天然气地球科学 ›› 2021, Vol. 32 ›› Issue (7): 982–992.doi: 10.11764/j.issn.1672-1926.2021.01.004

• 天然气地质学 • 上一篇    下一篇

南祁连盆地木里坳陷中侏罗统烃源岩原始有机碳含量恢复及与微孔隙演化的相关性

刘世明1(),谭富荣2(),唐书恒1,王金喜3,王伟超4,李永红4   

  1. 1.中国地质大学(北京)能源学院,北京 100083
    2.陕西省矿产地质调查中心,陕西 西安 710068
    3.河北省资源勘测研究重点实验室,河北 邯郸 056038
    4.中国煤炭地质总局,北京 100038
  • 收稿日期:2020-10-20 修回日期:2020-12-23 出版日期:2021-07-10 发布日期:2021-07-22
  • 通讯作者: 谭富荣 E-mail:liushimingstand@163.com;tanfurong1308@163.com
  • 作者简介:刘世明(1984-),男,陕西靖边人,高级工程师,博士,主要从事非常规油气地质研究. E-mail: liushimingstand@163.com.
  • 基金资助:
    国家自然科学基金(41702144);中央高校基本科研业务费专项资金(2652018234)

Restoration of “original organic carbon content” and its relationship with micropore evolution of the Middle Jurassic source rock in the Muli Depression, Southern Qilian Basin

Shi-ming LIU1(),Fu-rong TAN2(),Shu-heng TANG1,Jin-xi WANG3,Wei-chao WANG4,Yong-hong LI4   

  1. 1.School of Energy Resource,China University of Geosciences,Beijing 100083,China
    2.Shaanxi Mineral Resources and Geological Survey,Xi’an 710068,China
    3.Key Laboratory of Resource exploration Research of Hebei Province,Handan 056038,China
    4.China National Administration of Coal Geology,Beijing 100038,China
  • Received:2020-10-20 Revised:2020-12-23 Online:2021-07-10 Published:2021-07-22
  • Contact: Fu-rong TAN E-mail:liushimingstand@163.com;tanfurong1308@163.com
  • Supported by:
    The National Natural Science Foundation of China(41702144);Fundamental Research Funds for the Central Universities(2652018234)

摘要:

泥页岩有机质碳含量(TOC)是页岩油气评价的重要参数之一。然而,受有机质热演化生排烃影响,利用现今TOC评价与预测页岩油气资源时会出现一定的偏差。因此,进行烃源岩原始有机碳恢复对油气资源评价具有重要意义。木里坳陷位于南祁连盆地东北部,陆相中侏罗统广泛分布。中侏罗统为一套湖泊—三角洲相沉积的细粒碎屑岩,发育多套厚层富有机质暗色泥页岩,生烃潜力巨大。该层段内油气资源丰富,页岩有机质从低成熟到高成熟阶段均有分布,为原始有机碳含量的恢复提供了必要条件。以木里坳陷中侏罗统富有机质页岩为研究对象,利用岩石热解数据,采用物质平衡法有机碳恢复模型,对中侏罗统页岩原始有机碳含量进行了恢复。结果表明,中侏罗统页岩原始TOC含量与现今TOC含量的比值介于1.04~1.62之间,且随着热演化程度增高,比值变大。现今TOC含量与有机质孔隙发育之间没有必然的联系,然而,原始TOC含量与现今TOC含量之间的比值可以间接判断页岩有机质微孔隙发育情况。木里坳陷侏罗系页岩有机质类型以Ⅱ型和Ⅲ型为主,热演化参数(Tmax)大于440 ℃时,烃类转化率和排烃率都大于40%。相比样品矿物(石英和黏土矿物)含量、Tmax参数和现今TOC含量,原始TOC含量与页岩兰氏体积拟合性更好,结合热解参数Tmax,可以更好地判断页岩油气的吸附能力。因此,开展木里坳陷中侏罗统烃源岩原始有机碳含量恢复的研究,可以为木里坳陷烃源岩评价提供理论基础;同时对木里坳陷油气资源勘探提供新的思路。

关键词: 木里坳陷, 原始有机碳含量, 有机质孔, 中侏罗统, 烃源岩

Abstract:

Organic carbon content (TOC) of shale is one of the significant parameters for shale oil and gas assessment. However, the generation and expelling of hydrocarbons in shale was influenced by thermal evolution of organic matter, and a certain deviation occurred using present TOC to evaluate and predict shale oil and gas resources. Therefore, the restoration of original organic carbon from source rocks is of great significance for the evaluation of oil and gas resources. The Muli Depression, located in the northeast of the Southern Qilian Basin, was widely developed the Middle Jurassic continental shale. The Middle Jurassic is composed of a set of fine clastic rocks deposited in the lacustrine and delta setting. Multiple sets of thick dark organic-rich shales were developed, which have great hydrocarbon generation potential, and are found with abundant petroleum resources, and the thermal maturity of organic matter was from low maturity to high maturity, which provides the necessary conditions for the restoration of the original organic carbon content. In this paper, the original organic carbon content of Middle Jurassic shale in Muli Depression was calculated by material balance method using rock pyrolysis data. The results suggest that the ratio of original to present TOC content of the Middle Jurassic shale is between 1.04 and 1.62, and increases with the higher thermal maturity. No obvious relationship between the present TOC content and the pore development of organic matter in the Middle Jurassic shale. However, the difference between original and present TOC content could effectively assess the development of the micropores of organic matter in shale. The organic matter is mainly types Ⅱ and Ⅲ with thermal evolution (Tmax) greater than 440 ℃, and the transform and expulsion of hydrocarbons is greater than 40%. Compared with the minerals content (quartz and clay minerals content), Tmax and present TOC content, the original TOC content has a better correlation with the shale Langmuir volume, which combined with Tmax, could be more reasonable to evaluate the shale oil and gas adsorption capacity. Therefore, the original organic carbon content provides theoretical basis for source rocks evaluation, as well as a new idea for oil and gas exploration in the Muli Depression.

Key words: Muli Depression, Initial total organic carbon content, Organic pore, Middle Jurassic, Source rock

中图分类号: 

  • TE122

图1

木里坳陷地质及利用钻孔分布"

图2

侏罗系页岩干酪根分类图"

图3

木里坳陷侏罗系烃源岩有机质转化率和排烃率与热演化的关系"

图4

样品中单位有机碳游离烃含量与热演化的关系"

图5

TOC含量频率直方图"

图6

南祁连盆地二叠纪至侏罗纪烃源岩埋藏史—热史叠合图[31]"

图7

南祁连盆地烃源岩热演化史[31]"

图8

侏罗系页岩不同成熟度样品SEM图像"

图9

侏罗系页岩现今TOC含量和原始TOC含量之间关系"

图10

木里坳陷侏罗系页岩等温吸附曲线"

图11

页岩兰氏体积与TOC含量的关系"

图12

页岩兰氏体积与Tmax(a)和矿物含量(b)的相关性"

1 WANG P W, CHEN Z H, PANG X Q, et al. Revised models for determining TOC in shale play: Example from Devonian Duvernay shale, western Canada sedimentary basin[J]. Marine & Petroleum Geology,2016,70:304-319.
2 JIANG F J, CHEN J, XU Z Y, et al. Organic matter pore characterization in lacustrine shales with variable maturity using nanometer-scale resolution X-ray computed tomography[J]. Energy & Fuels,2017,31(3):2669-2680.
3 BOWKER K A. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J].AAPG Bulletin,2007,91(4):523-533.
4 魏国齐,王志宏,李剑,等.四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J].天然气地球科学,2017,28(1):1-13.
WEI G Q,WANG Z H,LI J, et al. Characteristics of source rocks,resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin[J].Natural Gas Geoscience,2017, 28(1):1-13.
5 CHEN Z H,JIANG C Q. A data driven model for studying kerogen kinetics with application examples from Canadian sedimentary basins[J]. Marine and Petroleum Geology,2015,67:795-803.
6 邹才能,杜金虎,徐春春,等.四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J].石油勘探与开发,2014,41(3):278-293.
ZOU C N, DU J H, XU C C, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2014,41(3):278-293.
7 罗胜元,陈孝红,岳勇,等.中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J].天然气地球科学,2020,31(8):1052-1068.
LUO S Y, CHEN X H, YUE Y, et al. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area,Middle Yangtze[J].Natural Gas Geoscience,2020,31(8): 1052-1068.
8 王鹏威,谌卓恒,金之钧,等.页岩油气资源评价参数之“总有机碳含量”的优选:以西加盆地泥盆系Duvernay页岩为例[J].地球科学,2019,44(2):504-512.
WANG P W, CHEN Z H, JIN Z J, et al. Optimizing parameter “total organic carbon content” for shale oil and gas resource assessment:Taking west Canada sedimentary basin Devonian Duvernay shale as an example[J].Earth Science,2019,44(2): 504-512.
9 WU S T, ZHU R K, CUI J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015,42(2):185-195.
10 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012,96(6):1071-1098.
11 LU J M, RUPPEL S C, ROWE H D. Organic matter pores and oil generation in the Tuscaloosa marine shale[J].AAPG Bulletin,2015,99(2): 333-357.
12 秦建中,金聚畅,刘宝泉.海相不同类型烃源岩有机质丰度热演化规律[J].石油与天然气地质,2005,26(2):177-184.
QIN J Z, JIN J C, LIU B Q. Thermal evolution pattern of organic matter abundance in various marine source rocks[J]. Oil & Gas Geology,2005,26(2):177-184.
13 PETERS K E, WALTERS C C, MOLDOWAN J M. The Biomarker Guide, Volume 1, Biomarkers and Isotopes in the Environment and Human History[M].Cambridge: Cambridge University Press,2005:471.
14 CHEN Z H, JIANG C Q. A revised method for organic porosity estimation using rock-eval pyrolysis data, example from Duvernay shale in the western Canada sedimentary basin[J].AAPG Bulletin,2016,100(3):405-422.
15 MODICA C J, LAPIERRE S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry shale in the Powder River Basin of Wyoming[J].AAPG Bulletin,2012,96(1):87-108.
16 PEPPER A S, CORVI P J. Simple kinetic models of petroleum formation: Part I. Oil and gas generation from kerogen[J]. Marine and Petroleum Geology,1995,12(3):291-319.
17 祝有海,刘亚玲,张永勤.祁连山多年冻土区天然气水合物的形成条件[J].地质通报,2006,25(1-2):58-63.
ZHU Y H, LIU Y L, ZHANG Y Q. Formation conditions of gas hydrates in permafrost of the Qilian Mountains, north-west China[J]. Geological Bulletin of China, 2006, 25(1-2): 58-63.
18 黄瑞华.祁连山地区大地构造演化及其性质特征[J].大地构造与成矿学,1996,20(2):95-104.
HUANG R H. Geotectonic evolution and its characteristic nature[J]. Geotectonica et Metallogenia, 1996,20(2):95-104.
19 程青松,龚建明,张敏,等.祁连山冻土区木里煤田侏罗系烃源岩地球化学特征[J].现代地质,2016,30(6):1408-1416.
CHENG Q S, GONG J M, ZHANG M, et al. Geochemical characteristics of Jurassic source rocks in the Muli coal field, Qilian Mountain permafrost[J].Geoscience,2016,30(6):1408-1416.
20 祝有海,张永勤,文怀军,等.青海祁连山冻土区发现天然气水合物[J].地质学报,2009,83(11):1762-1771.
ZHU Y H, ZHANG Y Q, WEN H J, et al. Gas hydrates in the Qilian Mountain permafrost, Qinghai, northwest China[J]. Acta Geologica Sinica,2009,83(11):1762-1771.
21 谭富荣,刘世明,崔伟雄,等.木里煤田聚乎更矿区天然气水合物气源探讨[J].地质学报,2017,91(5):1158-1167.
TAN F R, LIU S M, CUI W X, et al. Origin of gas hydrate in the Juhugeng mining area of Muli coal field[J]. Acta Geologica Sinica,2017,91(5):1158-1167.
22 LIU S M, TAN F R, HUO T, et al. Origin of the hydrate bound gases in the Juhugeng Sag, Muli Basin, Tibetan Plateau[J].International Journal of Coal Science & Technology,2020,7:43-57.
23 郝爱胜,王蓉,李剑,等.南祁连盆地木里坳陷烃源岩评价与资源潜力[J].矿物岩石地球化学通报,2017,36(1):134-140.
HAO A S, WANG R, LI J, et al. Evaluation and petroleum exploration potential of hydrocarbon source rocks in the Muli Depression, southern Qlian Basin, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(1): 134-140.
24 JUSTWAN H, DAHL B. Quantitative hydrocarbon potential mapping and organofacies study in the Greater Balder area, Norwegian North Sea[C]// DORE A G, A VININO A, Petroleum Geology, Northwest Europe and Global Prospective: Proceedings of the 6th Petroleum Geology Conference: Geological Society, London, 2005:1317-1329.
25 LAFARGUE E, ESPITALIE J, JACOBSEN T, et al. Experimental simulation of hydrocarbon expulsion[J].Organic Geo-chemistry,1990,16(1-3): 121-131.
26 BURNHAM A K, BRAUN R L. Development of a detailed model of petroleum formation,destruction,and expulsion from lacustrine and marine source rocks[J].Organic Geochemistry, 1990,16(1-3):27-39.
27 JARVIE D M. Shale resource systems for oil and gas: Part 2-Shale-oil resource systems[J]∥BREYER J A.Shale reservoirs-Giant resources for the 21st century.AAPG Memoir,2012,97: 89-119.
28 COOLES G P,MACKENZIE A S,QUIGLEY T M. Calculation of petroleum masses generated and expelled from source rocks[J]. Organic Geochemistry,1986,10(1):235-245.
29 CHOW N, WENDTE J, STASIUK L D. Productivity versus preservation controls on two organic-rich carbonate facies in the Devonian of Alberta: Sedimentological and organic petrological evidence[J]. Bulletin of Canadian Petroleum Geology,1995,43(4):433-460.
30 NOBLE R A, KALDI J G, ATKINSON C D. Oil saturations in shales:Applications in seal evaluation[J].AAPG Memoir,1997,67:13-29.
31 ZUO Y H, WANG Q F, LU Z Q, et al. Tectono-thermal evolution and gas source potential for natural gas hydrates in the Qilian Mountain permafrost, China[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 32-41.
32 POMMER M, MILLIKEN K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J].AAPG Bulletin,2015,99(9):1713-1744.
33 CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology. 2012,10 (23):26-31.
34 范东稳,卢振权,李广之,等.南祁连盆地木里坳陷石炭系—侏罗系天然气水合物气源岩有机地球化学特征[J].石油与天然气地质,2020,41(2):348-358.
FAN D W, LU Z Q, LI G Z, et al. Organic geochemical characteristics of the Carboniferous-Jurassic potential source rocks for natural gas hydrates in the Muli Depression, southern Qilian Basin[J]. Oil & Gas Geology,2020,41(2):348-358.
35 CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J].International Journal of Coal Geology,2007,70:223-339.
36 MAHLSTEDT N, HORSFIELD B. Metagenetic methane generation in gas shales I. Screening protocols using immature samples[J].Marine and Petroleum Geology,2012,31(1):27-42.
[1] 刘洪军,杜治利,陈夷,田娅,张蓬勃,王凤琴. 武威盆地武地1井石炭系烃源岩地球化学特征及地质意义[J]. 天然气地球科学, 2021, 32(7): 1061-1072.
[2] 胡国艺, 贺飞, 米敬奎, 袁懿琳, 郭谨豪. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力[J]. 天然气地球科学, 2021, 32(3): 319-333.
[3] 郭飞飞, 柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征[J]. 天然气地球科学, 2021, 32(3): 405-415.
[4] 孙豪飞, 罗冰, 文龙, 王锦西, 周刚, 文华国, 霍飞, 戴鑫, 何昌龙. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247.
[5] 曾旭, 林潼, 周飞, 李洁, 张懿, 沈晓双, 房永生, 王科. 柴达木盆地一里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J]. 天然气地球科学, 2021, 32(1): 73-85.
[6] 郭萍. 渤海湾盆地冀中坳陷上古生界煤系烃源岩地球化学特征与生烃演化[J]. 天然气地球科学, 2020, 31(9): 1306-1315.
[7] 闫磊, 杨敏, 张君龙, 曹颖辉, 杜德道, 王珊, 徐兆辉, 李洪辉, 赵一民. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选[J]. 天然气地球科学, 2020, 31(5): 667-674.
[8] 李婷婷, 朱光有, 赵坤, 王鹏举. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721-734.
[9] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[10] 朱明, 梁则亮, 马健, 庞志超, 王俊, 焦悦. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律[J]. 天然气地球科学, 2020, 31(4): 488-497.
[11] 杨帅杰, 王伟锋, 张道亮, 付小东, 张建勇, 李文正. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学, 2020, 31(4): 507-517.
[12] 韩杨, 高先志, 周飞, 王波, 朱军, 段立锋. 柴达木盆地北缘腹部侏罗系烃源岩热演化特征及其对油气成藏影响[J]. 天然气地球科学, 2020, 31(3): 358-369.
[13] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
[14] 刘瑞, 郭少斌, 王继远. 烃源岩TOC计算模型——以鄂尔多斯盆地太原组—山西组为例[J]. 天然气地球科学, 2020, 31(11): 1628-1636.
[15] 高文强, 夏燕青, 马素萍, 殷国瑞, 张喜龙, 马东旭, 权红梅. 烃源岩和油气中有机含硫化合物的生成、分布及应用[J]. 天然气地球科学, 2020, 31(11): 1615-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈传平;何家雄;熊涛;. 莺歌海盆地浅层CO2可能的岩石化学成因[J]. 天然气地球科学, 2004, 15(4): 418 -421 .
[2] 周世新, 王先彬, 妥进才, 陈晓东, . 深层油气地球化学研究新进展[J]. 天然气地球科学, 1999, 10(6): 9 -15 .
[3] 戴金星. 加强天然气地学研究勘探更多大气田[J]. 天然气地球科学, 2003, 14(1): 3 -14 .
[4] 李军;李凤霞;周立英;朱银霞;赵景茂;. 板桥凹陷带油环凝析气藏类型和成藏条件分析[J]. 天然气地球科学, 2003, 14(4): 271 -274 .
[5] 杨春;刘全有;米敬奎;周庆华;胡安平 . 松辽盆地大庆长垣伴生气中二氧化碳成因讨论[J]. 天然气地球科学, 2008, 19(2): 244 -249 .
[6] 王东林, 王怀忠, 郑振英, 史炳健, 曹国明, 王雅杰, 于新. 孔南地区沙河街组多参数地震属性分析与砂体分布预测[J]. 天然气地球科学, 2010, 21(4): 678 -682 .
[7] 赵靖舟, 王力, 孙兵华, 白玉彬, 吴伟涛. 鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J]. 天然气地球科学, 2010, 21(6): 875 -881 .
[8] 王峰, 田景春, 范立勇, 陈蓉, 邱军利. 鄂尔多斯盆地三叠系延长组沉积充填演化及其对印支构造运动的响应[J]. 天然气地球科学, 2010, 21(6): 882 -889 .
[9] 张瑞, 王琪, 姚泾利, 李树同, 李小燕, 郝乐伟. 鄂尔多斯盆地延长世湖盆中部长6段储层成岩特征[J]. 天然气地球科学, 2010, 21(6): 890 -896 .
[10] 何家雄, 颜文, 马文宏, 祝有海, 陈胜红, 龚晓峰. 南海北部准被动陆缘深水区油气地质及与世界深水油气富集区类比[J]. 天然气地球科学, 2010, 21(6): 897 -908,995 .