天然气地球科学 ›› 2021, Vol. 32 ›› Issue (7): 1037–1046.doi: 10.11764/j.issn.1672-1926.2021.01.008

• 天然气地质学 • 上一篇    下一篇

柴北缘腹部砂岩中碳酸盐胶结物特征及成因探讨

王晔桐1,2(),孙国强1(),张顺存1,陈波3,朱文军4,蒋赟1,2   

  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.北部湾大学石油与化工学院,广西 钦州 535000
    4.中国石油青海油田公司勘探开发研究院,甘肃 敦煌 736202
  • 收稿日期:2020-11-23 修回日期:2021-01-07 出版日期:2021-07-10 发布日期:2021-07-22
  • 通讯作者: 孙国强 E-mail:wangyetong16@mails.ucas.edu.cn;sguoqiang@lzb.ac.cn
  • 作者简介:王晔桐(1993-),女,河北保定人,博士研究生,主要从事构造地质学研究. E-mail:wangyetong16@mails.ucas.edu.cn.
  • 基金资助:
    国家自然科学基金(41872145);广西自然科学基金联合资助培育项目(2019GXNSFAA245016)

Characteristics and genesis of carbonate cement in abdomen sandstone in northern margin of Qaidam Basin

Ye-tong WANG1,2(),Guo-qiang SUN1(),Shun-cun ZHANG1,Bo CHEN3,Wen-jun ZHU4,Yun JIANG1,2   

  1. 1.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.College of Petroleum and Chemical Engineering, Beibu Gulf University,Qinzhou 535000, China
    4.Research Institute of Exploration and Development,PetroChina Qinghai Oilfield Company,Dunhuang 736202,China
  • Received:2020-11-23 Revised:2021-01-07 Online:2021-07-10 Published:2021-07-22
  • Contact: Guo-qiang SUN E-mail:wangyetong16@mails.ucas.edu.cn;sguoqiang@lzb.ac.cn
  • Supported by:
    The National Natural Science Foundation of China(41872145);Guangxi Natural science Foundation Co-Funded the Cultivation Project(2019GXNSFAA245016)

摘要:

利用岩心观察和描述、镜下鉴定、碳氧同位素分析等手段,结合研究区沉积环境和构造背景,对研究区侏罗系—新近系储层砂岩中碳酸盐胶结物的类型、期次、分布形态、地球化学特征、成因机制等方面进行了详细的研究。结果显示:柴北缘腹部地区中新生界砂岩主要胶结物类型为碳酸盐胶结,胶结物分为早、中、晚3期,早期碳酸盐胶结物包括方解石、白云石、菱铁矿,中期主要是方解石和含铁方解石,晚期为含铁白云石。侏罗纪柴北缘腹部地区经历了由封闭咸湖向开放型湖盆的转变过程,δ13C值为-16.77‰~8.01‰和δ18O值为-18.52‰~-8.34‰,古盐度值(Z)和古温度分别为86.50~133.72 ℃和67.81~142.19 ℃,成岩阶段处于早成岩阶段B期—中成岩阶段B期。古近系(E1+2、E31、E32)形成于开放水体环境,δ13C值为-8.71‰~-2.40‰,δ18O值为-16.62‰~-8.77‰,古盐度和古温度分别为102.85~116.16 ℃和63.03~117.28 ℃,成岩阶段为早成岩阶段B期—中成岩阶段A期。新近系上干柴沟组(N1)和下油砂山组(N21)也形成于开放水体环境,δ13C值为 -6.81‰~ -3.80‰和δ18O值为-12.73‰~-6.13‰,古盐度和古温度值分别为107.65~114.89 ℃和25.54~88.93 ℃,成岩演化阶段处于早成岩阶段A期—早成岩阶段B期。不同层位碳、氧同位素含量基本呈现出相同的变化趋势,但是仍存在个别点呈现相反的趋势,可能与大气淡水有关。其碳酸盐胶结物成因机制既包括有机成因也包括无机成因,早期主要受大气淡水淋滤作用,中期主要是有机质热解脱羧作用提供碳源,晚期主要为生物成因碳酸盐,同时也含有少量有机碳源。

关键词: 碳酸盐胶结物, 碳、氧同位素, 沉积环境, 中—新生代, 柴达木盆地

Abstract:

Based on core observation and description, microscopic identification, analysis of carbon and oxygen isotope analysis, etc., combined with the sedimentary environments and tectonic background, this paper makes a detailed study on the genesis and mechanism of the type, sub-distribution, morphology and geochemical characteristics of carbonate cements from Jurassic to Neogene reservoir sandstone in the study area. The results show that the main cementation types of Meso-Cenozoic sandstone in the abdomen area of the northern margin of Qaidam is carbonate cementation, which can be divided into early, middle and late three stages. The early carbonate cementation includes calcite, dolomite and siderite, the middle stage are mainly calcite and iron-bearing calcite, and the late stage is iron-bearing dolomite. The abdomen of the northern margin of Qaidam Basin in Jurassic experienced a transition from closed salty lake to open lake, with δ13C values ranging from -16.77‰ to 8.01‰ and δ18O values ranging from -18.52‰ to -8.34‰, paleosalinity (Z) values ranging from 86.50 to 133.72 and paleo-temperature from 67.81 to 142.19 ℃, respectively. And the diagenesis stage was in the early diagenesis stage B to middle diagenesis stage B. In Paleogene (E1+2, E31, E32), the northern margin of Qaidam Basin was in an open water environment, and the carbon and oxygen isotopes were from -8.71‰ to -2.40‰ and from -16.62‰ to -8.77‰, respectively. The paleosalinity and paleotemperature were 102.85-116.16 ℃ and 63.03-117.28 ℃, with the diagenesis stage of the middle diagenetic stage A to the early diagenetic stage B. In Neogene (N1 and N21), it was also in an open water environment, with δ13C values of -6.81‰--3.80‰ and δ18O values of -12.73‰--6.13‰,The paleosalinity and paleotemperature were 107.65-114.89 ℃ and 25.54-88.93 ℃, whose diagenetic evolution stage was in the early diagenesis stage A to middle diagenetic stage B. The content of carbon and oxygen isotopes in different layers shows the same trend, but there are still some points showing the opposite trend, which may be related to atmospheric fresh water. The genesis mechanism of the carbonate cement includes both organic and inorganic origin. In the early stage, it was mainly affected by the leaching of fresh water. In the middle stage, it was mainly provided by the thermal release carboxylation of organic matter. And in the late stage, it was mainly biogenic carbonate, and also contained a small amount of organic carbon sources.

Key words: Carbonate cements, Carbon and oxygen isotopes, Sedimentary environment, Meso-Cenozoic, Qaidam Basin

中图分类号: 

  • TE122.1

图1

柴达木盆地北缘腹部构造位置"

图2

柴北缘腹部侏罗系—新近系岩心照片(a)冷科1井,3 517.5 m,J,灰黑色粉砂岩,块状构造;(b)冷95井,3 062.9 m,E1+2,红棕色砾岩,分选差,磨圆为次棱角—次圆状,砾石主要有石英岩、花岗岩、板岩等;(c)北2井,3 535.8 m,E31,灰黑色中砂岩,见水平层理和板状交错层理;(d)仙西1井,4 848.5 m, E31,褐色含砾粗砂岩和细—粉砂岩互层,粗砂岩具有明显的粒序结构,局部可见泄水构造;(e)仙西1井,4 207.7 m,E32,灰白色含砾粗砂岩与细砂岩互层,砾石具有定向排列,最大粒度为2 cm,细砂岩可见斜层理;(f)鄂深1井,3 635.9 m,N1,灰色泥质粉砂岩,块状构造"

图3

柴达木盆地北缘腹部地区中新生代砂岩三角"

