天然气地球科学 ›› 2021, Vol. 32 ›› Issue (4): 492–509.doi: 10.11764/j.issn.1672-1926.2020.12.015

• 天然气地球化学 • 上一篇    下一篇

四川盆地威远返排液元素地球化学特征及排放处理建议

倪云燕1,2(),姚立邈1,2,廖凤蓉1,2,高金亮1,2,陈建平1,2,隋建立3,张蒂嘉1,2   

  1. 1.中国石油天然气股份有限公司油气地球化学重点实验室,北京 100083
    2.中国石油勘探开发研究院,北京 100083
    3.中国地震局地质研究所,北京 100029
  • 收稿日期:2020-12-09 修回日期:2020-12-30 出版日期:2021-04-10 发布日期:2020-04-26
  • 作者简介:倪云燕(1977-),女,浙江乐清人,高级工程师,博士,主要从事油气地球化学研究. E-mail:niyy@petrochina.com.cn.
  • 基金资助:
    国家重点研发课题(2019YFC1805505);中国石油天然气股份有限公司直属院所基础研究和战略储备技术研究基金项目(2017D-5008-08)

Geochemical characteristics of the elements in hydraulic fracturing flowback water from the Weiyuan shale gas development area in Sichuan Basin, China

Yun-yan NI1,2(),Li-miao YAO1,2,Feng-rong LIAO1,2,Jin-liang GAO1,2,Jian-ping CHEN1,2,Jian-li SUI3,Di-jia ZHANG1,2   

  1. 1.Key Laboratory of Petroleum Geochemistry,China National Petroleum Corporation,Beijing 100083,China
    2.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    3.Institution of Geology,China Earthquake Administration,Beijing 100029,China
  • Received:2020-12-09 Revised:2020-12-30 Online:2021-04-10 Published:2020-04-26
  • Supported by:
    The China National Key Research and Development Projects(2019YFC1805505);the Basic Research and Strategic Reserve Technology Research Fund Project of Institutes Directly under CNPC(2017D-5008-08)

摘要:

水力压裂技术是页岩气开发的核心技术之一,大规模水力压裂技术可能会带来大量压裂返排液,而压裂返排液存在污染地下水和地表水等风险。综合对比分析四川盆地威远页岩气开发区压裂返排液与盆地内不同层系地层水地球化学特征,结果表明:威远页岩气返排液具有高矿化度、高含金属离子的特点,但与地层水相比,返排液中钠(7 334 mg/L,n=63)、钙(297 mg/L,n=62)、锶(73.07 mg/L,n=64)、镁(32.1 mg/L,n=42)、钡(153.12 mg/L,n=64)、锰(1.83 mg/L,n=35)、锂(17.53 mg/L,n=64)、溴(72 mg/L,n=70)、氯(12 578 mg/L,n=70)等含量基本上都是低于地层水,但硼含量(38.2 mg/L,n=64)与二叠系和三叠系地层水相近,低于震旦系和寒武系地层水。返排液B/Cl值、Li/Cl值和Na/Cl值基本都高于地层水,但Ca/Cl值和Br/Cl值则低于地层水。返排液、压裂注入液、寒武系地层水的溴氯含量具有很好的线性相关性(R2=0.967 3),表明威远页岩气开发区返排液为压裂注入液与滞留在志留系页岩中的地层水的混合产物,且该地层卤水与寒武系相近。由于白云岩化作用,地层水具有富钙贫镁的特征,因此,返排液也具有富钙贫镁的特征。与生活饮用水卫生标准(GB 5749—2006)相比,返排液钠、氯、硼、钡、锰、铁、铊、SO42-等含量以及矿化度远高于前者,对环境具有潜在影响,不宜直接排放。威远返排液的处理主要采用循环利用方法,如果在循环利用之前能够根据返排液主微量元素的化学组成进行针对性前期处理,则可降低返排液复杂成分可能对页岩气产量与开采难度的影响,从而大大提高该方法的可行性。页岩气压裂返排液与常规地层水元素化学组成的差异性及其潜在环境风险的研究,为压裂返排液的处理与污染防控提供了重要的科学依据。

