天然气地球科学 ›› 2021, Vol. 32 ›› Issue (3): 405–415.doi: 10.11764/j.issn.1672-1926.2020.12.016

• 天然气地质学 • 上一篇    下一篇

南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征

郭飞飞1,2(),柳广弟2   

  1. 1.攀枝花学院,四川 攀枝花 617000
    2.中国石油大学(北京)地球科学学院,北京 102249
  • 收稿日期:2020-09-15 修回日期:2020-12-27 出版日期:2021-03-10 发布日期:2021-03-22
  • 作者简介:郭飞飞(1981-),男,湖北宜城人,高级工程师,博士,博士后,主要从事构造地质与第四纪岩土地质研究.E-mail:980664751@qq.com.
  • 基金资助:
    国家科技重大专项“我国含油气盆地深层油气分布规律与资源评价”(2017ZX05008-006)

The distribution of high-quality source rocks in He3 Member and hydrocarbon accumulation characteristics in Nanyang Depression, Nanxiang Basin

Fei-fei GUO1,2(),Guang-di LIU2   

  1. 1.Panzhihua College,Panzhihua 617000,China
    2.College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
  • Received:2020-09-15 Revised:2020-12-27 Online:2021-03-10 Published:2021-03-22
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05008-006)

摘要:

南襄盆地南阳凹陷古近系核桃园组发育核三段和核二段2套湖相烃源岩,前人关于核三段烃源岩的研究较为薄弱。综合应用钻井、测井、地震、分析化验等资料,利用有机地球化学方法对核三段烃源岩品质进行分析,并基于烃源岩生烃、排烃原理和测井ΔLgR法划分优质烃源岩,确定其分布特征。研究表明:核三段暗色泥岩厚度大,有机质丰度高,类型好(以Ⅰ—Ⅱ1型为主),整体处于低成熟—成熟演化阶段,核三2段和核三1段烃源岩分别形成于咸水、强还原沉积环境和半咸水-咸水、还原沉积环境。利用热解可溶烃含量S1、氯仿沥青“A”含量w(A)与有机碳含量w(TOC)的关系确定核三段优质烃源岩的w(TOC)下限值为1.2%左右。核三段油气分布受优质烃源岩、储层、盖层及构造等条件控制,与核三2段有亲缘关系的原油主要是同层近源运移聚集,部分通过断层向上运移至核三1段聚集;与核三1段有亲缘关系的原油既可向上运移至核二段聚集,也可沿核三1段砂体长距离侧向运移至构造高部位聚集。

关键词: 优质烃源岩, 成藏特征, 沉积环境, 核桃园组, 南阳凹陷

Abstract:

Two sets of lacustrine source rocks were developed in Nanyang Depression of Nanxiang Basin, which included He2 Member and He3 Member of Hetaoyuan Formaiton. There have been a few studies on source rocks of He3 Member before. Based on the drilling, seismic and logging data, the source rock qualities of He3 Member were analyzed by using organic geometrical methods. After that, organic geochemical and ΔLgR methods were established to identify high?quality source rocks, the source rock distribution pattern and its controls on hydrocarbon distribution were investigated, based on the fundamental mechanisms of hydrocarbon generation and expulsion for source rocks. The result showed that the dark mudstones of He3 Member were developed and it had high abundance of organic matter with kerogen types mainly of typeⅠand Ⅱ1,and the current thermal maturity stages were low mature to mature. The source rocks of H32 Member were deposited in highly reductive environment with salt water, and the source rocks of H31 Member were deposited in reductive environment with brackish water to salt water. Based on the relations between the TOC content,the pyrolysis S1 and chloroform bitumen “A” content of source rocks, we identified the lower limit value of TOC content of the high?quality lacustrine source rocks in He3 Member was about 1.2%. The high?quality source rocks of He3 Member were developed and matched with the reservoirs, cap rocks and tectonic traps. The crude oil expelled from the H32 Member could migrate in short distance and accumulate around the source rocks, part of which could migrate to H31 Member along the faults. The crude oil expelled from the H31 Member could migrate laterally in long distance along the sand bodies in the H31 and accumulate at higher structures, which could also migrate to He2 Member along the faults.

Key words: High-quality source rocks, Hydrocarbon accumulation characteristics, Depositional environment, Hetaoyuan Formation, Nanyang Depression

中图分类号: 

  • TE122.2

图1

南阳凹陷区域位置特征"

表1

烃源岩及原油样品分析测试条件"

测试样品测试项目测试仪器分析测试条件

岩心、

岩屑(145)

RO

LeitzMPV?III

显微光度计

每件样品RO测点数不少于20个
TOC

LECOCS230

碳硫测定仪

按照《沉积岩中有机质测定》国家标准检测,条件为:载气压力为0.27 MPa、氧气纯度为99.5%,燃烧气体流速为2 L/min,分析气体流速为0.5 L/min
氯仿沥青“A”应用索氏抽提法对氯仿沥青“A”含量进行测定
岩石热解

OGE?II型

岩石热解

按照《岩石热解分析》国家标准进行检测,检测条件为:高纯度氦气压力为0.20~0.30 MPa,空气压力为0.30~0.40 MPa,氢气压力为0.20~0.30 MPa

岩心(28),

原油、油砂(11)

GC-MSAgilentGC-MS7890B5977主要实验条件包括:HP?5MS石英毛细管柱(30 m×0.25 mm×0.25 μm),载气为氦气,初始温度120 ℃,以4 ℃/min的速率升温至300 ℃终温并恒定15 min

表2

南阳凹陷核三段烃源岩地球化学参数"

地层样品数/个w(TOC)/%w(A)/%S1+S2)/(mg/g)RO/%
核三1113(0.52~2.72)/1.25(0.019~0.358)/0.186(1.53~18.03)/9.2(0.56~1.23)/0.91
核三268(0.54~2.27)/1.24(0.054~0.308)/0.171(1.42~17.13)/8.5(0.65~1.26)/0.96

图2

南阳凹陷核三段烃源岩有机质类型分类"

图3

南阳凹陷核三段烃源岩有机质成熟度判别图"

图4

南阳凹陷核三段烃源岩沉积环境分析"

图5

南阳凹陷核三段烃源岩A-TOC(a)、HCI-TOC(b)与A/TOC-TOC(c)含量关系"

图6

南阳凹陷南124井核三1段优质烃源岩分布"

图7

南阳凹陷优质烃源岩地震相"

图8

南阳凹陷核三段优质烃源岩厚度与原油分布叠合"

图9

核三段烃源岩与原油对比关系"

图10

过南阳凹陷张店油田南北向原油类型剖面"

