天然气地球科学 ›› 2021, Vol. 32 ›› Issue (4): 598–610.doi: 10.11764/j.issn.1672-1926.2020.12.006

• 非常规天然气 • 上一篇    下一篇

修武盆地下寒武统海相页岩储层及CH4吸附特征

郭春礼1,2(),杨爽1,2,3,4(),王安东1,2,王一婷2,章双龙5,祁星5   

  1. 1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
    2.东华理工大学地球科学学院,江西 南昌 330013
    3.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    4.甘肃省油气资源研究重点实验室,甘肃 兰州 730000
    5.江西省煤田地质勘察研究院,江西 南昌 330001
  • 收稿日期:2020-10-10 修回日期:2020-12-02 出版日期:2021-04-10 发布日期:2021-04-09
  • 通讯作者: 杨爽 E-mail:1418253657@qq.com;yangshuang18@ecut.edu.cn
  • 作者简介:郭春礼(1993-),男,河南商丘人,硕士研究生,主要从事非常规储层地质学研究. E-mail: 1418253657@qq.com.
  • 基金资助:
    江西省教育厅科技项目(GJJ180393);甘肃省油气资源研究重点实验室基金(SZDKFJJ20201201);核资源与环境国家重点实验室自主基金(Z1912);东华理工大学博士启动基金项目(DHBK2018030)

Study on the Lower Cambrian marine shale reservoir and methane adsorption characteristics in Xiuwu Basin

Chun-li GUO1,2(),Shuang YANG1,2,3,4(),An-dong WANG1,2,Yi-ting WANG2,Shuang-long ZHANG5,Xing QI5   

  1. 1.State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China
    2.Collage of Earth Science,East China University of Technology,Nanchang 330013,China
    3.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    4.Key Laboratory of Petroleum Resources Research,Gansu Province,Lanzhou 730000,China
    5.Geological Prospecting Institute of Jiangxi Coalfield Geology Bureau,Nanchang 330001,China
  • Received:2020-10-10 Revised:2020-12-02 Online:2021-04-10 Published:2021-04-09
  • Contact: Shuang YANG E-mail:1418253657@qq.com;yangshuang18@ecut.edu.cn
  • Supported by:
    The Science and Technology Project of Jiangxi Provincial Department of Education(GJJ180393);the Fund of Gansu Key Laboratory of Petroleum Resources Research(SZDKFJJ20201201);the Doctoral Fund of State Key Laboratory of Nuclear Resources and Environment(Z1912);the Doctoral Fund Project of East China University of Technology(DHBK2018030)

摘要:

为了研究修武盆地下寒武统荷塘组海相页岩储层及其含气性特征,连续选取富有机质钻井页岩为研究对象,进行有机地球化学分析、岩石学、孔隙度、低温N2吸附、CO2吸附和超临界CH4等温吸附等系列实验。RO值为1.74%~2.32%,平均为2.10%,为高成熟阶段。页岩TOC含量高,平均为3.21%;矿物组成以石英和黏土矿物为主,平均为52.66%和35.56%,并发育少量长石、碳酸盐和黄铁矿。平均孔隙度为2.05%,具低孔特征,平均孔径为8.416 nm,主要发育开放型圆筒状孔隙、层状狭缝形孔隙和细颈广体墨水瓶状孔隙;比表面积和孔体积普遍较高,分别为6.94~46.48 m2/g、0.004 2~0.020 1 cm3/g,其中微孔提供较大的比表面积,与四川盆地龙马溪组页岩数值相近,表明其具有充足的储气空间。研究区不但具有良好的生气物质基础,而且具有较强的CH4吸附能力,平均吸附量为1.71 m3/t;影响吸附的主要因素是TOC含量和孔隙结构,石英为有利因素,黏土矿物对吸附影响微弱。页岩厚度大、埋深较浅,有机质类型以生烃能力强的Ⅰ型为主,脆性矿物含量高,综合认为该区具有较好的页岩气勘探潜力。

关键词: 修武盆地, 下寒武统, 荷塘组, 海相页岩, 孔隙结构, CO2和N2等温吸附, CH4吸附

Abstract:

Marine shale of Lower Cambrian Hetang Formation from Well RDZ01 in Xiuwu Basin is selected to study the reservoir and its gas-bearing characteristics by organic geochemical analysis, petrology, porosity, low temperature N2 adsorption, CO2 adsorption and supercritical CH4 isothermal adsorption. RO value ranges from 1.74% to 2.32%, with an average value of 2.10%, and the maturity of organic matter is high. The total organic carbon (TOC) content is high, with an average of 3.21%. Main components are quartz and clay, 52.66% and 35.56%, respectively, with a small amount of feldspar, carbonate rock and pyrite are developed. Open cylindrical, layered slit and ink bottle pores are mainly developed in shale, with low porosity (2.05%) and average pore size of 8.416 nm. Specific surface area (SSA) and pore volume are generally high, ranging from 6.94 m2/g to 46.48 m2/g and 0.004 2 cm3/g to 0.020 1 cm3/g, respectively. SSA of micropores is large, which is close to that of Longmaxi Formation shale in Sichuan Basin, indicating a sufficient gas storage space. Study area has a good material basis for shale gas generation, and the shale has a strong CH4 adsorption capacity (average 1.71 m3/t). The main influencing factors are TOC content and pore structure, and quartz is the favorable factor, while clay minerals have little effect. Shale in the study area is characterized by large thickness, shallow burial depth, type I organic matter, strong hydrocarbon generation ability and high content of brittle minerals, having good shale gas exploration potential.

Key words: Xiuwu Basin, Lower Cambrian, Hetang Formation, Marine shale, Pore structure, CO2 and N2 isothermal adsorption, CH4 adsorption

中图分类号: 

  • TE132.1

图1

修武盆地区域构造位置及RDZ01井岩性分布"

表1

修武盆地下寒武统荷塘组页岩基本信息"

样品编号深度/m层位TOC/%孔隙度/%
RDZ01-01483.28?0-1h1.691.38
RDZ01-05485.08?0-1h1.451.52
RDZ01-09490.88?0-1h1.145.88
RDZ01-15492.68?0-1h1.762.90
RDZ01-21494.98?0-1h1.960.72
RDZ01-27497.78?0-1h1.341.31
RDZ01-31499.98?0-1h1.510.05
RDZ01-37515.73?0-1h10.382.56
RDZ01-41518.13?0-1h8.782.13
RDZ01-46520.83?0-1h2.05

图2

修武盆地下寒武统荷塘组页岩矿物含量"

图3

研究区下寒武统荷塘组页岩与四川盆地主要产气页岩矿物组成对比"

图4

页岩N2吸附和解吸等温线"

表2

修武盆地下寒武统荷塘组页岩孔隙结构参数"

样品编号N2吸附法CO2吸附法

总比表面积

/(m2/g)

总孔体积

/(cm3/g)

比表面积/(m2/g)孔体积/(cm3/g)平均孔径/nm比表面积/(m2/g)孔体积/(cm3/g)
RDZ01-019.190.017 57.488.650.002 617.840.020 1
RDZ01-052.200.003 59.326.090.001 98.290.005 4
RDZ01-097.010.007 45.767.010.002 114.020.009 5
RDZ01-154.930.003 211.528.640.002 613.570.005 8
RDZ01-212.560.001 714.088.060.002 510.620.004 2
RDZ01-275.410.005 65.935.260.001 510.670.007 1
RDZ01-317.400.006 95.848.050.002 415.450.009 3
RDZ01-373.720.003 16.7442.760.012 746.480.015 8
RDZ01-411.740.002 79.4433.200.009 934.940.012 6
RDZ01-461.510.002 88.055.430.001 56.940.004 3

图5

低温CO2结合N2吸附表征页岩孔径与孔体积分布"

图6

修武盆地下寒武统荷塘组页岩重量法等温吸附结果"

图7

修武盆地下寒武统荷塘组页岩VL与TOC、总比表面积之间的相互关系"

图8

修武盆地下寒武统荷塘组页岩黏土矿物、石英质量分数与孔隙总比表面积、VL的关系"

图9

修武盆地下寒武统荷塘组页岩VL与孔隙结构参数的关系"

表3

修武盆地下寒武统海相页岩储层特征及勘探潜力"

数据来源本文夏小进等[6]庞飞 等[8]WANG等[11]付蕾等[12]GAO等[14]
基本特征埋藏深度/m421.20~527.731 500~3 500赣页1井,660~8401 000~3 500以上荷塘组500~3 500样品来自JY1井,2 520~2 667
厚度/m荷塘组83.23150~400露头,100~200280~340荷塘组60.3~130.93153.8

矿物

特征

成分及含量

/%

石英46.5~61(52.66),

黏土矿物31.3~39.5(35.56),

黄铁矿0.8~2.9(1.81)

脆性矿物56.7~79.7(66. 7),石英(61.9),黏土矿物15.4~29.3,(23.9)

脆性矿物40~80,

黏土矿物6~45

石英57.9~60.5,

白云石28.4~42.5,

发育黄铁矿

石英31.41~40.82(36.25), 长石22.48~36.85(28.72), 黏土矿物21.20~26.73(23.20),黄铁矿0~4.14(1.63)

石英29~83.1(54.9),

黏土矿物6~52(26.6), 黄铁矿0.9~18.5

有机地球 化学特征TOC/%1.14~10.38(3.21)1.37~4.93(2.87)露头1.96~15.46(8.43),岩心3.25~14.20(9.21)露头0.04~21.20(5.20)0.04~13.14(4.57)0.26%~21.8(7.64)
有机质类型Ⅰ型2—Ⅲ型Ⅰ型Ⅰ型Ⅰ型
RO/%1.74~2.32(2.10)2.56~3.39(2.78)2.0~4.5(3.17)2.57~4.28(3.37)3.29~3.68(3.42)3.0~5.0
物性特征孔隙度/%0.05~5.88(2.05)1.06~7.86(2.86)1.0~4.0(2.6)1.0~13.1(5.0)0.48~3.38(2.15)
渗透率/(10-3 μm2)0.000 50~0.001 20 (0.000 62)0.004~0.200(0.022)0.002~0.063(0.017)
孔隙结构 参数比表面积/(m2/g)6.94~46.48(17.88)0.91~8.36(4.23)9.35~20.09(15.19)0.97~14.6(7.29)

孔体积/

(10-3 cm3/g)

4.2~20.1(9.4)5.7~19.4(12.9)31~56(43)2.1~10.5(7.3)
孔径/nm5.76~14.08(8.416)扫描电镜10~560(80)137.40~165.01(153.83)3.52~16.1
勘探潜力CH4吸附量/(m3/t)0.54~4.94(1.71)PL=10 MPa时,VL=2.0PL=1.75 MPa时,VL=7.91;赣页1井 现场解析0.10~0.381.79~8.17(4.98)露头3.99~8.04(6.02)
估计资源量/(108 m3)26 000(赣西北地区)2 922.98(修武盆地)
1 郑民,李建忠,吴晓智,等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J].天然气地球科学,2018,29(10):1383-1397.
ZHENG M, LI J Z, WU X Z, et al. China's conventional and unconventional natural gas resource potential, key areas and exploration direction[J]. Natural Gas Geoscience, 2018,29 (10): 1383-1397.
2 马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发,2018,45(4):561-574.
MA Y S, CAI X Y, ZHAO P R. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018,45 (4): 561-574.
3 陈青云. 江西省页岩气勘探现状及展望[C].第三届全国特殊气藏开发技术研讨会优秀论文集. 重庆: 重庆市科学技术协会,2014:54-59.
CHEN Q Y. Current situation and prospect of shale gas exploration in Jiangxi Province[C].Excellent Papers of the Third National Symposium on Special Gas Reservoir Development. Chongqing: Chongqing Science and Technology Association,2014:54-59.
4 祁星,胡秋祥,肖卫东,等.赣西北与焦石坝页岩气地质条件对比及启示[J].东华理工大学学报:自然科学版,2019,42(4):351-359,375.
QI X, HU Q X, XIAO W D, et al. Comparison and enlightenment of shale gas geological conditions between northwest Jiangxi and Jiaoshiba[J]. Journal of East China University of Technology, 2019,42 (4): 351-359,375.
5 章双龙,罗盈,胡秋祥,等.江西宜春地区北型乐平组页岩气成藏条件分析[J].东华理工大学学报:自然科学版,2019,42(4):360-367.
ZHANG S L, LUO Y, HU Q X, et al. Analysis of reservoir-forming conditions of shale gas of north type Leping Formation in the Yichun of Jiangxi Province[J]. Journal of East China University of Technology, 2019,42 (4): 360-367.
6 夏小进,胡小娟,王超勇.赣西北下寒武统页岩气成藏条件及资源潜力[J].特种油气藏,2013,20(6):35-39,142.
XIA X J, HU X J, WANG C Y. Shale gas accumulation condition and potential in Lower Cambrian in northwestern Jiangxi[J]. Special Oil and Gas Reservoirs,2013,20(6):35-39,142.
7 邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.
ZOU C N, ZHU R K, BAI B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011,27(6):1857-1864.
8 庞飞,包书景,任收麦,等.修武盆地下寒武统页岩气富集条件及有利区预测[J].东北石油大学学报,2014,38(5):23-30,85,6-7.
PANG F, BAO S J, REN S M, et al. shale gas accumulation conditions and favorable areas of the Lower Cambrian in Xiuwu Basin[J].Journal of Northeast Petroleum University, 2014,38 (5): 23-30,85,6-7.
9 GAO F L, SONG Y, LI Z, et al. Quantitative characterization of pore connectivity using NMR and MIP: A case study of the Wangyinpu and Guanyintang shales in the Xiuwu Basin, Southern China[J].International Journal of Coal Geology,2018,197: 53-65.
10 何晶,何生,刘早学,等.鄂西黄陵背斜南翼下寒武统水井沱组页岩孔隙结构与吸附能力[J].石油学报,2020,41(1):27-42.
HE J, HE S, LIU Z X, et al. Pore structure and adsorption capacity of shale in the Lower Cambrian Shuijingtuo Formation in the southern flank of Huangling anticline, western Hubei[J]. Acta Petrolei Sinica, 2020,41 (1): 27-42.
11 WANG G C, JU Y W, HAN K. Early Paleozoic shale properties and gas potential evaluation in Xiuwu Basin, western Lower Yangtze Platform[J].Journal of Natural Gas Science and En-gineering, 2015, 22:489-497.
12 付蕾,陈巧丽,潘家永,等.下扬子地区过成熟海相页岩储层特征:以修武盆地司马剖面底——下寒武统荷塘组为例[J].科学技术与工程,2017,17(23):44-50.
FU L, CHEN Q L, PAN J Y, et al. The reservoir charcteristics of over-mature marine shale in the Lower Yangzte Plate: Taking the Bottom-Lower Cambrian Hetang Formation in the Xiuwu Basin as an instance[J]. Science Technology and Engineering, 2017,17 (23): 44-50.
13 孙焕泉,周德华,蔡勋育,等.中国石化页岩气发展现状与趋势[J].中国石油勘探,2020,25 (2):14-26.
SUN H Q, ZHOU D H, CAI X Y, et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration, 2020, 25 (2): 14-26.
14 GAO F L,SONG Y,LI Z,et al. Pore characteristics and dominant controlling factors of overmature shales: A case study of the Wangyinpu and Guanyintang formations in the Jiangxi Xiuwu Basin[J].Interpretation,2018,6(2): 393-412.
15 ZHANG K, JIA C Z, SONG Y, et al. Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region[J]. Fuel,2020,263: 1-15.
16 王朋飞,姜振学,吕鹏,等.重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J].天然气地球科学,2018,29(7):997-1008.
WANG P F, JIANG Z X, LV P, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J].Natural Gas Geoscience, 2018,29 (7): 997-1008.
17 祁星,胡秋祥,易锡华,等.江西修武盆地下寒武统王音铺组页岩气勘探前景[J].中国矿业,2015,24(10):102-107.
QI X, HU Q X, YI X H, et al. Shale gas exploration prospect of Lower Cambrian Wangyinpu Formation in Xiuwu Basin[J]. China Mining Magazine, 2015,24 (10): 102-107.
18 刘天琳,姜振学,刘伟伟,等.江西修武盆地早寒武世热液活动对有机质富集的影响[J].油气地质与采收率,2018,25(3):68-76.
LIU T L, JIANG Z X, LIU W W, et al. Effect of hydrothermal activity on the enrichment of sedimentary organic matter at Early Cambrian in the Xiuwu Basin[J].Petroleum Geology and Recovery Efficiency, 2018,25 (3): 68-76.
19 张成林,张鉴,李武广,等.渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J].天然气地球科学,2019,30(12):1794-1804.
ZHANG C L, ZHANG J, LI W G, et al. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi formations in Dazu area,western Chongqing[J]. Natural Gas Geoscience, 2019,30 (12): 1794-1804.
20 HU H Y, HAO F, GUO X S, et al. Investigation of methane sorption of overmature Wufeng-Longmaxi shale in the Jiaoshiba area,eastern Sichuan Basin,China[J].Marine and Petrole-um Geology,2018,91: 251-261.
21 YANG F, XU S, HAO F, et al. Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China: Implications for shale gas accumulation mechanism[J]. Marine and Petroleum Geology,2019,109:394-407.
22 WANG C, ZHANG B Q, HU Q H, et al. Laminae characteristics and influence on shale gas reservoir quality of Lower Silurian Longmaxi Formation in the Jiaoshiba area of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 109:839-851.
23 XU H, ZHOU W, ZHANG R, et al. Characterizations of pore, mineral and petrographic properties of marine shale using multiple techniques and their implications on gas storage capability for Sichuan Longmaxi gas shale field in China[J]. Fuel,2019,241: 360-371.
24 彭女佳,何生,郝芳,等.川东南彭水地区五峰组—龙马溪组页岩孔隙结构及差异性[J].地球科学,2017,42(7):1134-1146.
PENG N J, HE S, HAO F, et al. The pore structure and difference between Wufeng and Longmaxi shales in Pengshui area, southeastern Sichuan[J]. Earth Science,2017,42(7):1134-1146.
25 THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9-10): 1051-1069.
26 周尚文,薛华庆,郭伟,等.基于重量法的页岩气超临界吸附特征实验研究[J].煤炭学报,2016,41(11):2806-2812.
ZHOU S W,XUE H Q,GUO W,et al. Supercritical isothermal adsorption characteristics of shale gas based on gravimetric method[J].Journal of China Coal Society,2016,41(11): 2806-2812.
27 REXER T F T,BENHAM M J,APLIN A C,et al.Methane adsorption on shale under simulated geological temperature and pressure conditions[J]. Energy & Fuels,2013,27(6):3099-3109.
28 马斌玉,徐守余,陈麦雨,等.页岩的甲烷吸附能力影响因素综述[J].海相油气地质,2018,23(2):31-38.
MA B Y, XU S Y, CHEN M Y, et al. An overview of influence factors of methane adsorption capacity in shale[J]. Marine Origin Petroleum Geology, 2018,23 (2): 31-38.
29 陈跃,马东民,吴圣,等.鄂尔多斯盆地东缘煤系伴生泥页岩孔隙特征及主控因素[J].天然气地球科学,2018,29(2):189-198.
CHEN Y, MA D M, WU S, et al. Pore characteristics and main controlling factors of mud shale in coal-bearing strata of eastern Ordos Basin[J].Natural Gas Geoscience,2018,29(2): 189-198.
30 田华,张水昌,柳少波,等.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用[J].天然气地球科学,2016,27(3):494-502.
TIAN H, ZHANG S C, LIU S B, et al. The dual influence of shale composition and pore size on adsorption gas storage mechanism of organic-rich shale[J]. Natural Gas Geoscience, 2016,27 (3): 494-502.
31 宋叙,王思波,曹涛涛,等.扬子地台寒武系泥页岩甲烷吸附特征[J].地质学报,2013,87(7):1041-1048.
SONG X, WANG S B, CAO T T, et al. The methane adsorption features of Cambrian shales in the Yangtze Platform[J]. Acta Geologica Sinica, 2013,87 (7): 1041-1048.
32 陈磊,姜振学,纪文明,等.陆相页岩微观孔隙结构特征及对甲烷吸附性能的影响[J].高校地质学报,2016,22(2):335-343.
CHEN L, JIANG Z X, JI W M, et al. Characteristics of microscopic pore structures and their effect impacts on methane adsorption capacity in continental shales[J]. Geological Journal of China Universities, 2016,22 (2): 335-343.
33 曹涛涛,邓模,刘虎,等.吴家坪组页岩储层特征及甲烷吸附能力——以鄂西利川地区为例[J].中国矿业大学学报,2021,50(1):138-153.
CAO T T, DENG M, LIU H, et al. Reservoir characteristics and methane adsorption capacity of Wujiaping Formation shale: A case study in Lichuan area, Western Hubei[J]. Journal of China University of Mining & Technology,2021,50(1):138-153.
34 吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256.
JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012,33 (2): 249-256.
35 毕赫,姜振学,李鹏,等.渝东南地区龙马溪组页岩吸附特征及其影响因素[J].天然气地球科学,2014,25(2): 302-310.
BI H, JIANG Z X, LI P, et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing[J]. Natural Gas Geoscience,2014,25(2): 302-310.
36 聂海宽,何治亮,刘光祥,等.四川盆地五峰组—龙马溪组页岩气优质储层成因机制[J].天然气工业,2020,40(6):31-41.
NIE H K, HE Z L, LIU G X, et al. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry,2020,40(6):31-41.
37 胡东风.四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J].天然气地球科学,2019,30(5):605-615.
HU D F. Main controlling factors on normal pressure shale gas enrichments in Wufeng-Longmaxi formations in synclines, southeastern Sichuan Basin[J].Natural Gas Geoscience, 2019,30 (5): 605-615.
38 马新华,谢军,雍锐,等.四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J].石油勘探与开发,2020,47(5):841-855.
MA X H, XIE J, YONG R, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2020,47(5):841-855.
[1] 徐洁,郭维华,刘皓天,秦臻,孟强,陶辉飞. 湘鄂西地区志留系龙马溪组页岩微观孔隙结构特征及定量表征[J]. 天然气地球科学, 2021, 32(4): 611-622.
[2] 吴一雄, 胡向阳, 易娟子, 杨冬, 梁玉楠. 莺歌海盆地高温超压气藏声波时差响应特征及孔隙度评价[J]. 天然气地球科学, 2021, 32(2): 298-307.
[3] 代全齐, 王贵文, 张连昌, 李纲, 马丽娟, 高树芳, 程志超, 张迪, 刘国良. 致密储层孔隙结构相测井表征及对经济可采储量的约束——以柴达木盆地英西地区湖相混积岩为例[J]. 天然气地球科学, 2021, 32(2): 308-318.
[4] 李腾, 吴财芳. 甲烷吸附前后高煤级煤孔隙结构粒径效应[J]. 天然气地球科学, 2021, 32(1): 125-135.
[5] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
[6] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[7] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[8] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[9] 周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[10] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[11] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[12] 梅青燕, 邹成, 杨山, 杨胜来, 赵益, 郑伟. 孔隙结构特征和非均质性对碳酸盐岩气藏开发的影响[J]. 天然气地球科学, 2020, 31(12): 1757-1765.
[13] 符宏斌, 苑坤, 卢树藩, 陈相霖, 林拓, 杜胜江, 何犇, 罗香建. 黔西上二叠统龙潭组高煤级煤微观孔隙结构特征及其对含气性的影响[J]. 天然气地球科学, 2020, 31(12): 1814-1825.
[14] 杨青, 李剑, 田文广, 孙斌, 祝捷, 杨宇航. 海拉尔盆地褐煤全孔径结构特征及影响因素[J]. 天然气地球科学, 2020, 31(11): 1603-1614.
[15] 陈斐然, 魏祥峰, 刘珠江, 敖明冲, 燕继红. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1593-1602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!