hydrogen content varies greatly (0.1%-99%). Hydrogen can participate in hydrocarbon generation in Fischer Tropsch synthesis as a reducing agent, and also can be used as a hydrogen source to improve the hydrocarbon yield during the thermal evolution of organic matter. Therefore, the existence of hydrogen may extend the lower limit of deep gas exploration and development. Based on the systematic summary of the genetic mechanism and distribution of hydrogen, this paper discusses the energy significance of hydrogen in natural gas, and provides a reference for the future research on hydrogen rich natural gas resources.

Key words: Natural gas, Hydrogen, Genetic type, Distribution law, Energy significance

中图分类号: 

  • TE122.1+1

图1

不同岩石在差异条件下氢气释放量曲线(修改自FREUND等[29], 2002)"

图2

全球不同地区天然气的氮气—氢气—甲烷三元图"

图3

不同成因氢气的组成特征判识(修改自孟庆强[75],2017)"

图4

橄榄石流体包裹体中氢气和甲烷形成的概念模型(修改自KLEIN等[20],2019)"

图5

有机质热演化过程中的生氢—耗氢反应(修改自POETZ等[78],2014)"

1 张海龙. 中国新能源发展研究[D]. 长春: 吉林大学, 2014.
ZHANG H L. Research on The Development of New Energy in China[D]. Changchun: Jilin University, 2014.
2 IEA. The Future of Hydrogen: Seizing Today’s Opportunities[R]. Osaka, Japan: International Energy Agency, 2019:3.
3 张博, 万宏, 徐可忠, 等. 世界各国氢能源经济发展举措分析[J]. 国际石油经济, 2017, 25(9): 65-70.
ZHANG B, WAN H, XU K Z, et al. Hydrogen energy economy development in various countries[J]. International Petroleum Economy, 2017, 25(9): 65-70.
4 徐永昌, 沈平, 刘文汇, 等. 天然气成因理论及应用[M]. 北京: 科学出版社, 1994: 277-341.
XU Y C, SHEN P, LIU W H, et al. Natural Gas Genesis Theory and its Application[M]. Beijing:Science Press, 1994: 277-341.
5 上官志冠, 霍卫国. 腾冲热海地热区逸出H2的δD值及其成因[J]. 科学通报, 2001, 46(15): 1316-1320.
SHANGGUAN Z G, HUO W G. δD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin.[J].Chinese Science Bulletin, 2001, 46(15): 1316-1320.
6 上官志冠, 白春华, 孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学:D辑,地球科学, 2000, 30(4): 407-414.
SHANGGUAN Z G, BAI C H, SUN M L. Mantle-derived magmatic gas releasing features at the Rehai area, Tengchong County, Yunnan Province, China[J]. Science in China: Series D,Earth Sciences,2000, 30(4): 407-414.
7 陶明信, 徐永昌, 史宝光, 等. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学: D辑,地球科学, 2005, 35(5): 441-451.
TAO M X, XU Y C, SHI B G, et al. Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China[J]. Science in China: Series D,Earth Science, 2005, 35(5): 441-451.
8 胡文瑄. 盆地深部流体主要来源及判识标志研究[J]. 矿物岩石地球化学通报, 2016, 35(5): 817-826,806.
HU W X. Origin and indicators of deep-seated fluids in sedimentary basins[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2016, 35(5): 817-826,806.
9 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机-无机相互作用下油气形成的基本内涵[J]. 中国科学:地球科学, 2019, 49(3): 499-520.
LIU Q Y, ZHU D Y, MENG Q Q, et al. The scientific connotation of oil and gas formations under deep fluids and organicinorganic interaction[J]. Science in China: Earth Sciences, 2019, 49(3): 499-520.
10 GUÉLARD J, BEAUMONT V, ROUCHON V, et al. Natural H2 in Kansas: Deep or shallow origin[J]. Geochemistry Geophysics Geosystems, 2017, 18(5):1-25.
