天然气地球科学 ›› 2021, Vol. 32 ›› Issue (9): 1285–1296.doi: 10.11764/j.issn.1672-1926.2021.01.016

• 非常规天然气 • 上一篇    下一篇

青藏高原北部东昆仑地区三叠系八宝山组页岩储层测井评价

谢菁1,2(),陈建洲1,2,徐永锋1,2,王国仓3(),王瑾1,2,李青1,2,王琪玮1,2   

  1. 1.青海省第四地质勘查院,青海 西宁 810029
    2.青海省页岩气资源重点实验室,青海 西宁 810029
    3.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
  • 收稿日期:2020-10-28 修回日期:2020-10-31 出版日期:2021-09-10 发布日期:2021-09-14
  • 通讯作者: 王国仓 E-mail:958166065@qq.com;408535603@qq.com
  • 作者简介:谢菁(1994-),女,青海西宁人,助理工程师,主要从事能源矿产勘查及研究.E-mail:958166065@qq.com.
  • 基金资助:
    青海省清洁能源矿产专项“青海省都兰县八宝山地区页岩气调查评价”(2018137090kc054);青海省地质矿产勘查开发局;地质勘查项目“青海省清洁能源靶区优选”联合资助

Logging evaluation of Triassic Babaoshan Formation shale reservoir in East Kunlun area of northern Qinghai-Tibet Plateau

Jing XIE1,2(),Jianzhou CHEN1,2,Yongfeng XU1,2,Guocang WANG3(),Jin WANG1,2,Qing LI1,2,Qiwei WANG1,2   

  1. 1.The Fourth Geological Exploration Institute of Qinghai Province,Xining 810029,China
    2.Key Laboratory of Shale Gas Resources of Qinghai Province,Xining 810029,China
    3.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2020-10-28 Revised:2020-10-31 Online:2021-09-10 Published:2021-09-14
  • Contact: Guocang WANG E-mail:958166065@qq.com;408535603@qq.com
  • Supported by:
    The Clean Energy Mineral Special Project of Qinghai Province,China(2018137090 kc054);the “Clean Energy Target Optimization in Qinghai Province” funded by Geological Exploration and Development Bureau of Qinghai Province, China

摘要:

通过结合电阻率、声波时差、补偿中子、自然伽马测井等常规测井评价方法,用大量岩心样品作为校正依据,使用测井曲线重叠法、测井参数图版交会法、多元线性回归法等建立了青藏高原北部东昆仑地区三叠系八宝山组储层岩性、物性、有机碳含量等关键参数的定性识别方法和定量解释模型,并结合实测有机碳含量(TOC)、镜质体反射率(RO)和补偿中子(CNL)之间的相关性建立储层含气量解释模型。通过测井模型拟合计算结果显示:青藏高原北部东昆仑地区三叠系八宝山组页岩储层孔隙度分布在0.5%~2.6%之间,渗透率分布在(0.002~2.3)×10-3 μm2之间;有机碳含量分布在0.2%~7%之间,镜质体反射率分布在2.3%~3.12%之间,平均含气量为3.7 m3/t。储层整体表现为特低孔特低渗的物性特征,具有良好的生烃潜力和含气性及较高的资源潜力。

关键词: 青藏高原北部, 三叠系, 八宝山组, 页岩气, 储层测井评价

Abstract:

Based on conventional logging evaluation methods, such as resistivity logging, acoustic logging, compensated neutron and natural gamma ray logging, and using a large number of core samples as correction basis, the qualitative identification method and quantitative interpretation model of key parameters such as lithology, physical properties and organic carbon content of the Triassic Dabaoshan Formation reservoir in the East Kunlun area of the northern Qinghai-Tibet Plateau were established by using log curve overlap method, log parameter plate intersection method and multiple linear regression method. Combined with the correlation between the measured organic carbon content (TOC), vitrinite reflectance (RO) and compensated neutron (CNL), an interpretation model of reservoir gas content is established. The fitting calculation results show that the porosity of the Triassic Babaoshan Formation shale reservoir in East Kunlun area in the north of Qinghai-Tibet Plateau is 0.5%-2.6%, and the permeability is (0.002-2.3)×10-3 μm2. The distribution of organic carbon content was 0.2%-7%, the vitrinite reflectivity was 2.3%- 3.12%, and the average gas content was 3.7 m3/t. The reservoir as a whole is characterized by extremely low porosity and extremely low permeability. It has good hydrocarbon generation potential, gas bearing potential and high resource evaluation potential.

