天然气地球科学 ›› 2021, Vol. 32 ›› Issue (5): 675–684.doi: 10.11764/j.issn.1672-1926.2021.01.015

• 天然气地质学 • 上一篇    下一篇

三水盆地布心组湖相碳酸盐岩沉积特征及相模式

唐鑫萍1,2(),雷栋3,宋效文1,3   

  1. 1.中国石油大港油田公司勘探开发研究院,天津 300280
    2.中油(天津)国际石油勘探开发技术有限公司,天津 300280
    3.中国石油南方石油勘探开发有限责任公司,海南 海口 570216
  • 收稿日期:2020-11-04 修回日期:2021-01-21 出版日期:2021-05-10 发布日期:2021-04-27
  • 作者简介:唐鑫萍(1987-),男,广西桂林人,工程师,硕士,主要从事石油地质研究. E-mail: tangxping@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项子课题(2016ZX05026003);中国石油科技项目(2019D-0707)

Sedimentary characteristics and facies model of lacustrine carbonate rocks of Buxin Formation, Sanshui Basin

Xin-ping TANG1,2(),Dong LEI3,Xiao-wen SONG1,3   

  1. 1.Research Institute of Exploration and Development,Dagang Oilfield Company,CNPC,Tianjin 300280,China
    2.PetroChina (Tianjin) International Petroleum Exploration & Development Technology Co. Ltd. ,Tianjin 300280,China
    3.PetroChina South Petroleum Exploration and Development Co. Ltd. ,Haikou 570216,China
  • Received:2020-11-04 Revised:2021-01-21 Online:2021-05-10 Published:2021-04-27
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05026003);the China National Petroleum Corporation Science and Technology Project(2019D-0707)

摘要:

运用岩心、岩石薄片、扫描电镜、X?射线衍射和微量元素等资料,分析三水盆地布心组湖相碳酸盐岩沉积特征及相模式。结果表明:①三水盆地布心组碳酸盐岩主要有泥灰岩、生物灰岩、泥晶灰岩3类,岩性总体较细,基质含量高、颗粒含量较低,胶结物主要为泥晶,单层厚度较薄。②布心组碳酸盐岩形成于贫外物源的湖盆缓坡背景,总体水动力较弱;形成于贫氧—缺氧条件下的半咸水—咸水沉积环境;表现为总体较弱水动力条件下的咸水化学沉积和局部生物沉积。③建立了受控于古地形与湖浪的缓坡碳酸盐岩沉积模式,碳酸盐岩主要发育于滨湖—浅湖区域,滨湖可分为砂泥坪、灰泥坪2个微相,浅湖可分为生物浅滩、灰泥浅湖、泥质浅湖3个微相,不同微相的碳酸盐岩发育情况具有较明显的分异性,灰泥坪优势岩性为泥灰岩、生物浅滩优势岩性为生物灰岩、灰泥浅湖优势岩性为泥晶灰岩。研究成果可为该区碳酸盐岩沉积相工业化制图和储层分布预测提供依据。

关键词: 湖相碳酸盐岩, 岩石学特征, 沉积环境, 沉积微相, 沉积模式, 古近系, 三水盆地

Abstract:

This paper aims at the sedimentary characteristics and sedimentary facies model of lacustrine carbonate rocks of Buxin Formation in Sanshui Basin. Petrological characteristics were analyzed by using core, thin section, scanning electron microscope and X-ray diffraction data. Combined with trace element data, sedimentary environment analysis was carried out. The carbonate sedimentary facies model is established based on the analysis of continuous well profile. The results are as follows: (1)The carbonate rocks of Buxin Formation in Sanshui Basin are mainly composed of muddy limestone, biological limestone and micrite limestone. The overall lithology of carbonate rocks is fine, with high matrix content and low particle content. The cement is mainly mud crystal. The thickness of single layer is thin. (2)The carbonate rocks of Buxin Formation were formed in the gentle slope environment of lake basin with poor provenance. The overall hydrodynamic force is weak. It is formed in the oxygen-poor and anoxic environment. It is characterized by saline water chemical deposition and local biological deposition under relatively weak hydrodynamic conditions. (3)The sedimentary model of gentle slope carbonate rock controlled by paleotopography and lake wave is established. Carbonate rocks are mainly developed in the lakeside shallow lake area. The lakeside can be divided into two microfacies: sand mud flat and muddy lime flat. The shallow lake can be divided into three microfacies: biological shoal, muddy lime shallow lake and muddy shallow lake. The development of carbonate rocks with different microfacies has obvious differentiation. The dominant lithology of muddy lime flat is muddy limestone. The dominant lithology of biological shoal is biolimestone. The dominant lithology of muddy lime shallow lake is micritic limestone. The research results can provide basis for industrial mapping of carbonate sedimentary facies and prediction of reservoir distribution.

Key words: Lacustrine carbonate rocks, Petrological characteristics, Sedimentary environment, Sedimentary microfacies, Sedimentary model, Paleogene, Sanshui Basin

中图分类号: 

  • TE122.2

图1

三水盆地古近系构造区划"

图2

三水盆地布心组碳酸盐岩岩心、显微镜和扫描电镜照片Q5井,604.9 m,泥灰岩:(a)岩心为灰色荧光泥灰岩,见波状不规则分布的裂缝被黑色有机质及方解石晶体充填;(b)岩石薄片单偏光下见泥晶方解石与部分碎屑石英小颗粒(箭头);(c)扫描电镜下见它形方解石与片状黏土矿物(箭头)。Q5井,592.8 m,白云质泥灰岩:(d)岩心为灰白色荧光泥灰岩;(e)岩石薄片单偏光下见斑块状白云石(箭头);(f)扫描电镜下见菱形白云石(白箭头),晶间发育针状硬石膏(红箭头)。Q5井,829.5 m,介壳灰岩:(g)岩心为深灰色油斑灰岩,裂缝被原油(箭头)及方解石晶体充填;(h)岩石薄片单偏光下见泥晶介壳灰岩,生物化石主要为以介形虫(箭头);(i)扫描电镜下见介形虫碎片(箭头)。Q5井,843.6 m,生物灰岩:(j)岩心为深灰色油迹灰岩,裂缝被原油(箭头)及方解石晶体充填;(k)岩石薄片单偏光下见泥晶藻灰岩,生物化石以红藻(箭头)、枝管藻为主,含介形虫;(l)扫描电镜下见方解石溶蚀(箭头)。H1A井,1 461.8 m,泥晶灰岩:(m)岩心为灰黑色油斑泥晶灰岩,裂缝被原油(箭头)及方解石晶体充填;(n)岩石薄片单偏光下见深灰色泥晶方解石;(o)扫描电镜下见灰岩内方解石晶间孔隙2~6 μm(箭头)。H1A井,1 463.5 m,含砂屑泥晶灰岩:(p)岩心为灰黑色油斑泥晶灰岩,裂缝被原油(箭头)及方解石晶体充填;(q)岩石薄片单偏光下见带泥晶套的粉砂粒级内碎屑(箭头),由方解石矿物组成;(r)扫描电镜下见灰岩内方解石晶间孔隙2~5 μm(箭头)"

表1

三水盆地布心组碳酸盐岩XRD矿物分析"

井号样品深度/m岩性矿物含量/%
黏土硬石膏石英斜长石方解石铁白云石白云石菱铁矿黄铁矿
Q5604.9泥灰岩28.73.418.63.231.16.53.45.1
Q5592.8云质泥灰岩32.92.55.42.128.82.523.32.5
Q5829.5介壳灰岩1.62.890.40.93.11.2
Q5843.6藻灰岩1.791.71.32.82.5
H1A1 461.8泥晶灰岩5.70.887.62.73.2
H1A1 463.5含砂屑泥晶灰岩8.51.91.384.61.42.3

表2

三水盆地布心组碳酸盐岩微量元素分析"

井号深度/m岩性B/10-6Ga/10-6B/GaSr/10-6Ba/10-6Sr/BaV/10-6Ni/10-6V/(V+Ni)
平均值33.026.972.91855.07159.405.9931.3210.570.68
Q5604.9泥灰岩56.511.25.041 905.4240.27.9323.79.10.72
Q5592.8云质泥灰岩3.92.61.501 059.2110.79.578.25.30.61
Q5829.5介壳灰岩2.31.21.92646.8159.34.067.45.90.56
Q5843.6藻灰岩6.36.11.03447.6186.52.4017.512.60.58
SS401 537.5泥晶灰岩126.718.56.85557.9204.12.7387.321.20.80
SS401 554.2泥晶灰岩2.42.21.09513.555.69.2443.89.30.82

图3

三水盆地Q5井布心组测井相分析"

图4

三水盆地东部斜坡布心组碳酸盐岩连井沉积相分析(钻井位置见图1连井线;GR指自然伽马,API;RD指深侧向电阻率,Ω·m)"

图5

三水盆地布心组碳酸盐岩沉积相剖面模式"

1 宋永, 周路, 郭旭光, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相云质致密油储层特征与分布规律[J].岩石学报, 2017, 33(4):1159-1170.
SONG Y, ZHOU L, GUO X G, et al. Characteristics and occurrence of lacustrine dolomitic tight-oil reservoir in the Middle Permian Lucaogou Formation, Jimusa’er Sag, southeastern Junggar Basin[J].Acta Petrologica Sinica, 2017, 33(4):1159-1170.
2 王建功, 张道伟, 袁剑英, 等. 柴达木盆地英西湖相碳酸盐岩储层成因与含油性分析[J].中国矿业大学学报, 2019, 48(1):110-120.
WANG J G, ZHANG D W, YUAN J Y, et al. Characteristics of reservoir genesis and oil & gas accumulation in lacustrine carbonate in Yingxi area of Qaidam Basin[J]. Journal of China University of Mining & Technology, 2019, 48(1):110-120.
3 庞正炼, 陶士振, 张景建, 等. 四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J]. 天然气地球科学, 2019, 30(9): 1301-1311.
PANG Z L, TAO S Z, ZHANG J J, et al. Differentiation accumulation in multiple scales of tight oil and its main controlling factors of Jurassic Da′anzhai Member in Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(9): 1301-1311.
4 吕正祥, 王先东, 吴家洋, 等. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921-931.
LÜ Z X, WANG X D, WU J Y, et al. Diagenetic evolution characteristics of Paleogene lacustrine carbonate reservoirs in the central Bohai Sea area[J]. Natural Gas Geoscience, 2018, 29(7): 921-931.
5 PEDONE V A, FORK R L. Formation of aragonite cement by nannobacteria in the great salt lake,Utah[J].Geology,1996, 24:763-765.
6 LINK M H, OSBORNE R H, AWRAMIK S M, et al. Lacustrine stromatolites and associated sediments of the Pliocene ridge route formation, Ridge Basin, California[J]. Journal of Sedimentary Petrology, 1978, 48:143-158.
7 BENSON L V. Carbonate deposition, Pyramid Lake Subbasin, Nevada:1:Sequence of formation and elevational distribution of carbonate deposits (Tufas)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 109:55-87.
8 CASANOVA J, HILLAIRE-MARCEL C. Late holocene hydrological history of lake Tanganyika, east Africa, from isotopic data on fossil stromatolites[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 91:35-48.
9 COHEN A S, TALBOT M R, AWRAMIK S M, et al. Lake level and paleoenvironmental history of lake Tanganyika, as inferred from Late Holocene and moder stromatolites[J]. Geological Society of America Bulletin,1997,109:444-460.
10 CAMOIN G, CASANOVA J, ROUCHY J M, et al. Environmental controls on perennial and ephemeral carbonate lakes:The central Palaeo-Andean Basin of Bolivia during Late Cretaceous to Early Tertiary Times[J].Sedimentary Geology,1997, 113:1-26.
11 PALMA R M. Lacustrine facies in the Upper Cretaceous Balbuena Subgroup (Salta Group):Andina Basin, Argentina[C]//GIERLOWSKI-KORDESCH E H, KELTS K R. Lake Basins Through Space and Time. Geology:AAPG, 2000:323-328.
12 李阳, 康志江, 薛兆杰, 等.中国碳酸盐岩油气藏开发理论与实践[J].石油勘探与开发, 2018, 45(4):669-678.
LI Y, KANG Z J, XUE Z J, et al.Theories and practices of carbonate reservoirs development in China[J].Petroleum Exploration and Development, 2018, 45(4):669-678.
13 唐天福, 薛耀松, 周仰康, 等. 广东省三水盆地下第三系布心群碳酸盐岩的特征及沉积环境分析[J].地质学报,1980,54 (4):249-258.
TANG T F, XUE Y S, ZHOU Y K, et al. Characteristics and sedimentary environment analysis of carbonate rocks of the Lower Tertiary Buxin Group in Sanshui Basin,Guangdong Province[J]. Acta Geologica Sinica, 1980, 54 (4) : 249-258.
14 侯明才, 陈洪德, 黎治忠, 等.广东三水盆地沉积体系研究[J].地质通报, 2006, 25(9-10):1176-1183.
HOU M C, CHEN H D, LI Z Z, et al. Study on the depositional system of the Sanshui Basin, Guangdong, China[J]. Geological Bulletin of China, 2006, 25(9-10) :1176-1183.
15 祝圣贤, 侯明才, 黄志发.基于地震相研究的三水盆地布心组沉积相再解释[J].成都理工大学学报:自然科学版, 2019, 46(2):240-248.
ZHU S X, HOU M C, HUANG Z F. Reinterpretation of sedimentary facies of Buxin Formation in Sanshui Basin based on the study of seismic facies[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2019, 46(2):240-248.
16 龚晓峰,何家雄,张景茹,等.华南陆缘南部三水盆地油气地质条件与有利勘探方向[[J].石油钻采工艺,2010,32(11):1-6.
GONG X F, HE J X, ZHANG J R, et al. Geological conditions and favorable exploration potiential in Sanshui Basin lying in the south of the continental margin of South China[J]. Oil Drilling & Production Technology, 2010, 32(11):1-6.
17 ZHU X F, FANG K Y, WANG Q, et al. The first stalicoolithus shifengensis discovered in a clutch from the Sanshui Basin, Guangdong Province[J]. Vertebrata Palasiatica, 2018, 56(1):1-46.
18 NAUGOLNYKH S V, TU M, LIU X Y, et al. A new species of Lygodium (Schizaeaceae) from the Buxin Formation (middle Paleocene),Sanshui Basin, South China[J]. Palaeoworld, 2019, 28(3): 225-240.
19 ZHANG W, FANG N Q, YUAN X B, et al. Geochemical and mineralogical investigation on different types of Cenozoic Basalts in the Sanshui Basin: Implications for magma mixing processes[J].Journal of Earth Science,2019,30(4):754-762.
20 ZHU B Q, WANG H F, CHEN Y W, et al. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia[J].Journal of Asian Earth Sciences, 2004,24: 163-175.
21 LIU C L, FRANZ T F, CHEN L, et al. Geochemical signatures of Early Paleogene source rocks in the Sanshui Basin, South China[J].Acta Geologica Sinica:English Edition,2010, 84(1): 145-154.
22 唐鑫萍, 王冠群, 钱茂路, 等.三水盆地古近系布三段砂岩中碳酸盐胶结物特征及成因[J].天然气地球科学, 2019, 30(3):353-360.
TANG X P, WANG G Q, QIAN M L, et al.Characteristics and formation of carbonate cements of sandstones in Paleogene 3rd member of Buxin Formation of Sanshui Basin[J]. Natural Gas Geoscience, 2019, 30(3):353-360.
23 苑坤, 方欣欣, 林拓.三水盆地页岩气成藏条件分析[J].中国石油勘探, 2017, 22(2):84-89.
YUAN K, FANG X X, LIN T. Analysis on accumulation conditions of shale gas in Sanshui Basin[J].Chinese Petroleum Exploration, 2017, 22(2):84-89.
24 李书琴, 印森林, 高阳, 等.准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
LI S Q, YIN S L, GAO Y, et al. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience,2020, 31(2):235-249.
25 王建功,张道伟,易定红,等.柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J].岩性油气藏,2018,30(4):12-13.
WANG J G, ZHANG D W, YI D H, et al. Depositional characteristics and facies model of lacustrine carbonate rock in the Upper Member of Lower Ganchaigou Formation in western Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(4):12-13.
26 唐鑫萍, 黄文辉, 邓宏文, 等.山东平邑盆地古近系湖相微生物碳酸盐岩形成机理[J].古地理学报, 2012, 14(3):355-364.TANG X P, HUANG W H, DENG H W, et al.Formation mechanisms of the Paleogene lacustrine microbial carbonate rocks in Pingyi Basin, Shandong Province[J].Journal of Palaeogeography, 2012, 14(3):355-364.
27 操应长, 朱宁, 张少敏, 等.准噶尔盆地吉木萨尔凹陷二叠系芦草沟组致密油储层成岩作用与储集空间特征[J].地球科学与环境学报, 2019, 41(3):253-266.
CAO Y C, ZHU N, ZHANG S M, et al.Diagenesis and reserving space characteristics of tight oil reservoirs of Permian Lucaogou Formation in Jimusar Sag of Junggar Basin, China[J].Journal of Earth Sciences and Environment, 2019, 41(3): 253-266.
28 张少敏, 操应长, 朱如凯, 等.湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J].地学前缘, 2018, 25(4):198-209.
ZHANG S M, CAO Y C, ZHU R K, et al.Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag,Junggar Basin[J].Earth Science Frontiers, 2018, 25(4):198-209.
29 吴因业, 吕佳蕾, 方向, 等. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
WU Y Y, LV J L, FANG X, et al. Analysis of favorable facies belts in reservoir of lacustrine carbonate rocks-hybrid sediments:Case study of Paleogene in Qaidam Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1150-1157.
30 郑剑锋, 黄理力, 袁文芳, 等. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
ZHENG J F, HUANG L L, YUAN W F, et al. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
31 林良彪, 余瑜, 黄棋, 等. 川北旺苍地区奥陶系地球化学特征及沉积环境分析[J]. 岩石学报, 2017, 33(4):1272-1284.
LIN L B, YU Y, HUANG Q,et al. The geochemical characteristics and sedimentary environment analysis of Ordovician in Wangcang region, northern Sichuan Basin[J]. Acta Petrologica Sinica, 2017, 33(4):1272-1284.
32 贾瑜, 黄文辉.山东平邑盆地古近系卞桥组一段湖相碳酸盐岩碳氧同位素特征及其地质意义[J].地球科学与环境学报, 2020, 42(3):342-354.
JIA Y, HUANG W H.Carbon and oxygen isotopic characteristics of lacustrine carbonate rocks from the First Member of Paleogene Bianqiao Formation in Pingyi Basin of Shandong, China and their geological significance[J].Journal of Earth Sciences and Environment, 2020, 42(3):342-354.
33 王永炜, 李荣西, 高胜利,等.渤海湾盆地黄骅坳陷湖相碳酸盐岩微量元素特征及沉积环境[J]. 石油实验地质, 2017, 39(6): 849-857.
WANG Y W, LI R X, GAO S L, et al.Trace element characteristics and sedimentary environment of lacustrine carbonate rocks in the Huanghua Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2017, 39(6): 849-857.
34 熊小辉, 肖加飞.沉积环境的地球化学示踪[J].地球与环境, 2011, 39(3):405-414.
XIONG X H, XIAO J F. Geochemical indicators of sedimentary environments-a summary[J].Earth and Environment,2011, 39(3):405-414.
35 BOLHAR R, KRANENDONK M J VAN. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J].Precambrian Research, 2007, 155(3-4): 229-250.
36 CULLERS R L. Implications of elemental concentrations for provenance, Redox Conditions, and Metamorphic studies of shales and limestones near Pueblo, CO, USA[J]. Chemical Geology, 2002, 191: 305-327.
37 BAKER P A, BURNS S J. Occurrence and formation of dolomite in organic-rich continental margin sediments[J]. AAPG Bulletin, 1985, 69(11):1917-1930.
38 ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4):289-318.
39 GUOLIANG X, YULIN S, SHUGEN L, et al. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, east China Sea Basin: Implications for provenance, depositional conditions and paleoclimate[J]. Marine & Petroleum Geology, 2018, 92:20-36.
40 BHATIA M R, CROOK K A. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins[J]. Contribution to Mineralogy Petrology, 2012, 92(2): 181-193.
41 ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4):289-318.
42 刘伟, 王振奇, 叶琳, 等. 渤海湾盆地渤中坳陷沙一段与沙三段古湖泊水体分层新证据[J]. 天然气地球科学, 2020, 31(10): 1428-1436.
LIU W, WANG Z Q, YE L, et al. New evidence of water stratification in the paleolakes of the first and third members of Shahejie Formation in Bozhong Depression, Bohai Bay Basin[J]. Natural Gas Geoscience, 2020, 31(10): 1428-1436.
43 杨晋东, 赵峰华, 秦胜飞, 等. 华北克拉通北缘中元古界杨庄组碳酸盐岩地球化学特征及其地质意义[J]. 天然气地球科学, 2020, 31(2): 268-281.
YANG J D, ZHAO F H, QIN S F, et al. Geochemical characteristics and geological significance of carbonate rocks in the Middle Mesoproterozoic Yangzhuang Formation of northern margin of North China Craton[J]. Natural Gas Geoscience, 2020, 31(2): 268-281.
44 王建功, 张道伟, 石亚军, 等. 柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征[J]. 吉林大学学报:地球科学版, 2020, 50(2): 442-453.
WANG J G, ZHANG D W, SHI Y J, et al. Salt lake depositional characteristics of Upper Member of Lower Ganchaigou Formation, western Qaidam Basin[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(2): 442-453.
45 TUCKER M E, WRIGHT V P. Carbonate Sedimentology [M]. Oxford: Blackwell Science Publications,1990: 20-75.
46 FLUGEL E. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application[M]. Berlin, Heidelberg: Springer-Verlag, 2004:100-125.
47 彭军, 郑荣才, 陈果.广西百色盆地东部古近系那读组湖相灰岩[J].古地理学报, 2004,6(2): 163-173.
PENG J, ZHENG R C, CHEN G. Lacustrine limestone of the Nadu Formation of Paleogene in eastern Baise Basin, Guangxi[J].Journal of Palaeogeography,2004,6(2):163-173.
48 谭先锋,王萍,王佳,等.早始新世极热气候时期咸化湖盆混合沉积作用——以渤海湾盆地东营凹陷孔店组为例[J].石油与天然气地质,2018,39(2):340-354.
TAN X F,WANG P,WANG J,et al. Mixed sedimentation in saline lacustrine basins during initial Eocene thermal maximum period:A case study on Kongdian Formation in Dongying Sag,Bohai Bay Basin[J].Oil & Gas Geology,2018,39(2):340-354.
49 宋慧波,于会新,王海邻,等.杭州湾庵东浅滩现代沉积物中的生物遗迹[J].古地理学报,2014,16(5):703-714.
SONG H B, YU H X, WANG H L,et al. Biogenic traces in modern shoal deposits of Andong area,Hangzhou Bay[J].Jour-nal of Palaeogeography,2014,16(5):703-714.
50 谷明峰,李文正,邹倩,等.四川盆地寒武系洗象池组岩相古地理及储层特征[J].海相油气地质,2020,25(2):162-170.
GU M F, LI W Z, ZOU Q,et al. Lithofacies palaeogeography and reservoir characteristics of the Cambrian Xixiangchi Formation in Sichuan Basin[J]. Marine Origin Petroleum Geology,2020,25(2):162-170.
[1] 蒙炳坤,周世新,李靖,陈克非,张臣,李朋朋,孙泽祥. 柴达木盆地西北部原油芳烃分子标志化合物分布特征及意义[J]. 天然气地球科学, 2021, 32(5): 738-753.
[2] 郭飞飞, 柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征[J]. 天然气地球科学, 2021, 32(3): 405-415.
[3] 孙豪飞, 罗冰, 文龙, 王锦西, 周刚, 文华国, 霍飞, 戴鑫, 何昌龙. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247.
[4] 曾旭, 林潼, 周飞, 李洁, 张懿, 沈晓双, 房永生, 王科. 柴达木盆地一里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J]. 天然气地球科学, 2021, 32(1): 73-85.
[5] 张昭丰, 王良军, 张立强, 黎承银. 川东南回龙场地区小河坝组砂岩元素特征及古环境意义[J]. 天然气地球科学, 2020, 31(9): 1239-1249.
[6] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[7] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[8] 栾守亮. 柴达木盆地全吉剖面第四系七个泉组沉积特征及沉积模式[J]. 天然气地球科学, 2020, 31(6): 800-808.
[9] 李书琴, 印森林, 高阳, 张方, 李映艳, 彭寿昌. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
[10] 高文强, 夏燕青, 马素萍, 殷国瑞, 张喜龙, 马东旭, 权红梅. 烃源岩和油气中有机含硫化合物的生成、分布及应用[J]. 天然气地球科学, 2020, 31(11): 1615-1627.
[11] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[12] 张天舒, 陶士振, 吴因业, 杨家静, 庞正炼, 杨晓萍, 陈燕燕, 袁苗, 刘敏, 范建玮, 冯荣昌. 层序演化对三角洲—滩坝沉积体系有利储层类型与分布的控制作用[J]. 天然气地球科学, 2019, 30(9): 1286-1300.
[13] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[14] 吴因业, 吕佳蕾, 方向, 杨智, 王岚, 马达德, 陶士振. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
[15] 唐鑫萍, 王冠群, 钱茂路, 张喜满, 杨博贤. 三水盆地古近系布三段砂岩中碳酸盐胶结物特征及成因[J]. 天然气地球科学, 2019, 30(3): 353-360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李相臣, 康毅力, 罗平亚, 游利军. 考虑应力作用的煤岩水相自吸实验研究[J]. 天然气地球科学, 2011, 22(1): 171 -175 .
[2] 高岗,柳广弟,王绪龙,张越千,孔玉华,张道旻,高劲. 准噶尔盆地上三叠统泥页岩解析气特征[J]. 天然气地球科学, 2013, 24(6): 1284 -1289 .
[3] 曹成,李天太,张磊,高潮,王晖. 考虑基质收缩效应的页岩气双孔双渗模型[J]. 天然气地球科学, 2015, 26(12): 2381 -2387 .
[4] 朱维耀, 马东旭, 朱华银, 安来志, 李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892 -897 .
[5] 康海亮,林畅松,牛成民,叶冬青,庄兴燕. 渤海西部海域沙垒田凸起古近系边缘断裂构造样式与沉积充填响应[J]. 天然气地球科学, 2017, 28(2): 254 -261 .
[6] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828 -838 .
[7] 天然气地球科学. 《天然气地球科学》2017-7期封面及目次[J]. 天然气地球科学, 2017, 28(7): 1 -2 .
[8] 宋明水,何妮茜,杨少春,赵永福,欧阳黎明,牛海瑞. 逆冲断层发育区火山岩裂缝分布模式[J]. 天然气地球科学, 2017, 28(7): 989 -999 .
[9] 余琪祥,余风华,史政. 塔里木盆地巴什托构造异常高压特征及成因[J]. 天然气地球科学, 2017, 28(7): 1000 -1007 .
[10] 宁超众,徐怀民,阳建平,孙海航,李维禄,苏琛,陈晓然. 塔里木盆地哈得逊地区巴楚组地层序列及成因机理[J]. 天然气地球科学, 2017, 28(7): 1008 -1019 .