11 金之钧, 胡文瑄, 张刘平, 等. 深部流体活动及油气成藏效应[M]. 北京: 科学出版社, 2007: 1-150.
JIN Z J, HU W X, ZHANG L P, et al. Deep-Derived Fluid and its Effect on Hydrocarbon Accumulation[M]. Beijing: Science Press, 2007: 1-150.
12 PRINZHOFER A, TAHARA CISSE C S, DIALLO A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19315-19326.
13 GOEBEL E, COVENEY R J, ANGINO E, et al. Geology, composition, isotopes of naturally occurring H2/N2 rich gas from wells near Junction City, Kans[J]. Oil and Gas Journal, 1984, 82: 215-222.
14 LARIN N, ZGONNIK V, RODINA S, et al. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the european craton in Russia[J]. Natural Resources Research, 2014, 24(3): 369-383.
15 ZGONNIK V, BEAUMONT V, DEVILLE E, et al. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA)[J]. Progress in Earth & Planetary Science, 2015, 2(1): 31.
16 MYAGKIY A, MORETTI I, BRUNET F. Space and time distribution of subsurface H2 concentration in so-called "fairy circles": Insight from a conceptual 2-D transport model[J]. Bulletin de la Société Géologique de France,2020,191(1-3):13.
17 丁抗. 水岩作用的地球化学动力学[J]. 地质地球化学, 1989, 17(6): 29-38.
DING K. Geochemical dynamics of water-rock interaction[J]. Geology-Geochemistry, 1989, 17(6): 29-38.
18 丁兴,刘志锋,黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究:跨学科视野中的工程, 2016,8(3): 258-268.
DING X, LIU Z F, HUANG R F, et al. Water-rock interaction in oceanic subduction zone:Serpentinization[J]. Journal of Engineering Studies, 2016,8(3): 258-268.
19 COVENEY R M J, GOEBEL E D, ZELLER E J, et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bulletin, 1987, 71(1): 39-48.
20 KLEIN F, GROZEVA N G, SEEWALD J S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions[J]. Proceedings of the National Academy of Sciences, 2019, 116 (36): 17666-17672.
21 张明峰, 王先彬, 妥进才, 等. 蛇纹石化作用的气体形成研究进展[J]. 地球科学与环境学报, 2016, 38(1): 11-20.
ZHANG M F, WANG X B, TUO J C, et al. Review on gas formation of serpentinization[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 11-20.
22 DEVILLE E, PRINZHOFER A. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia[J]. Chemical Geology, 2016,440: 139-147.
23 NEAL C, STANGER G. Hydrogen generation from mantle source rocks in Oman[J]. Earth amd Planetary Seoemce Letters, 1983, 66: 315-320.
24 GREGORY S, BARNETT M, FIELD L, et al. Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry[J]. Microorganisms, 2019, 7(2): 53.
25 POTTER J, SALVI S, LONGSTAFFE F J. Abiogenic hydrocarbon isotopic signatures in granitic rocks: Identifying pathways of formation[J]. Lithos,2013,182-183: 114-124.
26 SALVI S, WILLIAMS-JONES A E. Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 83-99.
27 NEWELL K D, DOVETON J H, MERRIAM D F, et al. H2-rich and hydrocarbon gas recovered in a deep precambrian well in northeastern Kansas[J]. Natural Resources Research,2007,16(3): 277-292.
28 KITA I, MATSUO S. H2 generation by reaction between H2O and crushed rock: An experimental study on H2 degassing from the active fault zone[J]. Journal of Geophysical Research,1982, 87(B13): 10789-10795.
29 FREUND F, DICKINSON J T, CASH M. Hydrogen in rocks: An energy source for deep microbial communities[J]. Astrobiology, 2002, 2(1): 83-92.
30 KLEIN F, TARNAS J D, BACH W. Abiotic sources of molecular hydrogen on earth[J]. Elements, 2020, 16(1): 19-24.
31 王文青. 烃源岩系辐射生氢模拟实验及其油气地质意义[D]. 西安:西北大学, 2019: 30-50.
WANG W Q. Simulation Experiment of Radiation Hydrogen Generation in Source Rock System and its Geological Significance[D]. Xi'an: Northwest University, 2019: 30-50.
32 CHUPIN F, DANNOUX-PAPIN A, RAVACHE Y N, et al. Water content and porosity effect on hydrogen radiolytic yields of geopolymers[J]. Journal of Nuclear Materials, 2017, 494: 138-146.
33 LIN L H, HALL J, LIPPMANN‐PIPKE J, et al. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): 1-13.
34 TÜRKE A, NAKAMURA K, BACH W. Palagonitization of basalt glass in the flanks of mid-ocean ridges: Implications for the bioenergetics of oceanic intracrustal ecosystems[J]. Astrobiology, 2015, 15(10): 793-803.
35 DZAUGIS M E, SPIVACK A J, DUNLEA A G, et al. Radiolytic hydrogen production in the subseafloor basaltic aquifer[J]. Frontiers in Microbiology, 2016, 7: 76.
36 JOHN P, NIGEL B. Hydrogen from radiolysis of aqueous fluid inclusions during diagenesis[J]. Minerals,2017,7(8):130.
37 TRUCHE L, JOUBERT G, DARGENT M, et al. Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca[J]. Earth and Planetary Sciences Letters, 2018, 493: 186-197.
38 LOLLAR B S, ONSTOTT T C, LACRAMPE-COULOUME G, et al. The contribution of the Precambrian continental lithosphere to global H2 production[J]. Nature, 2014, 516(7531): 379-82.
39 WORMAN S L,PRATSON L F,KARSON J A. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere[J]. Geophysical Research Letters, 2016, 43(12): 6435-6443.
40 PICHÉ-CHOQUETTE S, CONSTANT P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes[J]. Applied and Environmental Microbiology, 2019,85(6): e02418-18.
41 ARMSTRONG F A, ALBRACHT S P J. [NiFe]-hydrogenases: Spectroscopic and electrochemical definition of reactions and intermediates[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1829): 937-954.
42 YAGI T, YAMASHITA K, OKADA N, et al. Hydrogen photoproduction in green algae Chlamydomonas reinhardtii sustainable over 2 weeks with the original cell culture without supply of fresh cells nor exchange of the whole culture medium[J]. Journal of Plant Research, 2016, 129: 771-779.
43 CONSTANT P, HALLENBECK P C. Hydrogenase[J]. Biohydrogen, 2013: 75-102.
44 BURRIS R H. Nitrogenases[J]. Journal of Biological Chemistry, 1991, 266(15): 9339-9342.
45 POSTGATE J R. The nitrogen cycle || biology nitrogen fixation: Fundamentals[J]. Philosophical Transactions of the Royal Society of London:Series B,Biological Sciences,1982,296(1082): 375-385.
46 HUNT S, GAITO S T, LAYZELL D B. Model of gas exchange and diffusion in legume nodules - II. Characterisation of the diffusion barrier and estimation of the concentrations of CO2, H2 and N2 in the infected cells[J]. Planta, 1988, 173(1): 128-141.
47 CONRAD R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments[J]. Fems Microbiology Ecology,1999,28(3): 193-202.
48 ZIEGS V, NOAH M, POETZ S, et al. Unravelling maturity- and migration-related carbazole and phenol distributions in central Graben crude oils[J]. Marine and Petroleum Geology, 2018, 94: 114-130.
49 王晓锋, 刘文汇, 徐永昌, 等. 水介质对气态烃形成演化过程氢同位素组成的影响[J]. 中国科学:地球科学,2012,42(1): 103-110.
WANG X F, LIU W H, XU Y C, et al. Effect of water medium on hydrogen isotope composition of gaseous hydrocarbon formation and evolution[J]. Science China: Earth Sciences. 2012, 42(1): 103-110.
50 钟宁宁, HERWOOD N, WILKINS R W T. 显微组分激光诱导荧光特性与其富氢程度关系的初步研究[J]. 科学通报, 2000, 45(3): 323-328.
ZHONG N N, SHERWOOD N, WILKINS R W T. Laser-induced fluorescence of macerals in relation to its hydrogen richness[J]. Science Bulletin, 2000, 45(3): 323-328.
51 熊永强, 耿安松, 潘长春, 等. 陆相有机质中单体烃的氢同位素组成特征[J]. 石油勘探与开发, 2004, 31(1): 60-63.
XIONG Y Q, GENG A S, PAN C C, et al. Hydrogen isotopic compositions of individual n-alkanes in terrestrial source rocks[J]. Petroleum Exploration and Development, 2004, 31(1): 60-63.
52 周志玲. 低煤阶煤及不同化学组分热解甲烷和氢气的生成特征与机理[D]. 太原:太原理工大学, 2010.
ZHOU Z L. Evolution Kinetics and Mechanisms of Methane and Hydrogen from Low Rank Coal and Different Chemical Components[D]. Taiyuan:Taiyuan University of Technology, 2010.
53 LI X Q, KROOSS B M, WENIGER P, et al. Liberation of molecular hydrogen (H2) and methane (CH4) during non-isothermal pyrolysis of shales and coals: Systematics and quantification[J]. International Journal of Coal Geology, 2015, 137: 152-164.
54 LI X Q, KROOSS B M, WENIGER P, et al. Molecular hydrogen (H2) and light hydrocarbon gases generation from marine and lacustrine source rocks during closed-system laboratory pyrolysis experiments[J]. Journal of Analytical & Applied Pyrolysis, 2017, 126: 275-287.
55 PATIENCE R L, MANN A L, POPLETT I J F. Determination of molecular structure of kerogens using 13C NMR spectroscopy: II. The effects of thermal maturation on kerogens from marine sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2725-2742.
56 LEWAN M D, STÉPHANIE ROY. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J].Organic Geochemistry,2012, 42(1): 31-41.
57 秦胜飞,周国晓.气田水对甲烷氢同位素分馏作[J]. 天然气地球科学, 2018,29(3): 311-316.
QIN S F, ZHOU G X. The effect of gas field water on hydrogen isotope fractionation of methane[J]. Natural Gas Geoscience, 2018, 29(3): 311-316.
58 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333.
59 SEEWALD J S, BENITEZNELSON B C, WHELAN J K. Laboratory and theoretical constraints on the generation and composition of natural gas[J]. Geochimica et Cosmochimica Acta, 1998, 62(9): 1599-1617.
60 DERYAGIN B V , FEDOSAYEV D V . The growth of diamond and graphite from the gas phase[J]. Surface and Coatings Technology, 1989, 38(1-2): 131-248.
61 SUZUKI N, SAITO H, HOSHINO T. Hydrogen gas of organic origin in shales and metapelites[J]. International Journal of Coal Geology, 2017, 173: 227-236.
62 孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216.
MENG Q Q, JIN Z J, SUN D S, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J].Petroleum Geology & Experiment,2021, 43(2): 208-216.
63 SATO M, SUTTON A J, MCGEE K A, et al. Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984[J]. Journal of Geophysical Research Solid Earth, 1986, 91(B12): 12315-12326.
64 WAKITA H, NAKAMURA Y, KITA I, et al. Hydrogen release: New indicator of fault activity[J]. Science, 1980, 210(4466): 188-190.
65 SATAKE H, OHASHI M, HAYASHI Y. Discharge of H2 from the Atotsugawa and Ushikubi Faults, Japan, and its relation to earthquakes[J]. Pure and Applied Geophysics, 1984, 122(2): 185-193.
66 VACQUAND C, DEVILLE E, BEAUMONT V, et al. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica et Cosmochimica Acta Journal of the Geochemical Society & the Meteoritical Society, 2018.
67 HOSGÖRMEZ H. Origin of the natural gas seep of irali (Chimera), Turkey: Site of the first Olympic fire[J]. Journal of Asian Earth ences, 2007, 30(1): 131-141.
68 NIVIN V A. Free hydrogen-hydrocarbon gases from the Lovozero loparite deposit (Kola Peninsula, NW Russia)[J]. Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry, 2016, 74:44-55.
69 帅燕华, 张水昌, 苏爱国, 等. 柴达木盆地三湖地区产甲烷作用仍在强烈进行的地球化学证据[J]. 中国科学:D辑,地球科学,2009, 39(6): 734-740.
SHUAI Y H, ZHANG S C, SU A G, et al. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin[J]. Science in China:Series D,Earth Sciences,2009, 39(6): 734-740.
70 孟庆强, 金之钧, 刘文汇, 等. 天然气中伴生氢气的资源意义及其分布[J]. 石油实验地质, 2014, 36(6): 712-717,724.
MENG Q Q, JIN Z J, LIU W H, et al. Distribution and genesis of hydrogen gas in natural gas[J]. Petroleum Geology & Experiment, 2014, 36(6): 712-717,724.
71 杨玉峰,张秋,黄海平,等. 松辽盆地徐家围子断陷无机成因天然气及其成藏模式[J]. 地学前缘, 2000,7(4): 523-533.
YANG Y F, ZHANG Q, HUANG H P, et al. Abiogenic natural gases and their accumulation model in Xujiaweizi area, Songliao Basin, northeast China[J]. Earth Science Frontier, 2000,7(4): 523-533.
72 MENG Q Q, SUN Y H, TONG J Y, et al. Distribution and geochemical characteristics of hydrogen in natural gas from the Jiyang Depression, eastern China[J]. Acta Geologica Sinica:English Edition, 2015, 89(5): 1616-1624.
73 徐永昌, 刘文汇, 沈平,等. 天然气地球化学的重要分支——稀有气体地球化学[J]. 天然气地球科学, 2003, 41(3):1970-1972.
XU Y C, LIU W H, SHEN P, et al. An important branch of gas geochemistry: Noble gas geochemistry[J]. Natural Gas Geoscience, 2003, 41(3):1970-1972.
74 刘全有, 金之钧, 张殿伟, 等. 塔里木盆地天然气地球化学特征与成因类型研究[J]. 天然气地球科学, 2008, 19(2): 234-237.
LIU Q Y, JIN Z J, ZHANG D W, et al. Geochemical characteristics and genesis of natural gas in Tarim Basin[J]. Natural Gas Geoscience, 2008, 19(2): 234-237.
75 孟庆强. 济阳坳陷天然气中氢气的地球化学特征及其油气地质意义[C]. 北京:第七届中国石油地质年会, 2017.
MENG Q Q. Geochemical Characteristics and Petroleum Geological Significance of Hydrogen in Natural Gas from the Jiyang Depression[C]. Beijing: Special Edition of the 7th China Petroleum Geology Annual Conference, 2017.
76 戴金星, 石昕, 卫延召. 无机成因油气论和无机成因的气田(藏)概略[J]. 石油学报, 2001, 22(6): 5-10.
DAI J X, SHI X, WEI Y Z. Summary of the abiogenic origin theory and the abiogenic gas pools(fields)[J]. Acta Petrolei Sinica, 2001, 22(6): 5-10.
77 戴金星, 邹才能, 张水昌, 等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学: D辑, 地球科学, 2008, 38(11): 1329-1341.
DAI J X, ZOU C N, ZHANG S C, et al. Discrimination of abiogenic and biogenic alkane gases[J]. Science in China: Series D,Earth Sciences, 2008, 38(11): 1329-1341.
78 POETZ S, HORSFIELD B, WILKES H. Maturity-driven generation and transformation of acidic compounds in the organic-rich posidonia shale as revealed by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2014, 28(8): 4877-4888.
79 高岗, 柳广弟. 湖相烃源岩混合型母质成烃演化特征热模拟研究[J]. 矿物岩石地球化学通报, 2010, 29(3): 233-237.
GAO G, LIU G D. Simulation study of evolution characteristics of hydrocarbon generated from blended organic matters in the lacustrine source rock[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 233-237.
80 金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J].地球科学, 2002,27(6): 659-665.
JIN Z J, ZHANG L P, YANG L, et al. Preliminary study on the geochemistry characteristics of deep fluid and the effect of oil and gas accumulation in the sedimentary basin[J]. Journal of Earth Science, 2002,27(6): 659-665.
81 方向晨. 国内外渣油加氢处理技术发展现状及分析[J]. 化工进展, 2011, 30(1): 95-104.
FANG X C. Development of residuum hydroprocessing technologies[J].Chemical Industry and Engineering Progress, 2011, 30(1): 95-104.
82 朱全力, 赵旭涛, 赵振兴, 等. 加氢脱硫催化剂与反应机理的研究进展[J]. 分子催化, 2006, 20(4): 372-383.
ZHU Q L, ZHAO X T, ZHAO Z X, et al. Research progress of hydrodesulfurization catalyst and reaction mechanism[J]. Journal of Molecular Catalysis,2006,20(4):372-383.
83 姚春雷, 全辉, 张忠清. 中、低温煤焦油加氢生产清洁燃料油技术[J]. 化工进展, 2013, 32(3): 501-507.
YAO C L, QUAN H, ZHANG Z Q. Hydrogenation of medium and low temperature coal tars for production of clean fuel oil[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 501-507.
84 李冬, 李稳宏, 高新, 等. 中低温煤焦油加氢改质工艺研究[J]. 煤炭转化, 2009, 32(4): 81-84.
LI D, LI W H, GAO X, et al. Hydro-upgrading process of medium and low temperature coal tar[J]. Coal Conversion, 2009, 32(4): 81-84.
85 翟西平, 殷长龙, 刘晨光. 油脂加氢制备第二代生物柴油的研究进展[J]. 石油化工, 2011, 40(12): 1364-1369.
ZHAI X P, YIN C L, LIU C G. Advances in second generation biodiesel prepared by hydroprocessing of oils and fats[J]. Petrochemical Technology, 2011, 40(12): 1364-1369.
86 于蓬, 王健, 郑金凤, 等. 氢能利用与发展综述[J]. 汽车实用技术, 2019,23(24): 22-25.
YU P, WANG J, ZHEHG J F, et al. Review on hydrogen energy utilization and development[J]. Automobile Applied Te-chnology, 2019,23(24): 22-25.
87 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255.
ZHAO Y Z, MENG B, CHEN L X, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255.
88 SUVERNA T, RAM P, ASHUTHOSH M, et al. Current scenario of CNG vehicular pollution and their possible abatement technologies: An overview[J]. Environmental Science and Pollution Research, 2020, 27(32): 39977-40000.
89 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[M]. 北京: 中国标准出版社, 2019.
China Hydrogen Energy Alliance. White Paper on China's Hydrogen Energy and Fuel Cell Industry[M]. Beijing: China Standards Press, 2019.
90 毛宗强, 毛志明, 余皓, 等, 制氢工艺与技术[M]. 北京: 化学工业出版社, 2018.
MAO Z Q, MAO Z M, YU H, et al. Hydrogen Production Process and Technology[M].Beijing:Chemical Industry Press, 2018.
91 黄宣旭, 练继建, 沈威, 等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设, 2020, 7(2): 1-13.
HUANG X X, LIAN J J, SHEN W, et al. Economic analysis of China's large-scale hydrogen energy supply chain[J]. Southern Energy Construction, 2020, 7(2): 1-13.
92 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083.
SUN H X, LI Z, CHEN A B, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083.
93 吴芝, 孙岚, 林昌健. 太阳能光催化制氢研究进展[J]. 电化学, 2019, 25(5): 529-552.
WU Z, SUN L, LIN C J. Progress in solar photocatalytic hydrogen production[J]. Journal of Electrochemistry,2019,25(5):529-552.
[1] 赵军, 师执峰, 李元平, 向薪燃, 李杰, 魏纳. 天然气水合物储层导电特性模拟与饱和度计算[J]. 天然气地球科学, 2021, 32(9): 1261-1269.
[2] 康志勇,张兴文,黄祥光,回岩,李龙. 凝析气体积系数理论方程新形式推导及应用[J]. 天然气地球科学, 2021, 32(9): 1403-1409.
[3] 杨春龙, 谢增业, 李剑, 国建英, 张璐, 金惠, 郝翠果, 王晓波, 李志生, 李谨, 齐雪宁. 四川盆地中侏罗统沙溪庙组天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(8): 1117-1126.
[4] 刘海亮, 刘四兵, 周栋, 刘文, 金思丁. 四川盆地西部致密砂岩气来源及运移地球化学示踪[J]. 天然气地球科学, 2021, 32(8): 1127-1141.
[5] 谢增业, 杨春龙, 李剑, 张璐, 国建英, 金惠, 郝翠果. 四川盆地致密砂岩天然气成藏特征及规模富集机制[J]. 天然气地球科学, 2021, 32(8): 1201-1211.
[6] 马安来, 何治亮, 云露, 吴鲜, 李慧莉, 邱楠生, 常健, 林会喜, 曹自成, 朱秀香, 尤东华. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7): 1047-1060.
[7] 卢晓林, 李美俊, 王小娟, 唐友军, 韦腾强, 何大祥, 洪海涛, 吴长江, 冉子超. 川中地区侏罗系天然气与原油轻烃地球化学特征对比[J]. 天然气地球科学, 2021, 32(7): 1073-1083.
[8] 丁玉祥, 朱光有, 张怀顺, 周玉萍, 姚晓洁, 吴高恩, 汤顺林. 天然气中氡的研究进展[J]. 天然气地球科学, 2021, 32(5): 754-763.
[9] 韩中喜, 垢艳侠, 李谨, 葛守国, 田闻年, 黄恒. 四川盆地天然气汞含量分布特征及成因分析[J]. 天然气地球科学, 2021, 32(3): 356-362.
[10] 张怀顺, 朱光有, 丁玉祥, 周玉萍, 姚晓洁, 吴高恩, 汤顺林. 天然气中汞的来源及脱汞技术[J]. 天然气地球科学, 2021, 32(3): 363-371.
[11] 王国建, 袁玉松, 李武, 吴传芝, 邹雨, 卢丽, 李凤丽. 天然气扩散系数研究现状及存在问题[J]. 天然气地球科学, 2021, 32(3): 372-381.
[12] 文志刚, 窦立荣, 程顶胜, 李威. 乍得Bongor盆地南部坳陷油气特征与成因[J]. 天然气地球科学, 2021, 32(2): 205-214.
[13] 戴金星, 倪云燕, 董大忠, 秦胜飞, 朱光有, 黄士鹏, 于聪, 龚德瑜, 洪峰, 张延玲, 严增民, 刘全有, 吴小奇, 冯子齐. “十四五”是中国天然气工业大发展期——对中国“十四五”天然气勘探开发的一些建议[J]. 天然气地球科学, 2021, 32(1): 1-16.
[14] 贾爱林, 何东博, 位云生, 李易隆. 未来十五年中国天然气发展趋势预测[J]. 天然气地球科学, 2021, 32(1): 17-27.
[15] 崔永谦, 王飞宇, 张传宝, 冯伟平, 侯凤香, 马学峰, 马樱. 渤海湾盆地冀中坳陷霸县凹陷深层沙四段源岩有机相评价及意义[J]. 天然气地球科学, 2021, 32(1): 38-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[2] KeithA.Kvenvolden;李玉梅;. 天然气水合物中甲烷的地球化学研究[J]. 天然气地球科学, 1998, 9(3-4): 9 -18 .
[3] 杨桂茹,崔周旗,崔俊峰,田福清. 冀中坳陷油气储量分布特征及未来储量区带分析[J]. 天然气地球科学, 2009, 20(6): 923 -929 .
[4] Alan T.James; 张志强; . 运用湿气组分的碳同位素组成进行储集气对比[J]. 天然气地球科学, 1991, 2(3): 115 -122 .
[5] 马向贤,郑建京,郑国东. 含铁矿物对褐煤生烃演化的催化作用[J]. 天然气地球科学, 2014, 25(7): 1065 -1071 .
[6] 黄保家,黄灏,金秋月,周刚,赵幸滨. 下扬子皖东南地区二叠系页岩储层特性及甲烷吸附能力[J]. 天然气地球科学, 2015, 26(8): 1516 -1524 .
[7] 贾智彬, 侯读杰, 孙德强, 黄奕雄. 热水沉积判别标志及与烃源岩的耦合关系[J]. 天然气地球科学, 2016, 27(6): 1025 -1034 .
[8] 王国建,唐俊红,汤玉平,李吉鹏,杨俊,卢丽. 地表油气地球化学勘探中轻烯烃形成机理探讨[J]. 天然气地球科学, 2017, 28(2): 324 -330 .
[9] 蔡春芳. 有机硫同位素组成应用于油气来源和演化研究进展[J]. 天然气地球科学, 2018, 29(2): 159 -167 .
[10] 王秀平,牟传龙,肖朝晖,郑斌嵩,陈尧,王启宇,刘惟庆. 湖北鹤峰地区二叠系大隆组黑色岩系特征及成因初探[J]. 天然气地球科学, 2018, 29(3): 382 -396 .