关键词: 返排液, 地层水, 页岩气, 威远, 四川盆地, 环境影响

Abstract:

Hydraulic fracturing technology is one of the core technologies of shale gas development. Large-scale hydraulic fracturing technology may bring a large amount of flowback water (including both flowback water and produced water), and flowback water has the risk of polluting groundwater and surface water. In this paper, the geochemical characteristics of flowback water from Weiyuan shale gas development area and formation water from different strata in Sichuan Basin are analyzed. The results show, flowback water in Weiyuan is characterized by high TDS and high content of heavy metal. However, compared to formation water, the contents of Na (7 334 mg/L, n=63), Ca (297 mg/L, n=62), Sr (73.07 mg/L, n=64), Mg (32.1 mg/L, n=42), Ba (153.12 mg/L, n=64), Mn (1.83 mg/L, n=35), Li (17.53 mg/L, n=64), Br (72 mg/L, n=70), and Cl (12 578 mg/L, n=70) in flowback water are basically lower than that of formation water. While the content of B (38.2 mg/L, n=64) in flowback water is similar to that of the Permian and Triassic formation water, but lower than that of the Sinian and Cambrian formation water. The ratio of B/Cl, Li/Cl and Na/Cl of flowback water is higher than that of formation water, but the ratio of Ca/Cl and Br/Cl of flowback water is lower than that of formation water. The flowback water, hydraulic fracturing fluid and Cambrian formation water has very good linear dependence between the contents of Br and Cl (R2=0.967 3), which implies that flowback water was a mixture of the hydraulic fracturing fluid and the saline formation water retained in Silurian shale and the brine in this formation is similar to that in the Cambrian. Because of the dolomitization, formation water has the characteristic of enriched in calcium and depleted in magnesium, therefore, the flowback water also has such characteristic. Compared with the standards for drinking water quality (GB 5749-2006), the contents of sodium, chlorine, boron, barium, manganese, iron, thallium, SO42- and TDS of flowback water, are much higher than that of the former, which have potential impact on the environment and cannot be directly discharged. The treatment of flowback water in Weiyuan mainly adopts the recycling method. If the chemical composition of the main and trace elements in the flowback water can be targeted for preliminary treatment before recycling, the influence of the complex components of the flowback water on the shale gas production and exploitation difficulty can be reduced, so as to greatly improve the feasibility of this method. The study of chemical composition difference between shale gas flowback water and conventional formation water and its potential environmental risk provides important scientific basis for treatment of flowback water and pollution prevention and control.

Key words: Hydraulic fracturing flowback water, Formation water, Shale gas, Weiyuan, Sichuan Basin, Environmental risks

中图分类号: 

  • TE122.1+13

表1

威远页岩气开发区返排液和四川盆地不同层系地层水主微量元素特征(数据来自文献[6, 21-24])"

样品数值NaCaMgClBrBLiSrBaMnNa/ClCa/ClMg/ClBr/ClLi/ClB/ClSr/Cl
/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mg/L)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)/(mol/mol)
威远返排液最小值3 954118145 37021.0011.5110.6233.5658.320.630.4550.0100.0020.0020.0040.0020.001
最大值20 8641 8234937 068257.0056.2258.96418.85503.805.191.6840.0440.0070.0040.0160.0210.005
平均值7 3342973212 57872.0938.2017.5373.07153.121.830.9780.0200.0040.0020.0080.0110.002
样品数6362427070646464643563624270646464
震旦系地层水最小值3 3151 51023222 44143.0020.262.5444.00274.601.720.1670.0310.0070.0010.0010.0030.001
最大值38 96819 1587 390126 627191.00402.51127.33169.001 373.004.650.7640.2150.1770.0030.0140.0430.002
平均值17 7123 6231 18549 168121.67239.0454.7592.331 011.913.180.4300.0580.0300.0020.0080.0250.001
样品数84141413333412841413333
寒武系地层水最小值3 4511 4932199 84434.0041.708.15142.0023.290.310.5410.0240.0040.0020.0040.0140.004
最大值44 6477 8962 67488 944376.00353.2685.21591.002 608.700.890.8570.3020.1790.0030.0090.0290.006
平均值27 8293 4621 07157 416241.25256.3845.47426.251 192.200.600.7390.0660.0350.0030.0060.0220.005
样品数1414141444441421414144444
二叠系地层水最小值1 9512343310 122123.004.690.9843.004.310.540.1310.0200.0040.0030.0000.0010.002
最大值20 02225 3085 31473 724934.0070.6633.091 368.00289.841.670.9100.3040.1050.0060.0030.0060.014
平均值12 0194 75296439 130397.8636.0619.13634.8084.301.280.6640.0800.0270.0040.0030.0040.009
样品数7101010788583710107885
三叠系飞仙关组地层水最小值11 2807103731 4290.4110.0120.002
最大值39 8617 7743 59966 5291.1670.1790.124
平均值23 3544 6991 13045 6790.7580.1060.041
样品数9989998
三叠系须家河组地层水最小值7691 72921311 646811.584.7160.002.060.080.0400.0430.0090.0030.000 40.000 020.001
最大值65 91730 1302 853281 1571 472165.3958.392 166.003 920.3537.801.5110.3940.0930.0080.0040.0080.008
平均值39 84314 6741 560136 52889733.3129.061 216.971 686.137.780.4990.1050.0200.0050.0020.0010.004
样品数4246464619321943444442464619193943

表2

威远页岩气压裂返排液与震旦系、寒武系、二叠系、三叠系飞仙关组和须家河组地层水的主微量元素Mann-Whitney U非参数检验统计p值"

样品数值NaCaMgClBrBLiSrBaMnNa/ClCa/ClMg/ClBr/ClLi/ClB/ClSr/Cl
震旦系地层水p0.004<0.001<0.001<0.0010.3010.2850.3710.806<0.0010.144<0.001<0.001<0.0010.0880.9230.284<0.001
平均值较大者震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水震旦系地层水返排液震旦系地层水震旦系地层水返排液返排液震旦系地层水返排液
寒武系地层水p<0.001<0.001<0.001<0.0010.0790.0100.980<0.001<0.0010.410<0.001<0.001<0.0010.1250.166<0.001<0.001
平均值较大者寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水寒武系地层水返排液返排液寒武系地层水寒武系地层水寒武系地层水返排液寒武系地层水寒武系地层水
二叠系地层水p0.049<0.001<0.001<0.001<0.0010.9860.7060.0190.0250.6180.008<0.001<0.0010.001<0.001<0.0010.014
平均值较大者二叠系地层水二叠系地层水二叠系地层水二叠系地层水二叠系地层水返排液二叠系地层水二叠系地层水返排液返排液返排液二叠系地层水二叠系地层水二叠系地层水返排液返排液二叠系地层水

三叠系

飞仙关组地层水

p<0.001<0.001<0.001<0.0010.018<0.0010.003
平均值较大者飞仙关组地层水飞仙关组地层水飞仙关组地层水飞仙关组地层水返排液飞仙关组地层水飞仙关组地层水

三叠系

须家河组地层水

p<0.001<0.001<0.001<0.001<0.001<0.0010.002<0.001<0.0010.005<0.001<0.001<0.001<0.001<0.001<0.001<0.001

平均值

较大者

须家河组地层水须家河组地层水须家河组地层水须家河组地层水须家河组地层水返排液须家河组地层水须家河组地层水须家河组地层水须家河组地层水返排液须家河组地层水须家河组地层水须家河组地层水返排液返排液须家河组地层水

图1

四川盆地返排液和地层水Na—Cl(a)、Na/Cl—Cl(b)变化(数据来自文献[6, 21-24, 30])"

图2

四川盆地返排液和地层水Ca—Cl(a)、Ca/Cl—Cl(b)变化(数据来自文献[6, 21-24, 30])"

图3

四川盆地返排液和地层水Mg—Cl(a)、Mg/Cl—Cl(b)变化(数据来自文献[6, 21-23, 30])"

图4

四川盆地返排液和地层水Br—Cl(a)、Br/Cl—Cl(b)变化(数据来自文献[6])"

图5

四川盆地返排液和地层水B—Cl(a)、B/Cl—Cl(b)、Li—Cl(c)、Li/Cl—Cl(d)变化特征(数据来自文献[6])"

图6

四川盆地返排液和地层水Sr—Cl(a)、Sr/Cl—Cl(b)变化(数据来自文献[6,21-23, 30])"

图7

四川盆地返排液和地层水Ba—Cl(a)、Mn—Cl(b)变化(数据来自文献[6, 21-23, 30])"

表3

压裂液典型化学组分及作用 (据文献[59-60]修改)"

成分常用物质举例体积占比/%作用
水和砂砂悬浮液99.51“支撑剂”砂粒保持微裂缝张开
盐酸0.123清理井筒,溶解矿物,在岩石中产生裂缝
降阻剂聚丙烯酰胺、石油馏分0.088降低液体和管道之间的摩擦
表面活性剂乙醇、异丙醇0.085增加压裂液黏度,降低表面张力
阻垢剂乙二醇0.043防止管道结垢
pH调节剂碳酸钠、碳酸钾、醋酸0.011控制pH值在合理范围内,确保化学添加剂效用
铁控制剂柠檬酸、巯基乙酸0.004防止金属氧化物沉淀
阻蚀剂异丙醇、乙醛、N, N-二甲基甲酰胺0.002防止管道腐蚀
杀菌剂戊二醛、DBNPA0.001抑制细菌生长,防止因聚合物降解导致黏度下降,影响交联、携砂
黏土稳定剂氯化钾0.06防止黏土膨胀、分散、运移
交联剂硼酸盐、钛、锆及铝化合物0.007促进交联增稠,提高压裂液和酸化液黏度,达到携带支撑剂的目的
胶凝剂瓜尔胶/黄原胶 、羟乙基纤维素、磷酸酯铝盐0.056增加液体黏度,降低酸的传质速度
破胶剂过硫酸铵,过氧化镁、高锰酸钾0.01降低液体黏度,促使压裂液破胶返排

图8

返排液与压裂液Br—Cl含量关系[6]"

图9

威远返排液、压裂液与寒武系地层水(a)及震旦系地层水(b)的Br—Cl含量关系(数据来自文献[6])"

图10

返排液和地层水Log Cl—Log Br(a)和Log Na—Log Br(b)关系(数据来自文献[6])(A点:Cl:177 830,Br:1 700,Na:78 500;B点:Cl:183 300,Br:1 010,Na:94 300;单位:mg/L)"

表4

威远页岩气开发区返排液无机化学组成"

水样/标准数值

TDS

/(mg/L)

Na

/(mg/L)

Cl

/(mg/L)

B

/(mg/L)

Ba

/(mg/L)

Mn

/(mg/L)

Mo

/(mg/L)

Pb

/(mg/L)

Tl /(mg/L)

SO42-

/(mg/L)

Fe

/(mg/L)

威远返排液最小值11 5703 9545 37011.5158.320.630.0110.0010.000 8638
最大值59 78020 86437 06856.22503.805.190.0830.0200.002 24860
平均值19 6587 33412 57838.20153.121.830.030.0060.001 6
生活饮用水卫生标准GB5749-2006

1 000

(20)

200

(37)

250

(50)

0.50

(76)

0.70

(219)

0.10

(18)

0.070.01

0.000 1

(1.6)

250

0.3

(127~200)

农田灌溉水质标准GB5084-20053501~30.2
污水综合排放标准GB8978-19962.0~5.01
地表水环境质量标准GB3838-20022500.10.01~0.12500.3
1 U.S. ENERGY INFORMATION ADMINISTRATION. U.S. Crude Oil and Natural Gas Proved Reserves, Year-End 2018[EB/OL].[2020-12-13]. https://www.eia.gov/naturalgas/crudeoilreserves/archive/2018/.
2 WARNER N R, KRE D, et al. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas[J]. Applied Geochemistry, 2013, 35: 207-220.
3 WARNER N R, DARRAH T H, JACKSON R B, et al. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations[J]. Environmental Science & Technology, 2014, 48(21): 12552-12560.
4 HALUSZCZAK L O, ROSE A W, KUMP L R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania,USA[J].Applied Geochemistry,2013,28:55-61.
5 VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J].Environmental Science & Technology,2014,48(15): 8334-8348.
6 NI Y Y, ZOU C N, CUI H Y, et al. The origin of flowback and produced waters from Sichuan Basin, China[J]. Environmental Science & Technology, 2018, 52: 14519-14527.
7 ROWAN E, ENGLE M, KRAEMER T, et al. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian Basin, Pennsylvania[J]. AAPG Bulletin, 2015, 99(2): 181-206.
8 PARKER K M, ZENG T, HARKNESS J, et al. Enhanced formation of disinfection by products in shale gas wastewater-impacted drinking water supplies[J]. Environmental Science & Technology, 2014, 48(19): 11161-11169.
9 HARKNESS J S, DWYER G S, WARNER N R, et al. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: Environmental implications[J]. Environmental Science & Technology, 2015, 49(3): 1955-1963.
10 杨德敏, 喻元秀, 梁睿, 等. 我国页岩气重点建产区开发进展、环保现状及对策建议[J]. 现代化工, 2019, 39(1): 1-6.
YANG D M, YU Y X, LIANG R, et al. Development progress and environmental protection status in China's key shale gas construction areas and suggestions[J]. Modern Chemical Industry, 2019, 39(1): 1-6.
11 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16.
LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.
12 梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2): 1-19.
LIANG D G, GUO T L, BIAN L Z, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19.
13 LIU S, MA W, JANSA L, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, east Sichuan Basin, China[J]. Energy Exploration & Exploitation, 2013, 31(2): 187-219.
14 DAI J X, ZOU C N, DONG D Z, et al. Geochemical characteristics of marine and terrestrial shale gas in China[J]. Marine and Petroleum Geology, 2016, 76: 444-463.
15 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
ZOU C N, DONG D Z, WANG Y M, et al. shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
16 DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74: 3-12.
17 ZOU C N, NI Y Y, LI J, et al. The water footprint of hydraulic fracturing in Sichuan Basin, China[J]. Science of the Total Environment, 2018, 630: 349-356.
18 KONDASH A J, LAUER N E, VENGOSH A. The intensification of the water footprint of hydraulic fracturing[J]. Science Advances, 2018, 4(8):eaar5982.
19 张小涛, 陈满, 蒋鑫, 等. 页岩气井产能评价方法研究[J]. 天然气地球科学, 2016, 27(3): 549-553.
ZHANG X T, CHEN M, JIANG X, et al. Productivity evaluation method of shale gas well[J]. Natural Gas Geoscience, 2016, 27(3): 549-553.
20 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169.
MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169.
21 秦胜飞, 杨雨, 吕芳, 等. 四川盆地龙岗气田长兴组和飞仙关组气藏天然气来源[J]. 天然气地球科学, 2016, 27(1): 41-49.
QIN S F, YANG Y, LV F, et al. The origin of gas in the Changxing-Feixianguan gas pools in the Longgang Gas Field in the Sichuan Basin,China[J].Natural Gas Geoscience, 2016, 27(1): 41-49.
22 秦胜飞, 周国晓, 李伟, 等. 四川盆地威远气田水溶气脱气成藏地球化学证据[J]. 天然气工业, 2016, 36(1): 43-51.
QIN S F, ZHOU G X, LI W, et al. Geochemical evidence of water-soluble gas accumulation in the Weiyuan Gas Field, Sichuan Basin[J]. Natural Gas Industry,2016,36(1): 43-51.
23 QIN S, LI F, LI W, et al. Formation mechanism of tight coal-derived-gas reservoirs with medium-low abundance in Xujiahe Formation, central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 144-154.
24 李伟,秦胜飞. 四川盆地须家河组地层水微量元素与氢氧同位素特征[J]. 石油学报, 2012, 33(1): 55-63.
LI W, QIN S F. Charactristics of trace elements and hydrogen and oxygen isotoopes in the formation water of the Xujiahe Formation,Sichuan Basin[J]. Acta Petrolei Sinica, 2012, 33(1): 55-63.
25 李伟, 杨金利, 姜均伟, 等. 四川盆地中部上三叠统地层水成因与天然气地质意义[J]. 石油勘探与开发, 2009, 36(4): 428-435.
LI W, YANG J L, JIANG J W, et al. Origin of Upper Triassic formation water in middle Sichuan Basin and its natural gas significance[J].Petroleum Exploration and Development, 2009, 36(4): 428-435.
26 MCCAFFREY M A, LAZAR B, HOLLAND H D. The evaporation path of seawater and the coprecipitation of Br (super -) and K (super +) with halite[J]. Journal of Sedimentary Research, 1987, 57(5): 928-937.
27 CARPENTER A B. Origin and chemical evolution of brines in sedimentary basins[C]∥ The 53rd SPE Annual Fall Technical Conference and Exhibition, 1-3 October, 1978, Society of Petroleum Engineers: Houston, Texas, SPE-7504-MS.
28 DRESEL P E, ROSE A W. Chemistry and origin of oil and gas well brines in western Pennsylvania: Pennsylvania Geological Survey[EB/OL]. 4th Series, Open-File Report OFOG 10-01.0, 48 p., Portable Document Format (PDF). www.dcnr.state.pa.us/topogeo, 2010.
29 HOLLAND H D. The Chemistry of the Atmosphere and Oceans[M]. New York: John Wiley and Sons, 1978:351.
30 QIN S, LI F, ZHOU Z, et al. Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue Gas Field in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 83-90.
31 COLLINS A G. Geochemistry of Oilfield Waters[M]. Amsterdam-Oxford-New York:Elsevier Scientific Publishing Com-pany, 1975:1-496.
32 HOWER J, ESLINGER E V, HOWER M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J].Geological Society of Am-erica Bulletin, 1976, 87(5): 725-737.
33 BOLES J R. Active ankerite cementation in the subsurface Eocene of southwest Texas[J]. Contributions to Mineralogy & Petrology, 1978, 68(1): 13-22.
34 马永生, 郭彤楼, 赵雪凤, 等. 普光气田深部优质白云岩储层形成机制[J]. 中国科学:地球科学,2007,37(增刊II): 43-52.
MA Y S, GUO T L, ZHAO X F, et al. The formation mechanism of high-quality dolomite reservoir in Puguang deep gasfield[J]. Science China:Earth Sciences,2007,37(SII):43-52.
35 韩晓涛, 鲍征宇, 谢淑. 四川盆地西南中二叠统白云岩的地球化学特征及其成因[J]. 地球科学, 2016, 41(1): 167-176.
HAN X T, BAO Z Y, XIE S. Origin and geochemical characteristics of dolomites in the Middle Permian Formation, SW Sichuan Basin,China[J]. Earth Science,2016,41(1):167-176.
36 单秀琴, 张静, 张宝民, 等. 四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据[J]. 石油学报, 2016, 37(1): 17-29.
SHAN X Q, ZHANG J, ZHANG B M, et al. Dolomite karst reservoir characteristics and dissolution evidences of Sinian Dengying Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 17-29.
37 BIRKLE P, GARCÍA B M, PADRÓN C M M. Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir,Gulf of Mexico.Part 1:Chemical evolution and waterrock interaction[J].Applied Geochemistry,2009,24(4):543-554.
38 EDMUNDS W M. Bromine geochemistry of British groundwaters[J]. Mineralogical Magazine, 1996, 60: 275-284.
39 孙大鹏, 李秉孝, 马育华, 等. 青海湖湖水的蒸发实验研究[J]. 盐湖研究, 1995, 3(2): 10-19.
SUN D P, LI B X, MA Y H, et al. An investigation on evaporating experiments for Qinghai lake water, China[J]. Journal of Salt Lake Science, 1995, 3(2): 10-19.
40 陈郁华. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布规律[J]. 地质学报, 1983(4): 379-390.
CHEN Y H. Sequence of salt separation and regularity of some trace elements distribution during isothermal evaporation (25℃) of the Huanghai sea water[J]. Acta Geologica Sinica, 1983(4): 379-390.
41 FONTES J C, MATRAY J M. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts[J]. Chemical Geology, 1993, 109(1-4): 149-175.
42 KHARAKA Y K, HANOR J S. Deep fluids in the continents: I. Sedimentary basins[C]// HOLLAND H D TUREKIAN K K. Treatise on Geochemistry, 2003: 1-48.
43 RITTENHOUSE G. Bromine in oil-field waters and its use in determining possibilities of origin of these waters[J]. AAPG Bulletin, 1967, 51(12): 2430-2440.
44 VENGOSH A, STARINSKY A, KOLODNY Y, et al. Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate[J]. Geology, 1992, 20(9): 799-802.
45 KHARAKA Y K, MAEST A S, CAROTHERS W W, et al. Geochemistry of metal-rich brines from central Mississippi Salt Dome Basin, U.S.A[J]. Applied Geochemistry, 1987, 2(5-6): 543-561.
46 LAND L S, MACPHERSON G L. Origin of saline formation waters, Cenozoic section, Gulf of Mexico sedimentary basin[J]. AAPG Bulletin, 1992, 76(9): 1344-1362.
47 CHAN L H, STARINSKY A, KATZ A. The behavior of lithium and its isotopes in oilfield brines: Evidence from the Heletz-Kokhav Field, Israel[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 615-623.
48 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M].北京:科学出版社, 1984:548.
LIU Y J, CAO L M, LI Z L, et al. Elemental Geochemistry[M]. Beijing: Science Press, 1984: 548.
49 MCINTOSH J C, WALTER L M, MARTINI A M. Pleistocene recharge to midcontinent basins: Effects on salinity structure and microbial gas generation[J]. Geochimica et Cosmochimica Acta, 2002, 66(10): 1681-1700.
50 LEE DAVISSON M, CRISS R E. Na-Ca-Cl relations in basinal fluids[J]. Geochimica et Cosmochimica Acta, 1996, 60(15): 2743-2752.
51 HOVER V C, PEACOR D R, WALTER L M. Relationship between organic matter and authigenic illite/smectite in Devonian black shales, Michigan and Illinois Basins, USA in Siliciclastic diagenesis and fluid flow: Concepts and applications[C]∥CROSSEY L,LOUCKS R,TOTTEN M W. SEPM (Society for Sedimentary Geology) Special Publication,1996:73-83.
52 HOVER V C, PEACOR D R, WALTER L M. STEM/AEM evidence for preservation of burial diagenetic fabrics in Devonian shales: Implications for fluid/rock interaction in cratonic basins (U.S.A.)[J]. Journal of Sedimentary Research, 1996, 66(3): 519-530.
53 KLUMP J, HEBBELN D, WEFER G. High concentrations of biogenic barium in Pacific sediments after Termination I-a signal of changes in productivity and deep water chemistry[J]. Marine Geology, 2001, 177(1): 1-11.
54 孙学通, 姚慧. 湖南应溪重晶石矿床地球化学特征及矿床成因[J]. 新疆地质, 2005, 23(1): 50-54.
SUN X T, YAO H. The genesis and geochemistry characteristics of Barite deposit, Yingxi Village, Xinhuang County, Hunan Province[J]. Xinjiang Geology, 2005, 23(1): 50-54.
55 OSSELIN F, NIGHTINGALE M, HEARN G, et al. Quantifying the extent of flowback of hydraulic fracturing fluids using chemical and isotopic tracer approaches[J]. Applied Geochemistry, 2018, 93: 20-29.
56 BARBOT E, VIDIC N S, GREGORY K B, et al. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing[J]. Environmental Science & Technology, 2013, 47(6): 2562-2569.
57 TINSLEY J M, MILLER E C, SABINS F L, et al. Study of factors causing annular gas flow following primary cementing[J]. Journal of Petroleum Technology, 1980, 32(8): 1427-1437.
58 Energy Information Administration. Drilling Sideways: A review of horizontal well technology and its domestic application[EB/OL].U.S. Department of Energy,1993. http://www.directionaltech.com/wp-content/uploads/2016/10/tr0565.pdf.
59 VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235009.
60 GREGORY K, VIDIC R, DZOMBAK D. Water management challenges associated with the production of shale gas by hydraulic fracturing[J]. Elements, 2010,7(3):181-186.
61 熊颖, 刘雨舟, 刘友权, 等. 长宁—威远地区页岩气压裂返排液处理技术与应用[J]. 石油与天然气化工, 2016, 45(5): 51-55.
XIONG Y, LIU Y Z, LIU Y Q, et al. Recycling disposal technology and application of shale gas fracturing flowback fluid in Changning-Weiyuan area[J]. Chemical Engineering of Oil & Gas, 2016, 45(5): 51-55.
62 YU M, WEINTHAL E, PATIÑO-ECHEVERRI D, et al. Water availability for shale gas development in Sichuan Basin, China[J].Environmental Science & Technology,2016,50(6): 2837-2845.
63 张廷山, 赵国安, 陈桂康, 等. 我国页岩气革命面临的问题及对策思考[J]. 西南石油大学学报:社会科学版, 2016, 18(2): 1-8.
ZHANG T S, ZHAO G A, CHEN G K, et al. Shale gas revolution in China-problems and contermeasures[J]. Journal of Southwest Petroleum University:Social Sciences Edition, 2016, 18(2): 1-8.
64 LIU D, LI J, ZOU C N, et al. Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water[J]. Fuel, 2020, 272: 117621.
65 GAO J L, ZOU C N, LI W, et al. Hydrochemistry of flowback water from Changning shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality[J].Science of The Total Environment, 2020, 713: 136591.
[1] 韩中喜, 垢艳侠, 李谨, 葛守国, 田闻年, 黄恒. 四川盆地天然气汞含量分布特征及成因分析[J]. 天然气地球科学, 2021, 32(3): 356-362.
[2] 何燚, 唐玄, 单衍胜, 刘光祥, 谢皇长, 马子杰. 四川盆地及其周缘典型地区龙潭组页岩岩相划分对比及特征[J]. 天然气地球科学, 2021, 32(2): 174-190.
[3] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2): 215-232.
[4] 孙豪飞, 罗冰, 文龙, 王锦西, 周刚, 文华国, 霍飞, 戴鑫, 何昌龙. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247.
[5] 张成林, 赵圣贤, 张鉴, 常程, 夏自强, 曹埒焰, 田冲, 冯江荣, 方圆, 周翊. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学, 2021, 32(2): 248-261.
[6] 舒志国, 刘莉, 梁榜, 陆亚秋, 郑爱维, 包汉勇. 基于物质平衡原理的页岩气井产能评价方法[J]. 天然气地球科学, 2021, 32(2): 262-267.
[7] 许莹莹, 胡志明, 端祥刚, 常进, 张彦从. 改进的页岩气五区复合产能模型及其影响因素[J]. 天然气地球科学, 2021, 32(2): 274-287.
[8] 万玉金, 何畅, 孙玉平, 张晓伟. Haynesville页岩气产区井位部署策略与启示[J]. 天然气地球科学, 2021, 32(2): 288-297.
[9] 康毅力, 杨东升, 游利军, 李鑫磊, 白佳佳, 邵佳新, 曾涛. 富有机质页岩高温热激增渗效果实验评价方法[J]. 天然气地球科学, 2021, 32(1): 86-97.
[10] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[11] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[12] 肖富森, 韦腾强, 王小娟, 关旭, 吴长江, 洪海涛. 四川盆地川中—川西地区沙溪庙组层序地层特征[J]. 天然气地球科学, 2020, 31(9): 1216-1224.
[13] 李腾飞, 田辉, 肖贤明, 程鹏, 王星, 伍耀文, 吴子瑾. 样品粒径对高过成熟度页岩低压气体吸附实验结果的影响[J]. 天然气地球科学, 2020, 31(9): 1271-1284.
[14] 陈璐, 胡志明, 熊伟, 端祥刚, 常进. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293.
[15] 牛强, 张焕旭, 朱地, 徐志尧, 仰云峰, 丁安徐, 高和群, 张立生. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学, 2020, 31(9): 1294-1305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[2] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[3] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[4] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .
[5] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[6] 李亮,万晓龙,李志伟,张永强,张振红. 油气成藏模拟实验在白于山油藏开发中的应用[J]. 天然气地球科学, 2006, 17(2): 219 -222 .
[7] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[8] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[9] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[10] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .