天然气地球科学 ›› 2021, Vol. 32 ›› Issue (6): 836–844.doi: 10.11764/j.issn.1672-1926.2021.02.012

• 天然气开发 • 上一篇    下一篇

陆相低压页岩油体积开发理论技术及实践

焦方正()   

  1. 中国石油天然气集团有限公司,北京 100007
  • 收稿日期:2021-01-16 修回日期:2021-02-21 出版日期:2021-06-10 发布日期:2021-05-24
  • 作者简介:焦方正(1962-),男,陕西三原人,教授级高级工程师,博士,主要从事油气勘探开发研究和科技管理工作.E-mail:jfz@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“鄂尔多斯盆地致密油开发示范工程”(2017ZX05069)

Theoretical technologies and practices concerning “volume development” of low pressure continental shale oil: Case study of shale oil in Chang 7 member, Ordos Basin, China

Fang-zheng JIAO()   

  1. China National Petroleum Corporation,Beijing 100007,China
  • Received:2021-01-16 Revised:2021-02-21 Online:2021-06-10 Published:2021-05-24
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05069)

摘要:

鄂尔多斯盆地长7段页岩油主要发育陆相半深湖—深湖重力流沉积,具有单砂体厚度薄、横向连续性差、非均质性强、储层致密、地层压力系数低等特征,与北美海相页岩层系相比,具有独特性,开发难度更大,陆相页岩油能否成为保障国家能源安全的重大接替领域,成为关注的重点。经过多年的攻关研究与现场实践,基于鄂尔多斯盆地长7段页岩油强非均质、低压等的独特性,提出了长7段页岩油“体积开发”理论,通过页岩油水平井多段压裂形成复杂缝网系统,形成了多尺度人工裂缝与基质间的非线性渗流和渗吸置换的复合渗流模式,大幅度改善了储层流体渗流环境,构建了“人工油气藏”;以“体积开发”理论为基础,创立了以“长水平井、小井距、大井丛、立体式、细分切割体积压裂”为核心的体积开发关键技术,使长7段页岩油得到商业化开发,快速建成了年产量达100×104 t的页岩油开发示范区,对国内陆相页岩油气资源的整体动用,能够提供较好的理论依据和技术支撑,起到了引领示范作用。

关键词: 页岩油, 陆相低压, 体积开发, 细分切割体积压裂, 复合渗流, 大井丛立体布井, 工厂化

Abstract:

Shale oil in Chang 7 member (Abbr. as Chang 7) mainly developed as gravity flow deposits in semi-deep to deep lacustrine environment. Compared to the marine shale rocks in North America, continental shale oil in Chang 7 is thin in single sand body, poor in lateral continuity, strong in reservoir heterogeneity, tight in its reservoir and low in formation pressure index. These characteristics made it more difficult to develop shale oil in Chang 7 and thus shale oil has driven much attention as it might be another significant superseding area for national energy safety in China. After years of research and field practice, “volume development” theory was proposed based on the unique characteristics of the shale oil in China. Guided by the theory, complex artificial fracture systems are established after multi-section fracturing in horizontal wells, and thus forms a composite flow pattern including nonlinear seepage and imbibition replacement processes between multi-sized artificial fractures and the matrix. Application of the theory has dramatically optimized the seepage environment and created “artificial oil and gas reservoir” underground, and thus established a key technology characterized with long horizontal well, short well spacing, large well cluster, stereoscopic fracture and subdivision volumetric fracturing. This technology has made commercial development of shale oil in Chang 7 possible and a demonstration area with one-million tons of annual shale oil production has been established. It also provides theoretical basis and technical support for an overall development of the continental shale oil in China.

Key words: Shale oil, Continental low pressure, Subdivision volumetric fracturing, Composite flow pattern, Stereoscopic large well cluster, Industrialization

中图分类号: 

  • TE132.2

图1

鄂尔多斯盆地长7段综合平面图"

图2

Cheng96井长7段岩心"

表1

不同两向水平主应力差下的裂缝特征及体积压裂实现难度"

(σH-σh) /MPa裂缝特征体积压裂实现难度
>10单条裂缝难度大,改造体积小
5~10以单条裂缝为主体积压裂有一定难度,改造体积不大
<5体积裂缝体积压裂容易,改造体积大

图3

NP9井井下微地震检测结果"

图4

L281井长7段岩心核磁共振渗吸T2弛豫时间谱"

表2

不同渗透率储层渗吸与驱替采出程度对比"

岩样渗透率 /(10-3 μm2)最终采出程度/%渗吸采出程度/%驱替采出程度/%渗吸对采出程度的贡献/%
M10.972.223.049.231.8
M20.270.827.343.538.6
L30.0961.125.036.140.9

表3

长7段页岩油水平段储层分类标准"

品质评价参数I类II类III类
储层品质黏土含量/%<25<35<40
孔隙度/%>106~10<6
含油饱和度/%>7050~70<50
工程品质最小水平主应/MPa<3030~34>33
脆性指数/%>5040~50<40
破裂压力/MPa35~4138~4440~47

图5

陇东地区页岩油不同井距水平井单井产量对比"

图6

陇东地区页岩油水平井不同簇间距多簇裂缝扩展模拟"

图7

陇东地区页岩油水平井闷井时间与地层压力系数关系"

1 邹才能, 张光亚, 陶士振, 等. 全球油气勘探领域地质特征、重大发现及非常规石油地质[J]. 石油勘探与开发, 2010, 37(2): 129-145.
ZOU C N, ZHANG G Y, TAO S Z,et al.Geological features, major discoveries and unconventional petroleum geology in the global petroleum exploration[J].Petroleum Exploration and Development, 2010, 37(2): 129-145.
2 邹才能,丁云宏,卢拥军,等.“人工油气藏”理论、技术及实践[J].石油勘探与开发,2017,44(1):144-154.
ZOU C N, DING Y H, LU Y J, et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development,2017,44(1):144-154.
3 王倩茹,陶士振,关平.中国陆相盆地页岩油研究及勘探开发进展[J].天然气地球科学,2020,31(3):417-427.
WANG Q R,TAO S Z,GUAN P.Progress in research and exploration & development of shale oil in continental basins in China[J].Natural Gas Geoscience,2020,31(3):417-427.
4 付金华, 李士祥, 牛小兵, 等.鄂尔多斯盆地三叠系长7段源内油藏地质特征与勘探实践[J]. 石油勘探与开发,2020,47(5):1-14.
FU J H, LI S X, NIU X B, et al. Geological characteristics and exploration practice of the self-sourced reservoir in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2020,47(5):1-14.
5 焦方正. 页岩气“体积开发”理论认识、核心技术与实践[J]. 天然气工业, 2019, 39(5): 1-14.
JIAO F Z. Theoretical insights, core technologies and practices concerning "volume development" of shale gas in China[J]. Natural Gas Industry, 2019, 39(5): 1-14.
6 XU T, LINDSAY G, ZHENG W, et al. Advanced Modeling of Production Induced Pressure Depletion and Well Spacing Impact on Infill Wells in Spraberry, Permian Basin[C]. SPE Annual Technical Conference and Exhibition,24-26 September 2018, Dallas, Texas, USA.
7 CAO R, LI R J, GIRARDI A, et al. Well Interference and Optimum Well Spacing for Wolfcamp Development at Permian Basin[C]. SPE/AAPG/SEG Unconventional Resources Te-chnology Conference,24-26 July 2017,Austin,Texas, USA.
8 李宪文, 张矿生, 樊凤玲, 等. 鄂尔多斯盆地低压致密油层体积压裂探索研究及试验[J]. 石油天然气学报,2013,35(3):142-147.
LI X W, ZHANG K S, FAN F L, et al. Study and experiment on volumetric fracturing in low pressure tight formation of Ordos Basin[J]. Journal of Oil and Gas Technology, 2013, 35 (3): 142-147.
9 赵金洲,任岚,沈骋,等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业,2018,38 (3) :1-13.
ZHAO J Z, REN L, SHEN C, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry,2018,38 (3):1-13.
10 石道涵, 张兵, 何举涛, 等. 鄂尔多斯长7致密砂岩储层体积压裂可行性评价[J]. 西安石油大学学报:自然科学版, 2014,29 (1) :52-55.
SHI D H, ZHANG B ,HE J T, et al. Feasibility evaluation of volume fracturing of Chang-7 tight sandstone reservoir in Ordos Basin[J]. Journal of Xi'an Shiyou University:Natural Science Edition,2014,29 (1):52-55.
11 慕立俊, 赵振峰, 李宪文, 等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质, 2019,40 (3) :626-635.
MU L J, ZHAO Z F, LI X W, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019,40 (3) :626-635.
12 牛小兵, 冯胜斌, 尤源, 等. 致密储层体积压裂作用范围及裂缝分布模式[J]. 石油与天然气地质, 2019,40 (3) :670-677.
NIU X B, FENG S B, YOU Y, et al. Fracture extension and distribution pattern of volume fracturing in tight reservoir[J]. Oil & Gas Geology, 2019,40 (3) :670-677.
13 朱维耀, 岳明, 高英, 等. 致密油层体积压裂非线性渗流模型及产能分析[J]. 中国矿业大学学报, 2014,43 (2) :248-254.
ZHU W Y, YUE M, GAO Y, et al. Nonlinear flow model and productivity of stimulated reservoir volume in tight oil reservoirs[J]. Journal of China University of Mining & Technology, 2014,43 (2) :248-254.
14 王文东. 体积压裂水平井复杂缝网分形表征与流动模拟[D]. 东营:中国石油大学(华东),2015.
WANG W D. Fractal-based Multi-stage Hydraulically Fracture Network Characterization and Flow Modeling[D].Dongying: China University of Petroleum (East China),2015.
15 LONLON E, CIPOLIA C, WEIJERS L,et al. Evaluating Horizontal Well Placement and Hydraulic Fracture Spacing/Conductivity in the Bakken Formation,North Dakota[C]. SPE Annual Technical Conference and Exhibition,4-7 October 2009, New Orleans, Louisiana.
16 PANKAJ P, SHUKLA P, KAVOUSI P, et al. Determining Optimal Well Spacing in the Marcellus Shale: A Case Study Using an Integrated Workflow[C]. SPE Argentina Exploration and Production of Unconventional Resources Symposium, 14-16 August 2018, Neuquen, Argentina.
17 缪思钰,张海江,陈余宽,等.基于微地震定位和速度成像的页岩气水力压裂地面微地震监测[J].石油物探,2019,58(2):262-271.
MIAO S Y, ZHANG H J, CHEN Y K, et al. Surface microseismic monitoring of shale gas hydraulic fracturing based on microseismic location and tomography[J]. Grophysical Prospecting for Petroleum,2019,58(2):262-271.
18 白晓虎,齐银,陆红军,等.鄂尔多斯盆地致密油水平井体积压裂优化设计研究[J]. 石油钻采工艺, 2015,37 (4) :83-86.
BAI X H, QI Y, LU H J, et al. Optimization design for volume fracturing of horizontal wells in tight oil reservoir of Ordos Basin[J]. Oil Drilling & Production Technology,2015,37(4):83-86.
19 王金龙,腊丹萍,雷兆丰,等.A 区页岩油蓄能压裂后合理焖井时间研究[J]. 石油化工应用,2020,39(6):88-90.
WANG J L,LA D P,LEI Z F,et al.Study of the reasonable so aking time after energy storage fracturing of shale oil in A zone[J]. Petrochemical Industry Application, 2020,39(6):88-90.
20 许冬进,廖锐全,石善志,等.致密油水平井体积压裂工厂化作业模式研究[J].特种油气藏,2014,21(3):1-6.
XU D J, LIAO R Q,SHI S Z,et al. Research on factory-like volumetric fracturing in horizontal wells for tight oil[J]. Special Oil and Gas Reservoir, 2014,21(3):1-6.
21 段晓军.提高水平井施工效率的“工厂化”作业技术研究[D].西安:西安石油大学,2015.
DUAN X J. A Research of Construction Technology “Factorization” Assignments to Improve the Efficiency of the Horizontal well[D]. Xi’an: Xi’an Shiyou University, 2015.
[1] 王志战. 页岩油储层DT2核磁共振解释方法[J]. 天然气地球科学, 2020, 31(8): 1178-1184.
[2] 王倩茹, 陶士振, 关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学, 2020, 31(3): 417-427.
[3] 李书琴, 印森林, 高阳, 张方, 李映艳, 彭寿昌. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
[4] 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜null, 米巨磊. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析[J]. 天然气地球科学, 2020, 31(2): 250-257.
[5] 梁晓伟,关梓轩,牛小兵,关平,淡卫东,冯胜斌,尤源,周树勋. 鄂尔多斯盆地延长组7段页岩油储层储集性特征[J]. 天然气地球科学, 2020, 31(10): 1489-1500.
[6] 郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 准噶尔盆地页岩油“甜点区”评价与关键技术应用——以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 2019, 30(8): 1168-1179.
[7] 陈旋, 刘小琦, 王雪纯, 马强, 刘俊田, 龚鑫, 杨小东, 石江峰, 白国娟. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征[J]. 天然气地球科学, 2019, 30(8): 1180-1189.
[8] 刘海涛, 胡素云, 李建忠, 王居峰, 王群一 , 姜文亚, 江涛, 赵长毅 , 张春明, 吴丰成. 渤海湾断陷湖盆页岩油富集控制因素及勘探潜力[J]. 天然气地球科学, 2019, 30(8): 1190-1198.
[9] 黄东, 杨光, 杨智, 杨天泉, 白蓉, 李育聪, 戴鸿鸣. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学, 2019, 30(8): 1212-1221.
[10] 李国会,孙海雷,王金伟,康德江,刘丽娟,李兴伟,沈加刚. 致密油平台式“工厂化”水平井优化设计——以松辽盆地三肇凹陷肇源地区Y63井区扶余油层为例[J]. 天然气地球科学, 2019, 30(11): 1619-1628.
[11] 周立宏, 蒲秀刚, 肖敦清, 李洪香, 官全胜, 林伶, 曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332.
[12] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[13] 邱振, 卢斌, 施振生, 董大忠, 王红岩, 周杰, 陶辉飞, 郑民, 吴晓智, 郭和坤. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油滞留聚集机理及资源潜力探讨[J]. 天然气地球科学, 2016, 27(10): 1817-1827.
[14] 潘磊,肖贤明,周秦. 可溶有机质对表征页岩储层特性的影响[J]. 天然气地球科学, 2015, 26(9): 1729-1736.
[15] 耳闯,赵靖舟,王芮,魏之焜. 沉积环境对富有机质页岩分布的控制作用——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2015, 26(5): 823-832,892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] (俄罗斯) эM加里莫夫,李红光(译). 生物圈碳同位素组成全球变化特点[J]. 天然气地球科学, 2002, 13(1-2): 1 -7 .
[2] 王小林;胡文瑄;张军涛;钱一雄;朱井泉;吴仕强 . 白云岩物质组分与结构对微孔储集体系形成的制约——以塔里木盆地下古生界白云岩为例[J]. 天然气地球科学, 2008, 19(3): 320 -326 .
[3] 郭龙,陈践发,苗忠英. 一种新的TOC含量拟合方法研究与应用[J]. 天然气地球科学, 2009, 20(6): 951 -956 .
[4] 吴青鹏, 杨占龙, 郭精义, 李红哲, 李在光, 黄云锋, 魏立花. 背斜型构造储层裂缝预测方法探讨――以JLS地区须二段储层为例[J]. 天然气地球科学, 2006, 17(5): 719 -722 .
[5] 张铜磊, 陈践发, 朱德丰, 赵兴齐, 张晨. 海拉尔—塔木察格盆地中部断陷带岩浆活动与CO2成藏的关系[J]. 天然气地球科学, 2011, 22(4): 664 -669 .
[6] 黄俨然, 张枝焕, 王安龙, 黎琼, 藏春娟. 黄桥地区深源CO2对二叠系—三叠系油气成藏的影响[J]. 天然气地球科学, 2012, 23(3): 520 -525 .
[7] 张子枢; . 地球深源气研究概述[J]. 天然气地球科学, 1992, 3(3): 11 -14 .
[8] 付广; 姜振学; . 影响盖层形成和发育的地质因素分析[J]. 天然气地球科学, 1994, 5(5): 6 -11 .
[9] 谢武仁,李熙喆,张满郎,杨威,杨萧,程娣 . 川西南地区上三叠统须家河组砂岩储层综合评价[J]. 天然气地球科学, 2008, 19(1): 94 -99 .
[10] 宋岩; 戴金星; . 中国东部温泉气的组合类型及其成因初探[J]. 天然气地球科学, 1991, 2(5): 199 -202,208 .