图4

柴北缘腹部砂岩镜下岩石学特征(a)冷95井,J,3 357.89 m,岩屑长石砂岩,(-),×100,石英含量高,以单晶石英为主,岩屑有石英岩等,含大量云母碎片,定向排列,少量灰质内碎屑,形状不规则,方解石胶结,孔隙不发育,以次生孔隙为主,连通性差;(b)冷95井,J,3 357.89 m,岩屑长石砂岩,(-),×200,含铁白云石和铁方解石;(c)冷95井,J,3 358.89 m,岩屑砂岩,(+),×100,以凝灰岩岩屑为主,少量石英、长石颗粒,填隙物为泥质,少量方解石,孔隙不发育,以粒内次生孔隙为主,连通性差;(d)深81井,J,3 204 m,含泥长石岩屑砂岩,(+),×100; (e)仙西1井,J,5 423 m,含灰细中粒长石岩屑砂岩,(+),×100;(f)仙西1井,E1+2, 5 178 m,岩屑长石砂岩,(-),×100;(g)仙东1井,E1+2,3 084.44 m,岩屑长石砂岩,(+),×100,石英表面干净,部分具波状消光;长石高岭土化、绢云母化,岩屑有石英岩等,偶见方解石填隙物,孔隙发育,以粒间孔为主,个别粒内溶孔,连通性好;(h)仙东1井,E31,3 001.24 m,含灰不等粒长石砂岩,(+),×100,以粉砂、极细砂居多,石英表面干净,部分具波状消光,长石高岭土化、绢云母化,见少量石英岩、板岩岩屑,填隙物以方解石为主,局部为泥质,无可见孔;(i)冷七2井,E31,5 276 m,岩屑长石砂岩,(+),×100;(j)赛深3井,E32,3 877.18 m,不等粒长石砂岩,(+),×100,石英表面干净,部分具波状消光;长石高岭土化、绢云母化,岩屑有石英岩、板岩等,填隙物有方解石、硬石膏,无可见孔;(k)冷七2井,E32,4 406 m,岩屑长石砂岩,(+),×100;(l)冷92井,N1,2 733.72 m,岩屑长石砂岩,(-),×100"

图5

柴北缘腹部侏罗系—下油砂山组不同层位砂岩碳氧同位素值相关性"

图6

柴北缘腹部地区碳氧同位素值关系(a)及古盐度和古温度相关性(b)"

图7

自然界碳、氧同位素分布含量[23]"

图8

碳酸盐胶结物碳、氧同位素成因图解"

1 王清斌,臧春艳,赖维成,等.渤中坳陷古近系中、深部碎屑岩储层碳酸盐胶结物分布特征及成因机制[J].石油与天然气地质,2009,30(4):438-443.
WANG Q B, ZANG C Y, LAI W C, et al. Distribution characteristics and origin of carbonate cements in middle and deep clastic reservoirs of the Paleogene in Bozhong Depression[J]. Oil and Gas Geology, 2009,30(4):438-443.
2 裴昌蓉. 西湖凹陷中南部古近系储层砂岩自生碳酸盐矿物研究[D]. 成都:成都理工大学, 2007.
PEI C R. Study on Self-carbonate Minerals of Sandstone from Paleogene Reservoirs in the Central and Southern Xihu Sag [D]. Chengdu:Chengdu University of Technology, 2007.
3 吕成福,李小燕,陈国俊,等.酒东坳陷下白垩统砂岩中碳酸盐胶结物特征与储层物性[J].沉积学报,2011,29(6):1138-1144.
LV C F, LI X Y, CHEN G J, et al. Characteristics of carbonate cements and reservoir quality of the Lower Cretaceous san-dstone in Jiudong Sag[J]. Acta Sedimentologica Sinica, 2011, 29(6):1138-1144.
4 张新桂,徐国盛,张以明,等.饶阳凹陷沙河街组碎屑岩储层碳酸盐胶结物形成机制及其对储层质量的影响[J].矿物岩石,2017,37(2):111-119.
ZHANG X G, XU G S, ZHANG Y M, et al. Formation mechanism of carbonate cements and its influence on reservoir quality in clastic reservoir of Shahejie Formation, Raoyang Sag [J]. Journal of Mineralogy & Petrology, 2017, 37(2):111-119.
5 孟庆任.柴达木盆地成因分析[J].地质科学,2009,44(4):1213-1226.
MENG Q R. Genetic analysis of Qaidam Basin[J]. Geological Science, 2009,44(4):1213-1226.
6 宋博文,徐亚东,梁银平,等.中国西部新生代沉积盆地演化[J].地球科学:中国地质大学学报,2014,39(8):1035-1051.
SONG B W, XU Y D, LIANG Y P, et al. Evolution of Cenozoic sedimentary basins in western China[J].Earth Sciences: Journal of China University Geosciences, 2014,39(8):1035-1051.
7 王晔桐,孙国强,杨永恒,等.柴北缘冷湖七号地区碳酸盐胶结物特征及其意义[J].西南石油大学学报:自然科学版,2020,42(1):45-56.
WANG Y T, SUN G Q, YANG Y H, et al. Characteristics and significance of carbonate cements in Lenghu No.7 area, northern margin of Qaidam Basin[J]. Journal of Southwest Petroleum University: Natural Science edition, 2020,42(1):45-56.
8 付锁堂,王震亮,张永庶, 等.柴北缘西段鄂博梁构造带储层碳酸盐胶结物成因及其油气地质意义——来自碳、氧同位素的约束[J].沉积学报,2015,33(5):991-999.
FU S T, WANG Z L, ZHANG Y S, et al. Origin of carbonate cements in reservoir rocks and its petroleum geologic significance: Eboliang structure belt, northern margin of Qaidam Basin[J]. Acta Sedimentologica Sinica, 2015,33(5):991-999.
9 孙国强,马进业,王海峰, 等.柴达木盆地北缘马北地区碳酸盐胶结物特征及意义[J].石油实验地质,2012,34(2):134-139.
SUN G Q, MA J Y, WANG H F, et al. Characteristics and significances of carbonate cements in northern Mahai region, northern margin of Qaidam Basin[J]. Petroleum Geology & Experiment, 2012,34(2):134-139.
10 郭佳佳,孙国强,门宏建, 等.柴北缘腹部深层异常高孔—渗储层成因分析[J].沉积学报,2018,36(4):777-786.
GUO J J, SUN G Q, MEN H J, et al. Genetic analysis of anomalously high porosity zones in deeply buried reservoirs in the west part of northern edge of Qaidam Basin, NW China[J]. Acta Sedimentologica Sinica, 2018,36(4):777-786.
11 金之钧,张明利,汤良杰, 等.柴达木中新生代盆地演化及其控油气作用[J].石油与天然气地质,2004,25(6):603-608.
JIN Z J, ZHANG M L, TANG L J, et al. Evolution of Meso-Cenozoic Qaidam Basin and its control on oil and gas[J]. Oil & Gas Geology, 2004, 25(6):603-608.
12 FRIEDMAN I, O'NEIL J, CEBULA G. Two new carbonate stable isotope standards[J].Geostandards Newsletter,1982, 6(1): 11-12.
13 COPLEN T B,BRAND W A, GEHRE M, et al. New guidelines for 13C measurements[J].Analytical Chemistry, 2006,78 (7): 2439-2441.
14 HUT G. Consultants' Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigations[C]. Report to the Director General, International Atomic Energy Agency, Vienna, Austria ,1987.
15 STICHLER W. Interlaboratory Comparison of New Materials for Carbon and Oxygen Ratio Measurements[C]. Proceedings of a Consultants' Meeting Held in Vienna, 1-3. Dec. 1993, IAEA-TECDOC-825, IAEA, Vienna, Austria ,1995: 67-74.
16 王琪,禚喜准,陈国俊,等.延长组砂岩中碳酸盐胶结物氧碳同位素组成特征[J].天然气工业,2007,27(10):28-32,132-133.
WANG Q, ZHUO X Z, CHEN G J, et al. Characteristics of carbon and oxygen isotopic compositions of carbonate cements in Triassic Yanchang sandstone in Ordos Basin[J]. Natural Gas Industry, 2007, 27(10):28-32,132-133.
17 强子同. 碳酸盐岩储层地质学[M]. 北京:中国石油大学出版社, 1998.
QIANG Z T. Geology of Carbonate Reservoirs[M]. Beijing:China University of Petroleum Press, 1998.
18 KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10): 1787-1816.
19 SHACKLETON N J,KENNETT J P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in Deep Sea Drilling Project Sites 277, 279 and 281[J].Initial reports of the Deep Sea Drilling Projects,1976, 29: 743-755.
20 刘传联.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义[J].沉积学报,1998,16(3):3-5.
LIU C L. Carbon and oxygen isotopic compositions of lacustrine carbonates of the Shahejie Formation in the Dongying Depression and their paleolimnological significance[J]. Acta Sedimentologica Sinica,1998,16(3):3-5.
21 刘传联,赵泉鸿,汪品先.湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J].地球化学,2001,30(4):363-367.
LIU C L, ZHAO Q H, WANG P X. Correlation between carbon and oxygen isotopic ratios of lacustrine carbonates and types of oil-producing paleolakes[J].Geochimica,2001,30(4):363-367.
22 刘庆.渤海湾盆地东营凹陷烃源岩碳氧同位素组成及地质意义[J].石油实验地质,2017,39(2):247-252.
LIU Q. Composition and geologic significance of carbon and oxygen isotopes in hydrocarbon source rocks, Dongying Sag, Bohai Bay Basin[J].Petroleum Geology & Experiment, 2017, 39(2):247-252.
23 田景春. 沉积地球化学[M].北京:地质出版社, 1990.
TIAN J C. Sedimentary Geochemistry[M]. Beijing:Geological Publishing House,1990.
24 姚泾利,王琪,张瑞,等.鄂尔多斯盆地中部延长组砂岩中碳酸盐胶结物成因与分布规律研究[J].天然气地球科学,2011,22(6):943-950.
YAO J L, WANG Q, ZHANG R, et al. Origin and spatial distribution of carbonate cements in Yanchang Formation (Triassic) sandstones within the lacustrine center of Ordos Basin, NW China[J]. Natural Gas Geoscience,2011,22(6):943-950.
[1] 唐鑫萍, 雷栋, 宋效文. 三水盆地布心组湖相碳酸盐岩沉积特征及相模式[J]. 天然气地球科学, 2021, 32(5): 675-684.
[2] 蒙炳坤, 周世新, 李靖, 陈克非, 张臣, 李朋朋, 孙泽祥. 柴达木盆地西北部原油芳烃分子标志化合物分布特征及意义[J]. 天然气地球科学, 2021, 32(5): 738-753.
[3] 郭飞飞, 柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征[J]. 天然气地球科学, 2021, 32(3): 405-415.
[4] 孙豪飞, 罗冰, 文龙, 王锦西, 周刚, 文华国, 霍飞, 戴鑫, 何昌龙. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247.
[5] 代全齐, 王贵文, 张连昌, 李纲, 马丽娟, 高树芳, 程志超, 张迪, 刘国良. 致密储层孔隙结构相测井表征及对经济可采储量的约束——以柴达木盆地英西地区湖相混积岩为例[J]. 天然气地球科学, 2021, 32(2): 308-318.
[6] 曾旭, 林潼, 周飞, 李洁, 张懿, 沈晓双, 房永生, 王科. 柴达木盆地一里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J]. 天然气地球科学, 2021, 32(1): 73-85.
[7] 张昭丰, 王良军, 张立强, 黎承银. 川东南回龙场地区小河坝组砂岩元素特征及古环境意义[J]. 天然气地球科学, 2020, 31(9): 1239-1249.
[8] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[9] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[10] 栾守亮. 柴达木盆地全吉剖面第四系七个泉组沉积特征及沉积模式[J]. 天然气地球科学, 2020, 31(6): 800-808.
[11] 韩伟, 刘文进, 李玉宏, 周俊林, 张文, 张云鹏, 陈晓宏, 黄斌. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J]. 天然气地球科学, 2020, 31(3): 385-392.
[12] 张晓宝, 周飞, 曹占元, 梁明亮. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学, 2020, 31(11): 1585-1592.
[13] 高文强, 夏燕青, 马素萍, 殷国瑞, 张喜龙, 马东旭, 权红梅. 烃源岩和油气中有机含硫化合物的生成、分布及应用[J]. 天然气地球科学, 2020, 31(11): 1615-1627.
[14] 宋昆鹏,罗静兰,刘新社,侯云东,盛伟琰,曹江骏,毛倩茹. 鄂尔多斯盆地西南部上古生界致密砂岩中碳酸盐胶结物特征及成因[J]. 天然气地球科学, 2020, 31(11): 1562-1573.
[15] 蒋赟, 潘世乐, 秦彩虹, 蒋峥文, 朱文军, 张明峰, 孙国强. 柴达木盆地北缘平台地区下干柴沟组下段稀土元素特征及物源分析[J]. 天然气地球科学, 2020, 31(11): 1537-1547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[2] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[3] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[4] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[5] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[6] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[7] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[8] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .
[9] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .
[10] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .