天然气地球科学 ›› 2021, Vol. 32 ›› Issue (7): 1047–1060.doi: 10.11764/j.issn.1672-1926.2021.03.012

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因

马安来1(),何治亮2,云露3(),吴鲜3,李慧莉1,邱楠生4,常健4,林会喜1,曹自成3,朱秀香3,尤东华1   

  1. 1.中国石化石油勘探开发研究院,北京 102260
    2.中国石油化工股份有限公司科技部,北京 100728
    3.中国石化西北油田分公司,新疆 乌鲁木齐 830011
    4.中国石油大学(北京)地球科学学院,北京 102249
  • 收稿日期:2021-01-06 修回日期:2021-03-16 出版日期:2021-07-10 发布日期:2021-07-22
  • 通讯作者: 云露 E-mail:maal.syky@sinopec.com;yunl.xbsj@sinopec.com
  • 作者简介:马安来(1969-),男,安徽淮南人,副教授, 博士,主要从事油气地球化学与成藏机理研究.E-mail: maal.syky@sinopec.com.
  • 基金资助:
    国家自然科学基金项目(U1906003);中国石油化工股份有限公司科技部项目(P19024)

The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China

An-lai MA1(),Zhi-liang HE2,Lu YUN3(),Xian WU3,Hui-li LI1,Nan-sheng QIU4,Jian CHANG4,Hui-xi LIN1,Zi-cheng CAO3,Xiu-xiang ZHU3,Dong-hua YOU1   

  1. 1.Petroleum Exploration & Production Research Institute,SINOPEC,Beijing 102260,China
    2.Ministry of Science & Technology,SINOPEC,Beijing 100728,China
    3.Northwest Oilfield Company,SINOPEC,Urumqi 830011,China
    4.School of Earth Science,China University of Petroleum (Beijing),Beijing 102249,China
  • Received:2021-01-06 Revised:2021-03-16 Online:2021-07-10 Published:2021-07-22
  • Contact: Lu YUN E-mail:maal.syky@sinopec.com;yunl.xbsj@sinopec.com
  • Supported by:
    The National Science Foundation of China(U19B6003);the Project of Science and Technology Department of SINOPEC(P19024)

摘要:

塔里木盆地顺托果勒地区奥陶系超深层油气藏相态分布复杂, 轻质油藏、挥发油藏、凝析油气藏和干气藏并存。根据天然气组分、组分碳氢同位素以及天然气轻烃等分析数据,研究了顺北地区奥陶系超深层天然气的地球化学特征及成因, 并与顺托、顺南、古隆、古城地区奥陶系天然气成因进行了对比。顺北地区奥陶系超深层天然气干燥系数低, 绝大多数天然气干燥系数分布范围在0.52~0.88之间, 天然气为湿气。天然气普遍含有微量的H2S, 天然气甲烷碳同位素值偏低,分布范围为-49.6‰~-44.7‰, 乙烷碳同位素值分布范围为-39.3‰~-32.5‰。天然气碳、氢同位素均具有正序系列。天然气轻烃甲基环己烷指数小于35%, C5-C7轻烃组成以正构烷烃和异构烷烃为主。顺托果勒地区奥陶系天然气均为油型气, 顺北地区奥陶系天然气以干酪根裂解气为主, 混有原油裂解早期阶段形成的湿气; 而顺托、顺南、古隆、古城地区奥陶系天然气为原油裂解气。2种不同成因的裂解气具有相同的气源岩——寒武系, 不同类型天然气的分布与不同地区奥陶系经历的最高古地温和(或)现今地温密不可分, 顺北地区奥陶系T74界面经历的最高古地温、现今地温分布范围分别在170~180 ℃、150~160 ℃之间, 低于顺托和顺南地区奥陶系T74界面经历的最高古地温和现今地温, 未达到原油大量裂解温度, 因而顺北地区奥陶系保存有轻质油藏和挥发油藏, 天然气以干酪根裂解气为主,而由顺托、顺南、古隆、古城地区,现今地温和(或)古地温高, 导致原油大规模裂解, 使得奥陶系油气藏由凝析油气藏至干气藏变化,天然气为原油裂解气。

关键词: 天然气, 奥陶系, 油型气, 超深层, 顺北地区, 塔里木盆地

Abstract:

Ultra-deep Ordovician strata in Shuntuoguole area, Tarim Basin have complex oil & gas phases, in which light oil, volatile oil, condensate and dry gas phases coexist. The study focused on the geochemical characteristics and origin of Ordovician ultra-deep natural gases in the North Shuntuoguole area and compared with that of the gases in Shuntuo, South Shuntuoguole, Gulong and Gucheng area using natural gas composition, carbon and hydrogen isotopes and light hydrocarbon data. The Ordovician ultra-deep natural gas in the North Shuntuoguole area is wet gas, with dryness indexes ranging from 0.52 to 0.88, containing trace content of H2S. The carbon isotopes of natural gas are relatively low, with δ13C1 and δ13C2 values ranging from -49.6‰ to -44.7‰, from -39.3‰ to -32.7‰, respectively. All the natural gas showed positive carbon and hydrogen isotope series. The C5-C7 light hydrocarbon is dominated by n-alkane and iso-alkane with methyl cyclohexane index of light hydrocarbon lower than 35%. All the Ordovician natural gases in Shuntuogule area are oil-type gases. The Ordovician natural gases in the North Shuntuoguole area are dominated with kerogen cracking gases, mixed with small amount of wet gases from the early stage of oil cracking. Whereas all the gases in Shuntuo, South Shuntuoguole, Gulong and Gucheng areas are oil cracking gas. Both types of cracking gases were originated from the Cambrian source rocks. The distribution of two types of cracking gases in Shuntuogule area is correlated with the maximum paleo-temperature and (or) present strata temperature of Ordovician. The maximum paleo-temperature and present strata temperature of Ordovician in North Shuntuoguole area are 170-180 ℃ and 150-160 ℃, respectively, lower than that in Shuntuo and South Shuntuoguole area, unreached the temperature of large amount oil cracking. Thus the light oil and volatile oil phrase were preserved in the North Shuntuoguole area with kerogen cracking gas dominated. Whereas from Shuntuo to South Shuntuoguole to Gulong to Gucheng area, due to large scale of oil cracking resulted of high present strata temperature and (or) paleo-temperature of Ordovician, the reservoir phases varied from condensate to dry gas phase and natural gases are oil-cracking gas.

Key words: Natural gas, Ordovician, Oil-type gas, Ultra-deep, North Shuntuoguole area, Tarim Basin

中图分类号: 

  • TE122.1+12

图1

塔里木盆地构造单元(a)和顺托果勒地区构造位置(b)"

表1

顺北地区奥陶系深层天然气组分组成"

断裂带井号深度/m层位含量/%C1/C1-5
CH4C2H6C3H8iC4nC4iC5nC5H2N2CO2C2-5

1号

断裂

SB1-3CH7 274.00~7 357.98O2yj83.736.993.250.711.040.270.240.011.162.5912.500.87
SB17 269.54~7 320.00O2yj+O1-2y84.182.430.410.030.060.321.5511.012.930.97
SB1CX7 268.24~7 318.70O2yj+O1-2y77.378.153.550.650.970.220.220.171.826.8713.760.85
SB1-237 495.00~8 070.39O2yj+O1-2y67.767.452.540.380.900.180.331.582.5316.3611.780.85
SB1-47 459.00~7 561.96O2yj80.359.053.980.701.010.210.190.02.202.3215.130.84
SB1-117 572.00~7 732.17O2yj78.128.323.160.420.910.120.180.021.996.7513.110.86
SB1-147 589.00~7 710.00O2yj77.3610.113.610.390.810.080.120.053.054.4315.120.84