Key words: The North of Qinghai-Tibet Plateau, Triassic, Babaoshan Formation, Shale gas, Logging evaluation of reservoir

中图分类号: 

  • TE121.3

图1

青藏高原北部东昆仑造山带东段及邻区构造单元划分简图(据刘图杰[4]修编)① 柴达木北缘断裂;② 柴南缘断裂;③ 东昆中断裂带;④ 东昆南断裂带;⑤ 布青山南坡断裂;⑥ 玛多—甘德断裂;⑦ 瓦洪山走滑断裂"

图2

Baye2井测井曲线重叠图(900~1 120 m)"

图3

Baye2井八宝山组测井参数交会"

图4

八宝山组孔隙度、渗透率分布直方图"

图5

Baye2井常规测井裂缝识别"

图6

Baye2井八宝山组孔隙度计算精度验证"

表1

Baye2井八宝山组不同岩性测井取值范围"

井号层组岩性GR/APIAC/(μs/m)CNL/%DEN/(g/cm3
Baye2井八宝山组页岩160~300220~32015~242.4~2.5
粗砂岩75~150220~2801~102.4~2.55
中砂岩100~200200~3253~152.37~2.5
细砂岩125~225200~3104~152.4~2.55

图7

渗透率与孔隙度交会"

图8

Baye2井八宝山组渗透率计算精度验证"

图9

Baye2井八宝山组TOC计算精度验证"

图10

岩心孔隙度与镜质体反射率关系"

图11

实测镜质体反射率与计算镜质体反射率关系"

图12

吸附气含量精度检验"

图13

Baye2井补偿中子—总含气量关系"

图14

Baye2井实测总含气量与计算总含气量关系"

表2

Baye2井储层测井分类与评价标准"

储层电性特征气层(I类)差气层(II类)干层(III类)
自然伽马GR/API>220180~220<180
补偿中子CNL/%15~1818~21>21
有机碳/%>1.50.5~1.5<0.5
孔隙度/%>1.00.5~1.0<0.5
渗透率/(10-3 μm2>0.010.005~0.01<0.005
总含气量/(m3/t)>103~10<3

图15

Baye2井储层测井综合评价"

1 张鹏,张金川,黄宇琪,等.黔西北上奥陶统五峰组—下志留统龙马溪组页岩气聚集条件分析[J].地质论评,2015,61(1):155-162.
ZHANG P, ZHANG J C, HUANG Y Q, et al. Analysis of shale gas accumulation conditions of Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in northwest Guizhou[J]. Geological Review, 2015,61 (1): 155-162.
2 钟光海,谢冰,周肖.页岩气测井评价方法研究——以四川盆地蜀南地区为例[J].岩性油气藏,2015,27(4):96-102.
ZHONG G H, XIE B, ZHOU X. Study on shale gas logging evaluation method: A case study of southern Sichuan Basin[J]. Lithologic Reservoirs, 2015,27 (4): 96-102.
3 张杰,徐永锋,陈建洲.青海八宝山地区小口径页岩气钻探技术研究[J].能源与环保,2019,41(9):95-98.
ZHANG J, XU Y F, CHEN J Z. Research on small diameter shale gas drilling technology in Babaoshan area of Qinghai Province[J]. Energy and Environmental Protection, 2019,41 (9): 95-98.
4 刘图杰. 东昆仑造山带东段南坡洪水河组地质特征、物源属性及构造意义[D]. 西安:长安大学,2015:10-12.
LIU T J. Geological Characteristics, Provenance and Tectonic Significance of Hongshuihe Formation on the Southern Slope of Eastern Kunlun Orogenic Belt[D]. Xi'an: Chang'an University,2015:10-12.
5 曹飞. 裂缝性岩石声波参数实验研究及裂缝性储层测井评价[D].长春:吉林大学,2015.
CAO F. Experimental Study on Acoustic Parameters of Fractured Rocks and Logging Evaluation of Fractured Reservoirs[D]. Changchun:Jilin University, 2015.
6 赵辉,石新,司马立强.裂缝性储层孔隙指数、饱和度及裂缝孔隙度计算研究[J].地球物理学进展,2012,27(6):2639-2645.
ZHAO H, SHI X, SIMA L Q. Calculation of porosity index, saturation and fracture porosity of fractured reservoir[J]. Progress in Geophysics, 2012,27 (6): 2639-2645.
7 陈义国. 裂缝的测井识别与评价方法研究[D].北京:中国石油大学,2010.
CHEN Y G. Study on Logging Identification and Evaluation Method of Fractures[D]. Beijing:China University of Petroleum, 2010.
8 李善军,肖永文,汪涵明,等.裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释[J].地球物理学报,1996(6):845-852.
LI S J,XIAO Y W, WANG H M, et al. Mathematical model of dual laterolog response of fractures and quantitative interpretation of fracture porosity[J].Acta Geophysica Sinica,1996,39(6): 845-852.
9 张作清,郑炀,孙建孟.页岩气评价“六性关系”研究[J].油气井测试,2013,22(1):65-70,74,78.
ZHANG Z Q, ZHENG Y, SUN J M. Study on “six relations” of shale gas evaluation[J]. Oil and Gas Well Testing, 2013,22 (1): 65-70, 74,78.
10 赵迪斐,郭英海,朱炎铭,等. 海相页岩储层微观孔隙非均质性及其量化表征[J].中国矿业大学学报,2018,47(2):296-307.
ZHAO D F, GUO Y H, ZHU Y M, et al. Microscopic pore heterogeneity and its quantitative characterization of marine shale reservoir[J]. Journal of China University of Mining and Technology, 2018,47(2): 296-307.
11 朱光有,金强,张林晔. 用测井信息获取烃源岩的地球化学参数研究[J]. 测井技术,2003,27(2):104 -109,146.
ZHU G Y, JIN Q, ZHANG L Y. Study on geochemical parameters of source rocks obtained by logging information[J].Logging Technology, 2003,27 (2): 104-109,146.
12 孟召平,郭彦省,刘尉.页岩气储层有机碳含量与测井参数的关系及预测模型[J].煤炭学报,2015,40(2):247-253.
MENG Z P, GUO Y S, LIU W. Relationship between organic carbon content of shale gas reservoir and logging parameters and prediction model[J]. Acta Coalae Sinica, 2015,40 (2): 247-253.
13 潘仁芳,伍媛,宋争. 页岩气勘探的地球化学指标及测井分析方法初探[J]. 中国石油勘探,2009,14(3):6-10.
PAN R F, WU Y, SONG Z. Geochemical indicators and logging analysis methods for shale gas exploration[J]. China Petroleum Exploration, 2009,14 (3): 6-10.
14 王凤琴,王香增,张丽霞,等.页岩气资源量计算:以鄂尔多斯盆地中生界三叠系延长组长7为例[J].地学前缘,2013,20(3):240-246.
WANG F Q, WANG X Z, ZHANG L X, et al. Calculation of shale gas resources: A case study of Chang 7, Yanchang Formation,Mesozoic Triassic,Ordos Basin[J]. Earth Science Frontiers, 2013,20(3): 240-246.
15 MOHAMMAD R K,AHAD A M. Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques[J].Journal of Petroleum Science and Engineering, 2004,45(3-4):141-148.
16 余杰,秦瑞宝,刘春成,等.页岩气储层测井评价与产量“甜点”识别——以美国鹰潭页岩气储层为例[J]. 中国石油勘探,2017,22(3):104-112.
YU J, QIN R B, LIU C C, et al. Shale gas reservoir logging evaluation and production “sweet spot” identification: A case study of Yingtan shale gas reservoir in the United States[J]. China Petroleum Exploration, 2017,22 (3): 104-112.
17 胡博文,李斌,鲁东升,等. 页岩气储层特征及含气性主控因素:以湘西北保靖地区龙马溪组为例[J]. 岩性油气藏,2017,29(3):83-91.
HU B W, LI B, LU D S, et al. Characteristics of shale gas reservoir and main controlling factors of gas bearing property: A case study of Longmaxi Formation in Baojing area, northwest Hunan[J]. Lithologic Reservoir, 2017, 29 (3): 83-91.
18 石文睿,张超谟,张占松,等.涪陵页岩气田焦石坝页岩气储层含气量测井评价[J].测井技术,2015,39(3):357-362.
SHI W R, ZHANG C M, ZHANG Z S, et al. Gas content logging evaluation of Jiaoshiba shale gas reservoir in Fuling shale gas field[J].Logging Technology,2015,39(3): 357-362.
[1] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[2] 席胜利, 莫午零, 刘新社, 张雷, 李剑, 黄正良, 王民, 张春林, 朱秋影, 言语, 周能武. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力——以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246.
[3] 蔡灵慧, 余烨, 郭建华, 黄俨然, 郭原草. 湘中南地区中奥陶统烟溪组页岩气勘探潜力[J]. 天然气地球科学, 2021, 32(8): 1247-1260.
[4] 文卓, 康永尚, 康刘旭, 李昀, 赵群, 王红岩. 页岩气工业建产区选区地质评价指标及其下限标准[J]. 天然气地球科学, 2021, 32(7): 950-960.
[5] 姜宇玲, 陈晓宇, 包汉勇. 页岩气分段压裂水平井产量递减快速预测新模型[J]. 天然气地球科学, 2021, 32(6): 845-850.
[6] 张光荣, 聂海宽, 唐玄, 李东晖, 孙川翔, 张培先. 基于有机孔和生物成因硅优选页岩气富集高产层段的方法及应用[J]. 天然气地球科学, 2021, 32(6): 888-898.
[7] 倪云燕, 姚立邈, 廖凤蓉, 高金亮, 陈建平, 隋建立, 张蒂嘉. 四川盆地威远返排液元素地球化学特征及排放处理建议[J]. 天然气地球科学, 2021, 32(4): 492-509.
[8] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2): 215-232.
[9] 孙豪飞, 罗冰, 文龙, 王锦西, 周刚, 文华国, 霍飞, 戴鑫, 何昌龙. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247.
[10] 张成林, 赵圣贤, 张鉴, 常程, 夏自强, 曹埒焰, 田冲, 冯江荣, 方圆, 周翊. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学, 2021, 32(2): 248-261.
[11] 舒志国, 刘莉, 梁榜, 陆亚秋, 郑爱维, 包汉勇. 基于物质平衡原理的页岩气井产能评价方法[J]. 天然气地球科学, 2021, 32(2): 262-267.
[12] 许莹莹, 胡志明, 端祥刚, 常进, 张彦从. 改进的页岩气五区复合产能模型及其影响因素[J]. 天然气地球科学, 2021, 32(2): 274-287.
[13] 万玉金, 何畅, 孙玉平, 张晓伟. Haynesville页岩气产区井位部署策略与启示[J]. 天然气地球科学, 2021, 32(2): 288-297.
[14] 康毅力, 杨东升, 游利军, 李鑫磊, 白佳佳, 邵佳新, 曾涛. 富有机质页岩高温热激增渗效果实验评价方法[J]. 天然气地球科学, 2021, 32(1): 86-97.
[15] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵军, 师执峰, 李元平, 向薪燃, 李杰, 魏纳. 天然气水合物储层导电特性模拟与饱和度计算[J]. 天然气地球科学, 2021, 32(9): 1261 -1269 .
[2] 韩双彪, 唐致远, 杨春龙, 谢林丰, 向朝涵, HORSFIELD Brian, 王成善. 天然气中氢气成因及能源意义[J]. 天然气地球科学, 2021, 32(9): 1270 -1284 .
[3] 宁诗坦,夏鹏,郝芳,田金强,钟毅,邹妞妞,付勇. 贵州牛蹄塘组黑色页岩岩相划分及岩相—沉积环境—有机质耦合关系[J]. 天然气地球科学, 2021, 32(9): 1297 -1307 .
[4] 王玉满,沈均均,邱振,李新景,张磊夫,张琴,王灿辉. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学, 2021, 32(9): 1308 -1323 .
[5] 马石玉,谢武仁,杨威,段书府,汪泽成,武赛军,苏楠,郝翠果,王小丹. 四川盆地及其周缘下寒武统沧浪铺组下段岩相古地理特征[J]. 天然气地球科学, 2021, 32(9): 1324 -1333 .
[6] 李亚丁,陈友莲,严威,代瑞雪,郗诚,和源. 四川盆地寒武系沧浪铺组沉积演化特征[J]. 天然气地球科学, 2021, 32(9): 1334 -1346 .
[7] 李让彬,段金宝,潘磊,李红. 川东地区中二叠统茅口组白云岩储层成因机理及主控因素[J]. 天然气地球科学, 2021, 32(9): 1347 -1357 .
[8] 池鑫琪,冯强汉,许淑梅,舒鹏程,孔家豪,崔慧琪,马慧磊. 鄂尔多斯盆地马五1⁃4亚段风化壳储层的相控作用——以苏里格气田桃2区块为例[J]. 天然气地球科学, 2021, 32(9): 1358 -1371 .
[9] 陈俊霖,王朋,郜元元,李开,杨明,张家强,李家程,李树同. 多元逐步回归法在致密砂岩储层矿物与孔隙度关系分析中的应用[J]. 天然气地球科学, 2021, 32(9): 1372 -1383 .
[10] 李二庭,米巨磊,周波,马聪,陈世加,张晓刚,刘翠敏. 准噶尔盆地莫索湾地区白垩系生物降解与成藏地球化学特征[J]. 天然气地球科学, 2021, 32(9): 1384 -1392 .