1 田纳新, 吴官生, 李峰, 等. 南襄盆地南阳凹陷构造特征与油气分布[J]. 石油天然气学报, 2008, 30(6):51-56.
TIAN N X, WU G S, LI F, et al. The structural characteristics and petroleum distribution of Nanyang Sag in Nanxiang Basin[J].Journal of Oil and Gas Technology,2008,30(6):51-56.
2 杨云飞, 张本书, 李黎明, 等. 南阳凹陷构造与油气成藏关系研究[J]. 云南化工, 2019, 46(7):46-47.
YANG Y F, ZHANG B S, LI L M, et al. Study on the relationship between structure and oil and gas accumulation in Nanyang sag[J].Yunnan Chemical Technology,2019,46(7):46-47.
3 李黎明, 李小霞, 陈雪菲, 等. 南阳凹陷魏岗油田储层沉积特征与油气分布规律[J]. 石油地质与工程, 2018, 32(1):36-40.
LI L M, LI X X, CHEN X F, et al. Reservoir sedimentary characteristics and oil and gas distribution law of Weigang Oilfield in Nanyang Depression[J]. Petroleum Geology and Engineering, 2018, 32(1):36-40.
4 吴群, 杨云飞, 王树芳. 南阳凹陷黑龙庙地区近岸水下扇沉积特征研究[J]. 西南石油大学学报:自然科学版, 2020, 42(1):33-44.
WU Q, YANG Y F, WANG S F. Sedimentary characteristics of nearshore subaqueous fan in the Heilongmiao area of the Nanyang Sag[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2020, 42(1):33-44.
5 李智, 张志业, 何登发, 等. 南襄盆地泌阳凹陷与南阳凹陷油气地质特征类比及勘探启示[J]. 地质科技通报, 2020, 39(2):74-85.
LI Z, ZHANG Z Y, HE D F, et al. Comparison in petroleum geology between Biyang Depression and Nanyang Depression in Nanxiang Basin and its exploration significance[J]. Bulletin of Geological Science and Technology, 2020, 39(2):74-84.
6 郭飞飞, 张帆, 王冶, 等. 南阳凹陷核三1段烃源岩地球化学特征[J]. 河南科学, 2013, 31(7):1045-1048.
GUO F F, ZHANG F, WANG Y, et al. Geochemical characteristics of source rocks of H31 Formation in the Nanyang Depression[J]. Henan Science, 2013, 31(7):1045-1048.
7 罗家群, 彭金宁, 杨云飞, 等. 南襄盆地南阳凹陷核桃园组“源势相导”控藏作用[J]. 石油实验地质, 2019, 41(3):319-326.
LUO J Q, PENG J L, YANG Y F, et al. Reservoir forming control of “source-potential-facies-migration” in Hetaoyuan Formation of Nanyang Sag,Nanxiang Basin[J]. Petroleum Geology & Experiment, 2019, 41(3):319-326.
8 侯读杰, 张善文, 肖建新, 等. 济阳坳陷优质烃源岩特征与隐蔽油气藏的关系分析[J]. 地学前缘, 2008, 15(2):137-146.
HOU D J, ZHANG S W, XIAO J X, et al. The excellent source rocks and accumulation of stratigraphic and traps in the Jiyang Depression,Bohai Bay Basin[J].Earth Science Frontie-rs, 2008, 15(2):137-146.
9 王金萍, 黄泽贵, 张云献, 等. 东濮凹陷优质烃源岩的岩性特征及宏观展布规律[J]. 断块油气田, 2018, 25(5):549-554.
WANG J P, HUANG Z G, ZHANG Y X, et al. Lithological characteristics and macroscopic distribution rule of high-quality hydrocarbon source rocks in Dongpu Depression[J].Fault-Block Oil and Gas Field, 2018, 25(5):549-554.
10 王振升, 滑双君, 于学敏, 等. 歧口凹陷沙河街组烃源岩分级评价及优质烃源岩分布[J]. 天然气地球科学, 2014, 25(12):1896-1902.
WANG Z S, HUA S J, YU X M, et al. Grading evaluation and high quality source rock distribution in Qikou Sag[J]. Natural Gas Geoscience, 2014, 25(12):1896-1902.
11 谈玉明, 李红磊, 张云献, 等. 东濮凹陷古近系优质烃源岩特征与剩余资源潜力分析[J]. 断块油气田, 2020, 27(5):551-555.
TAN Y M,LI H L,ZHANG Y X, et al. Analysis to high quality source rock characteristics and residual resource potential in Dongpu Sag in Paleogene[J].Fault-Block Oil & Gas Field, 2020, 27(5):551-555.
12 黄第藩, 李晋超, 周翥红, 等.陆相有机质演化和成烃机理[M].北京:石油工业出版社, 1984:17-152.
HUANG D F, LI J C, ZHOU Z H, et al. Evolution and Hydro-carbon Generation Mechanisms of Terrestrial Organic Matter[M]. Beijing:Petroleum Industry Press, 1984:17-152.
13 王志勇, 卫延召, 赵长毅. 三塘湖盆地低熟油的发现及其地球化学特征[J]. 沉积学报, 2001, 19(4):598-604.
WANG Z Y, WEI Y Z, ZHAO C Y. The immature oils in Santanghu Basin[J].Acta Sedimentologica Sinica,2001,19(4):598-604.
14 FU J M, SHENG G Y, PENG P G, et al. Peculiarities of salt lake sediments as potential source rocks in China[J]. Organic Geochemistry, 1986, 10(1-3):119-126.
15 吕明久. 南襄盆地南阳凹陷烃源岩再认识与资源潜力[J]. 石油与天然气地质, 2012, 33(3):392-398.
LÜ M J. Re-evaluation of source rocks and petroleum resources of Nanyang Depression in Nanxiang Basin[J]. Oil & Gas Geology, 2012, 33(3):392-398.
16 卢双舫, 马延伶, 曹瑞成, 等. 优质烃源岩评价标准及其应用:以海拉尔盆地乌尔逊凹陷为例[J]. 地球科学:中国地质大学学报, 2012, 37(3):535-544.
LU S F, MA Y L, CAO R C, et al. Evaluation criteria of high-quality source rocks and its applications:Taking the Wu-erxun Sag in Hailaer Basin as an example[J].Earth Science:Journal of China University of Geosciences, 2012, 37(3):535-544.
17 高岗, 杨尚儒, 陈果, 等. 确定烃源岩有效排烃总有机碳阈值的方法及应用[J]. 石油实验地质, 2017, 39(3):397-408.
GAO G, YANG S R, CHEN G, et al. Method and application for identifying TOC threshold of hydrocarbon-expelling source rock[J]. Petroleum Geology & Experiment, 2017, 39(3):397-408.
18 PASSEY Q R, CREANEY S, KULLA J B. A practical model for organic richness from porosity and resistivity logs[J].AAPG Bulletin, 1990, 74(5): 1777-1794.
19 殷杰,王权.利用测井和地震信息识别和预测优质烃源岩——以渤海湾盆地饶阳凹陷沙一段为例[J]. 天然气地球科学, 2017, 28(11):1761-1769.
YIN J,WANG Q. Using seismic and log information to identify and predict highquality source rocks:A case study of the first member of Shahejie Formation in Raoyang Sag, Bohai Bay Basin[J],Natural Gas Geoscience,2017,28(11):1761-1769.
20 徐仕琨, 叶加仁, 杨宝林, 等. 渤海海域沙南凹陷烃源岩TOC测井预测模型优选及应用[J]. 海洋地质与第四纪地质, 2019, 40(5):182-191.
XU S K, YE J R, YANG B L, et al. Optimization of TOC well logging prediction models and their application to source rock evaluation in the Shanan Sag of Bohai Sea[J]. Marine Geology & Quaternary Geology, 2019, 40(5):182-191.
21 程学峰. 南阳凹陷核桃园组油气成藏规律研究与勘探潜力分析[D].北京:中国地质大学(北京), 2008:18-22.
CHENG X F. Study of Hetaoyuan Formation's Reservoris Forming Rules and Exploration Petential in Nanyang Depression[D]. Beijing: China University of Geosciences, 2008:18-22.
[1] 孙豪飞, 罗冰, 文龙, 王锦西, 周刚, 文华国, 霍飞, 戴鑫, 何昌龙. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247.
[2] 曾旭, 林潼, 周飞, 李洁, 张懿, 沈晓双, 房永生, 王科. 柴达木盆地一里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J]. 天然气地球科学, 2021, 32(1): 73-85.
[3] 张昭丰, 王良军, 张立强, 黎承银. 川东南回龙场地区小河坝组砂岩元素特征及古环境意义[J]. 天然气地球科学, 2020, 31(9): 1239-1249.
[4] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[5] 王碧维, 徐新德, 吴杨瑜, 游君君, 雷明珠. 珠江口盆地西部文昌凹陷油气来源与成藏特征[J]. 天然气地球科学, 2020, 31(7): 980-992.
[6] 杨帅杰, 王伟锋, 张道亮, 付小东, 张建勇, 李文正. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学, 2020, 31(4): 507-517.
[7] 高文强, 夏燕青, 马素萍, 殷国瑞, 张喜龙, 马东旭, 权红梅. 烃源岩和油气中有机含硫化合物的生成、分布及应用[J]. 天然气地球科学, 2020, 31(11): 1615-1627.
[8] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[9] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[10] 钟洪洋, 张道勇, 肖明国, 徐耀辉, . 洞庭盆地第四系极浅层天然气成因类型及地质意义[J]. 天然气地球科学, 2019, 30(3): 361-369.
[11] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[12] 韩盛博,李伍. 上扬子区龙马溪组页岩中黄铁矿成因[J]. 天然气地球科学, 2019, 30(11): 1608-1618.
[13] 梁兴,陈科洛,张廷山,张朝,张介辉,舒红林. 沉积环境对页岩孔隙的控制作用[J]. 天然气地球科学, 2019, 30(10): 1393-1405.
[14] 傅宁, 刘建升. 北部湾盆地流二段3类烃源岩的生烃成藏特征[J]. 天然气地球科学, 2018, 29(7): 932-941.
[15] 贾智彬, 侯读杰, 孙德强, 姜玉涵, 张自鸣, 洪梅. 贵州地区牛蹄塘组底部烃源岩地球化学特征[J]. 天然气地球科学, 2018, 29(7): 1031-1041.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡国艺, 贺飞, 米敬奎, 袁懿琳, 郭谨豪. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力[J]. 天然气地球科学, 2021, 32(3): 319 -333 .
[2] 马安来, 林会喜, 云露, 曹自成, 朱秀香, 李王鹏, 吴鲜. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J]. 天然气地球科学, 2021, 32(3): 334 -346 .
[3] 朱光有, 张怀顺, 汤顺林, 孙广义, 丁玉祥. 塔里木盆地海相原油汞同位素组成特征[J]. 天然气地球科学, 2021, 32(3): 347 -355 .
[4] 韩中喜, 垢艳侠, 李谨, 葛守国, 田闻年, 黄恒. 四川盆地天然气汞含量分布特征及成因分析[J]. 天然气地球科学, 2021, 32(3): 356 -362 .
[5] 张怀顺, 朱光有, 丁玉祥, 周玉萍, 姚晓洁, 吴高恩, 汤顺林. 天然气中汞的来源及脱汞技术[J]. 天然气地球科学, 2021, 32(3): 363 -371 .
[6] 王国建, 袁玉松, 李武, 吴传芝, 邹雨, 卢丽, 李凤丽. 天然气扩散系数研究现状及存在问题[J]. 天然气地球科学, 2021, 32(3): 372 -381 .
[7] 刘桂珍, 高伟, 尉加盛, 唐文. 混积层系沉积、层序特征——以鄂尔多斯盆地高桥地区本溪组为例[J]. 天然气地球科学, 2021, 32(3): 382 -392 .
[8] 潘世乐, 蒋赟, 朱文军, 刘振宇, 王晔桐, 孙国强, 张顺存. 柴达木盆地北缘冷湖七号地区下干柴沟组上段沉积—成岩特征[J]. 天然气地球科学, 2021, 32(3): 393 -404 .
[9] 郭广山,柳迎红,李林涛. 鄂尔多斯盆地东缘北段煤层含气量变化规律及控制因素[J]. 天然气地球科学, 2021, 32(3): 416 -422 .
[10] 贾腾飞,王猛,高星月,赵健光,朱俊卿. 低阶煤储层孔隙结构特征及分形模型评价[J]. 天然气地球科学, 2021, 32(3): 423 -436 .