1号

分支

SB1-97 372.74~7 630.00O2yj+O1-2y81.347.643.460.711.110.270.270.021.323.8613.460.86
SB1-87 415.50~7 571.64O2yj+O1-2y74.047.833.380.600.920.220.220.541.8110.4313.170.85

5号

北段

SB5-47 393.01~7 480.28O2yj58.6714.546.170.511.530.140.280.0311.346.7923.170.72
SB57 313.92~7 650.53O2yj+O1-2y54.4817.979.431.092.150.360.460.185.848.0631.460.63
SB5-27 460.33~7 527.16O2yj62.0618.008.701.081.900.320.330.192.365.0530.330.67

5号

中段

SB51X7 553.64~7 876.00O2yj70.9714.566.100.941.390.250.250.063.332.1323.490.75
SB5-77 562.80~7 635.57O2yj+O1-2y80.149.343.490.470.940.110.120.013.821.6514.370.85
SB5-107 639.00~8 038.27O2yj+O1-2y82.218.362.410.270.440.060.000.014.182.0711.540.88
SB5-157 632.00~7 877.63O2yj+O1-2y83.258.152.730.370.620.090.090.022.522.1512.050.87

5号

南段

SB53X7 738.00~7 915.31O2yj+O1-2y74.517.903.080.681.440.380.500.064.966.4913.980.84
SB53X7 738.00~7 915.31O2yj+O1-2y80.157.062.680.571.160.230.320.150.826.8612.020.87

7号

断裂

SB77 568.46~7 863.66O2yj+O1-2y46.8920.9214.781.414.920.590.970.761.856.9043.590.52
SB71X7 674.00~8 024.66O2yj+O1-2y52.6516.637.620.441.910.140.410.3011.698.2127.150.66

图2

顺北地区奥陶系天然气干燥系数和甲烷含量之间的关系"

表2

顺北地区奥陶系超深层天然气碳氢同位素组成"

断裂带井号深度/m层位δ13C/‰(VPDB)δD/‰(VSMOW)RO1/%RO2/%
C1C 2C 3iC4nC4CO2δD1δD2δD3δD4

1号

断裂

SB1-3CH7 274.00~7 357.98O2yj-44.7-33.3-30.8-34.2-29.00.1-170-140-116-1090.861.10
SB17 269.54~7 320.00O2yj+O1-2y-44.7-33.1-30.8-31.8-29.8-157-127-44.70.861.10
SB1CX7 268.24~7 318.70O2yj+O1-2y-46.0-34.4-32.1-32.4-31.4-2.8-161-111-105-960.750.96
SB1-237 495.00~8 070.39O2yj+O1-2y-48.1-34.8-32.3-32.9-32.0-1780.600.77
SB1-47 459.00~7 561.96O2yj-47.0-33.8-31.6-35.2-29.40.5-180-148-116-1000.680.86
SB1-117 572.00~7 732.17O2yj-46.6-34.1-32.0-32.4-31.4-6.4-156-113-1040.720.92
SB1-147 589.00~7 710.00O2yj-48.8-34.7-32.2-33-31.5-5.9-162-110-1010.560.71

1号

分支

SB1-97 372.74~7 630.00O2yj+O1-2y-46.4-34.2-31.9-31.9-31.2-2.1-156-113-1040.700.90
SB1-87 415.50~7 571.64O2yj+O1-2y-47.2-33.8-31.2-31.9-30.7-1.6-162-110-1010.660.85

5号

北段

SB5-47 393.01~7 480.28O2yj-49.2-39.1-35.1-33.9-33.1-7.8-205-195-1570.540.68
SB57 313.92~7 650.53O2yj+O1-2y-48.9-39.3-35.6-34.6-33.4-3.7-207-180-141-1230.550.71
SB5-27 460.33~7 527.16O2yj-49.0-37.7-34.1-33.9-32.2-2.00.550.70

5号

中段

SB51X7 553.64~7 876.00O2yj-49.6-35.0-32.5-33.1-31.8-2.00.510.66
SB5-77 562.80~7 635.57O2yj+O1-2y-47.8-33.6-30.9-31.1-29.71.20.620.79
SB5-107 639.00~8 038.27O2yj+O1-2y-47.5-33.5-30.7-31.8-29.4-1.10.640.82
SB5-157 632.00~7 877.63O2yj+O1-2y-47.6-33.3-30.6-30.8-29.5-0.50.630.81

5号

南段

SB53X7 738.00~7 915.31O2yj+O1-2y-47.7-33.4-31.7-31.4-30.4-13.8-1590.630.80
SB53X7 738.00~7 915.31O2yj+O1-2y-47.2-32.5-30.6-31.2-29.6-3.3-1630.660.85

7号

断裂

SB77 568.46~7 863.66O2yj+O1-2y-48.4-39.0-33.9-33.6-32.0-140.580.74
SB71X7 674.00~8 024.66O2yj+O1-2y-46.7-37.9-33.3-32.3-31.7-6.70.700.89

图3

顺北地区奥陶系超深层不同断裂天然气组分碳同位素δ13C—1/Cn之间的关系"

图4

顺北地区奥陶系天然气氢同位素分布曲线"

表3

顺北地区天然气轻烃参数"

断裂带井号

垂深

/m

层位庚烷值/%异庚 烷值K1K2甲基环己烷指数/%正庚烷/甲基环己烷甲苯/正庚烷

1号断裂

SB1-3CH7 274.00~7 357.98O2yj26.003.011.090.3127.651.910.17
SB1CX7 268.24~7 318.70O2yj+O1-2y32.912.861.080.2726.782.130.18
SB1-4H7 459.00~7 561.96O2yj24.902.571.060.2828.261.770.14
SB1-23H7 495.00~8 070.39O2yj+O1-2y28.433.041.090.2624.782.250.12
1号次级SB1-97 372.74~7 630.00O2yj+O1-2y20.152.531.050.3831.501.400.05
SB1-8H7 415.50~7 571.64O2yj+O1-2y27.314.831.100.3431.291.810.00
5号北段SB57 313.92~7 650.53O2yj+O1-2y26.672.351.060.2925.962.010.07
SB5-27 460.33~7 527.16O2yj19.281.941.010.3932.901.250.10
5号中段SB51X7 553.64~7 876.00O2yj26.503.011.060.3529.371.790.14
SB5-77 562.80~7 635.57O2yj+O1-2y24.153.171.030.3730.491.630.10
SB5-107 639.00~8 038.27O2yj+O1-2y23.332.911.020.3729.951.660.10
SB5-15H7 632.00~7 877.63O2yj+O1-2y22.903.251.040.3931.591.560.10
7号断裂SB77 568.46~7 863.66O2yj+O1-2y28.151.011.090.2131.201.430.05
SB71X7 674.00~8 024.66O2yj+O1-2y28.991.311.110.1930.041.600.09

图5

顺北地区奥陶系超深层天然气C7和C5-7轻烃组成三角图"

图6

使用C1/(C2+C3)、δ13C1同位素划分顺北及邻区天然气成因类型[(a)图版据文献[32];(b)图版据文献[33]]"

图7

顺北及邻区奥陶系天然气甲烷碳、氢同位素间关系(底图据文献[34])"

图8

顺北及邻区天然气甲烷和乙烷碳同位素相关(底图据文献[36])"

图9

顺托果勒地区奥陶系天然气Ln(C1/C2)、Ln(C2/C3)之间的关系"

图10

顺托果勒地区奥陶系天然气(δ13C2—δ13C3)—(C2/C3)之间的关系"

图11

顺托果勒地区T74界面现今温度分布特征"

1 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探,2016, 21(3): 38-51.
QI L X. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3):38-51.
2 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探,2020, 25(1): 102-111.
QI L X. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
3 杨海军, 邓兴梁, 张银涛, 等. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 13-23.
YANG H J, DENG X L, ZHANG Y T, et al. Great discovery and its significance of exploration for Ordovician ultra-deep fault-controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 13-23.
4 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12.
GU Y, HUANG J W, JIA C S, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1):1-12.
5 秦胜飞, 李先奇, 肖中尧, 等. 塔里木盆地天然气地球化学及成因与分布特征[J].石油勘探与开发, 2005, 32(4):70-78.
QIN S F, LI X Q, XIAO Z Y , et al. Geochemistry, origin and distribution of natural gases in Tarim Basin, NW China[J]. Petroleum Exploration & Development, 2005, 32(4): 70-78.
8 陈践发, 徐永昌, 黄第藩. 塔里木盆地东部地区天然气地球化学特征及成因探讨(之一)[J].沉积学报, 2000, 18(4): 606-610.
CHEN J F, XU Y C, HUANG D F. Geochemical characteristics and origin of natural gas in the Eastern Tarim Basin(I)[J]. Acta Sedimentologica Sinica, 2000,18(4): 606-610.
9 陈践发, 徐永昌, 黄第藩. 塔里木盆地东部地区天然气地球化学特征及成因探讨(之二)[J].沉积学报, 2001, 19(1):141-145.
CHEN J F, XU Y C, HUANG D F. Geochemical characteristics and origin of natural gas in the eastern Tarim Basin(II)[J]. Acta Sedimentologica Sinica, 2001, 19(1):141-145.
10 肖中尧, 崔会英, 谢增业, 等. 塔里木盆地台盆区天然气地球化学特征[J]. 天然气地球科学, 2007, 18(6): 782-788.
XIAO Z Y, CUI H Y, XIE Z Y, et al. Gas geochemical characteristics of platform-basin region in Tarim Basin[J]. Natural Gas Geoscience, 2007, 18(6): 782-788.
11 史江龙, 李剑, 李志生, 等. 塔里木盆地塔中隆起寒武系深层油气地球化学特征及成因[J]. 石油与天然气地质, 2017, 38(2): 302-310.
SHI J L, LI J, LI Z S, et al. Geochemical characteristics and origin of the deep Cambrian oil and gas in the Tazhong Uplift, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(2):302-310.
12 刘全有, 金之钧, 王毅, 等. 塔里木盆地天然气成因类型与分布规律[J]. 石油学报, 2009, 30(1): 46-50.
LIU Q Y, JIN Z J, WANG Y, et al. Genetic type and distritution of natural gas in Tarim Basin[J]. Acta Petrolei Sinica, 2009, 30(1): 46-50.
13 王铁冠, 宋到福, 李美俊,等. 塔里木盆地顺南—古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762.
WANG T G, SONG D F, LI M J, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6):753-762.
14 赵孟军, 曾凡刚, 秦胜飞, 等. 塔里木发现和证实两种裂解气[J]. 天然气工业, 2001, 21(1): 35-39.
ZHAO M J, ZENG F G, QIN S F, et al. Two pyrolytic gases found and proved in Talimu Basin[J]. Natural Gas Industry, 2001, 21(1): 35-39.
15 李剑, 李志生, 王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017, 44(4): 503-512.
LI J, LI Z S, WANG X B, et al. New indexes and charts for genesis identification of multiple natural gases[J]. Petroleum Exploration & Development, 2017, 44(4):503-512.
16 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797.
YUN L, CAO Z C. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797.
17 ZHOU X X, LÜ X X, ZHU G Y, et al. Origin and formation of deep and superdeep strata gas from Gucheng-Shunnan block of the Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 177: 361-373.
18 曹颖辉, 王珊, 张亚金, 等. 塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J]. 石油勘探与开发,2019, 46(6): 1099-1114.
CAO Y H, WANG S, ZHANG Y J, et al. Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng area, Tarim, China[J]. Petroleum Exploration & Development, 2019, 46(6):1099-1114.
19 马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753.
MA A L, JIN Z J, LI H L, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of North Shuntuogule area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
20 WANG Q, HAO F, CAO Z C, et al. Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei Field, Tarim Basin, China: Implications on alteration and mixing[J]. Marine & Petroleum Geology, 2021, 123: 104725.
21 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.
JIAO F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5):831-839.
22 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5):878-888.
DENG S, LI H L, ZHANG Z P, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5):878-888.
23 ZHU G Y, MILKOV A V, CHEN F R, et al. Non-cracked oil in ultra-deep high-temperature reservoirs in Tarim Basin, China[J]. Marine & Petroleum Geology, 2018, 89: 252-262.
24 沈平, 徐永昌, 王先彬, 等. 气源岩和天然气地球化学特征及成气机理研究[M]. 兰州:甘肃省科学技术出版社, 1991.
SHEN P, XU Y C, WANG X B, et al. The Geochemical Characteristics of Gas-source Rocks and Natural Gases and Gas Generating Mechanism[M]. Lanzhou: Science Technique Press of Gansu, 1991.
25 黄第藩,刘宝泉,王廷栋,等.塔里木盆地东部天然气的成因类型及其成熟度判识[J].中国科学(D辑),1996,26(4):365-372.
HUANG D F, LIU B Q, WANG T D, et al. Genetic types and maturity identification of natural gas in Eastern Tarim Basin[J]. Science in China :Series D,1996, 36(4): 365-372.
26 吴小奇, 刘全有, 陶小晚, 等. 塔里木盆地哈拉哈塘凹陷天然气地球化学特征[J]. 地球化学, 2014, 43(5): 477-488.
WU X Q, LIU Q Y, TAO X W, et al. Geochemical characteristics of natural gas for Halahatang Sag in the Tarim Basin[J]. Geochimica, 2014, 43(5):477-488.
27 MANGO F D. An invariance in the isoheptanes of petroleum[J].Science, 1987, 273(4814): 514-517.
28 MANGO F D. The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis[J].Geochimica et Cosmochimica Acta,1990,54(5):1315-1323.
29 THOMPSON K F M. Classification and thermal history of petroleum based on light hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1983, 47(2): 303-316.
30 陈践发, 苗忠英, 张晨, 等. 塔里木盆地塔北隆起天然气轻烃地球化学特征及应用[J]. 石油与天然气地质, 2010, 31(6): 271-276.
CHEN J F, MIAO Z Y, ZHANG C, et al. Geochemical characteristics of light hydrocarbons in natural gas in the Tabei Uplift of the Tarim Basin and their implication[J]. Oil & Gas Geology, 2010, 31(6):271-276.
31 胡惕麟,戈葆雄,张义纲,等.源岩吸附烃和天然气轻烃指纹参数的开发和应用[J].石油实验地质,1990,12(4):375-394.
HU T L, GE B X, ZHANG Y G, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J].Experimental Petroleum Geology,1990,12(4):375-394.
32 BERNARD B B,BROOKS J M,SACKETT W M. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters,1976,31(1):48-54.
33 MILKOV A V, ETIOPE G. Revised genetic diagrams for natural gases on a global dataset of >20,000 samples[J]. Organic Geochemistry, 2018, 125: 109-120.
34 WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999,161:291-314.
35 戴金星, 裴锡古, 戚厚发. 中国天然气地质学(卷一) [M].北京: 石油工业出版社, 1992: 1-149.
DAI J X, PEI X G, QI H F. Natural Gas Geology in China: Vol.1[M]. Beijing: Petroleum Industry Press, 1992:1-149.
36 RONNEY M, CLAYPOOL G E, CHUNG H M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J].Chemical Geology,1995,126:219-232.
37 LORANT F, PRINZHOFER A, BEHAR F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147: 249-264.
38 杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探,2020,25(2):62-72.
YANG H J, CHEN Y Q, TIAN J, et al. Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration, 2020, 25(2): 62-72.
39 宋到福, 王铁冠, 李美俊. 塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识[J]. 中国科学:地球科学, 2016,46(1): 107-117.
SONG D F, WANG T G, LI M J. Geochemistry and possible origin of the hydrocarbons from Wells Zhongshen 1 and Zhongshen 1C, Tazhong Uplift[J]. Science China Earth Science,2016,46(1): 107-117.
40 BEHAR F, UNGERER P, KRESSMANN S, et al. Thermal evolution of crude oils in sedimentary basins: Experimental simulation in a confined system and kinetic modeling[J]. Revue De L' Institut Francais Du Petrole,1991,46(2):151-181.
41 PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Che-mical Geology, 1995, 126(3): 281-290.
42 ZHANG S C, SU J, WANG X M, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J]. Organic Geochemistry, 2011, 42: 1394-1410.
43 张水昌, 张斌, 杨海军, 等. 塔里木盆地喜马拉雅晚期油气藏调整与改造[J]. 石油勘探与开发, 2012, 39(6): 668-680.
ZHANG S C, ZHANG B, YANG H J, et al. Adjustment and alteration of hydrocarbon reservoirs during the late Himalayan period,Tarim Basin, NW China[J]. Petroleum Exploration & Development, 2012, 39(6):668-680.
44 马安来, 林会喜, 云露, 等. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J]. 天然气地球科学, 2021, 32(3);334-346.
MA A L, LIN H X, YUN L, et al. Characteristics of diamondoids in oils from the ultra-deep Ordovician in the North Shuntuoguole area in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2021, 32(3):334-346.
45 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报,2018, 39(1):42-53.
MA A L, JIN Z J, ZHU C S. Detection and research significance of thiadiamondoids from crude oils in Well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53.
46 庄新兵, 顾忆, 邵志兵, 等. 塔里木盆地地温场对油气成藏过程的控制作用——以古城墟隆起为例[J]. 石油学报, 2017, 38(5): 502-511.
ZHUANG X B, GU Y, SHAO Z B, et al. Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin: A case study of Guchengxu Uplift[J]. Acta Petrolei Sinica, 2017, 38(5): 502-511.
47 马庆佑, 田鹏, 吕海涛, 等. 塔里木盆地GL3井鹰山组沥青的发现及地质意义[J]. 岩性油气藏, 2015, 27(3): 82-86.
MA Q Y, TIAN P, LÜ H T,et al. Discovery of bitumen of Yingshan Formation in Well GL3 of Tarim Basin and its geologic signigicance[J]. Lithologic Reservoirs, 2015, 27(3):82-86.
48 LIU Y C, QIU N S, LI H L, et al. Terrestrial heat flow and crustal thermal structure in the northern slope of Tazhong Uplift in Tarim Basin[J]. Geothermics, 2020, 83: 101709.
49 鲁子野, 陈红汉, 云露, 等. 塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系[J]. 地球科学, 2016, 41(3): 487-498.
LU Z Y, CHEN H H, YUN L, et al. The coupling relationship between hydrothermal fluids and the hydrocarbon gas accumulation in Ordovician of Shunan gentle slope, Northern slope of Tazhong Uplift[J]. Earth Science, 2016, 41(3):487-498.
50 刘雨晨, 邱楠生, 常健, 等. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例[J].地球物理学报, 2020, 63(2): 597-611.
LIU Y C, QIU N S, CHANG J, et al. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: A case study of Shuntuogule area in Tarim Basin[J]. Chinese Journal of Geophysics, 2020, 63(2): 597-611.
51 WAPLES D W. The kinetics of in⁃reservoir oil destruction and gas formation: Constraints from experimental and empirical data, and from thermodynamics[J].Organic Geochemistry,2000,31(6): 553-575.
52 TIAN H, WANG Z M, XIAO Z Y, et al. Oil cracking to gases: Kinetic modeling and geological significance[J]. Chinese Science Bulletin, 2006, 51(22): 2763-2770.
53 MA A L. Kinetics of oil cracking for different types of marine oils from Tahe Oilfield, Tarim Basin, NW China[J]. Journal of Natural Gas Geoscience, 2016,1(1):35-43.
[1] 林怡, 陈聪, 徐诗雨, 杨帆, 曾乙洋, 黎洋, 赵春妮, 杨京, 何开来. 川西北部泥盆系观雾山组超深层碳酸盐岩储层特征及形成机制[J]. 天然气地球科学, 2021, 32(6): 794-805.
[2] 丁玉祥, 朱光有, 张怀顺, 周玉萍, 姚晓洁, 吴高恩, 汤顺林. 天然气中氡的研究进展[J]. 天然气地球科学, 2021, 32(5): 754-763.
[3] 马安来, 林会喜, 云露, 曹自成, 朱秀香, 李王鹏, 吴鲜. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J]. 天然气地球科学, 2021, 32(3): 334-346.
[4] 朱光有, 张怀顺, 汤顺林, 孙广义, 丁玉祥. 塔里木盆地海相原油汞同位素组成特征[J]. 天然气地球科学, 2021, 32(3): 347-355.
[5] 韩中喜, 垢艳侠, 李谨, 葛守国, 田闻年, 黄恒. 四川盆地天然气汞含量分布特征及成因分析[J]. 天然气地球科学, 2021, 32(3): 356-362.
[6] 张怀顺, 朱光有, 丁玉祥, 周玉萍, 姚晓洁, 吴高恩, 汤顺林. 天然气中汞的来源及脱汞技术[J]. 天然气地球科学, 2021, 32(3): 363-371.
[7] 王国建, 袁玉松, 李武, 吴传芝, 邹雨, 卢丽, 李凤丽. 天然气扩散系数研究现状及存在问题[J]. 天然气地球科学, 2021, 32(3): 372-381.
[8] 文志刚, 窦立荣, 程顶胜, 李威. 乍得Bongor盆地南部坳陷油气特征与成因[J]. 天然气地球科学, 2021, 32(2): 205-214.
[9] 戴金星, 倪云燕, 董大忠, 秦胜飞, 朱光有, 黄士鹏, 于聪, 龚德瑜, 洪峰, 张延玲, 严增民, 刘全有, 吴小奇, 冯子齐. “十四五”是中国天然气工业大发展期——对中国“十四五”天然气勘探开发的一些建议[J]. 天然气地球科学, 2021, 32(1): 1-16.
[10] 贾爱林, 何东博, 位云生, 李易隆. 未来十五年中国天然气发展趋势预测[J]. 天然气地球科学, 2021, 32(1): 17-27.
[11] 崔永谦, 王飞宇, 张传宝, 冯伟平, 侯凤香, 马学峰, 马樱. 渤海湾盆地冀中坳陷霸县凹陷深层沙四段源岩有机相评价及意义[J]. 天然气地球科学, 2021, 32(1): 38-46.
[12] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[13] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[14] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[15] 李慧莉, 尤东华, 韩俊, 钱一雄, 沙旭光, 席斌斌. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[2] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[3] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[4] 尹太举,张昌民,王寿平,李中超 . 濮53块开发概念模拟[J]. 天然气地球科学, 2006, 17(2): 201 -205 .
[5] 荣宁,吴迪,韩易龙,陈文龙,王陶,张波,叶翔. 双台阶水平井在塔里木盆地超深超薄边际油藏开发中的应用及效果评价[J]. 天然气地球科学, 2006, 17(2): 230 -232 .
[6] 朱光有;. “低熟气、生物气富集规律与资源评价技术”项目成果及学术交流会在合肥召开[J]. 天然气地球科学, 2006, 17(3): 299 .
[7] (俄)H K布林, В Д 纳里福金, 史斗(译). 大型油气藏分布与地壳应力状态的关系[J]. 天然气地球科学, 2002, 13(1-2): 32 -36 .
[8] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .
[9] 周惠文,曹正林,杜斌山. 含气特征曲线重构技术在致密含气砂岩储层预测中的应用[J]. 天然气地球科学, 2006, 17(5): 723 -726 .
[10] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .