天然气地球科学 ›› 2021, Vol. 32 ›› Issue (2): 248–261.doi: 10.11764/j.issn.1672-1926.2020.11.020

• 非常规天然气 • 上一篇    下一篇

川南地区深层页岩气富集条件差异分析与启示

张成林1(),赵圣贤1,张鉴1,2,常程1,夏自强1,曹埒焰1,田冲1,冯江荣1,方圆1,周翊3   

  1. 1.中国石油西南油气田分公司页岩气研究院,四川 成都 610051
    2.页岩气评价与开采四川省重点实验室,四川 成都 610213
    3.西南石油大学地球科学与技术学院,四川 成都 610500
  • 收稿日期:2020-10-22 修回日期:2020-11-18 出版日期:2021-02-10 发布日期:2021-03-10
  • 作者简介:张成林(1990-),男,四川自贡人,工程师,硕士,主要从事页岩气地质综合研究.E-mail:997168761@qq.com.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发——长宁—威远页岩气开发示范工程”(2016ZX05062);中国石油天然气股份有限公司重大科技专项“西南油气田天然气上产300亿立方米关键技术与应用”(2016E-0611);国家科技重大专项“大型油气田及煤层气开发——页岩气气藏工程及采气工艺技术”(2017ZX05037)

Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin

Cheng-lin ZHANG1(),Sheng-xian ZHAO1,Jian ZHANG1,2,Cheng CHANG1,Zi-qiang XIA1,Lie-yan CAO1,Chong TIAN1,Jiang-Rong FENG1,Yuan FANG1,Yi ZHOU3   

  1. 1.Shale Gas Institute of PetroChina Southwest Oil & Gasfield Company,Chengdu 610051,China
    2.Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province,Chengdu 610213,China
    3.Geoscience and Technology School of Southwest Petroleum University,Chengdu 610500,China
  • Received:2020-10-22 Revised:2020-11-18 Online:2021-02-10 Published:2021-03-10
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05062);The Major Scientific and Technological Projects of PetroChina(2016E-0611);The China National Science and Technology Major Project(2017ZX05037)

摘要:

近年来,川南地区上奥陶统五峰组—下志留统龙马溪组页岩气勘探开发逐步向深层领域(埋深3 500~4 500 m)拓展。已在LZ、DZ 2个深层区块取得初步进展,且页岩气勘探开发效果表现不同(前者明显优于后者),其主要与富集条件差异有关。以LZ和DZ区块五峰组—龙马溪组为研究对象,综合利用最新的钻井、录井、测井、地震及分析化验等资料,明确了2个区块富集条件特征、差异性及主控因素。研究表明:①LZ区块在五峰组—龙一1亚段地层厚度、有机质丰度、物性特征、含气性、页岩储层厚度及品质等页岩气富集要素方面均优于DZ区块;②LZ区块在五峰组—龙马溪组形成时期始终位于川南地区深水陆棚相沉积中心,古沉积环境优于DZ区块,古沉积环境的不同造成了2个区块有机质富集和储层规模(厚度、品质)的差异;③DZ区块保存条件明显受断层—天然裂缝系统控制,而LZ区块页岩气的逸散受断层—天然裂缝系统影响较小,压力系数为川南地区最高,保存条件更优。综合研究认为,川南地区LZ、DZ 2个深层区块页岩气富集差异性的主控因素为古沉积环境和后期保存条件;在川南地区深层页岩气勘探开发中应秉持“深层领域找深水沉积页岩储层”的理念,华蓥山断裂带南段南侧的断背斜间发育的多个较宽缓向斜构造应是下步深层页岩气勘探的潜在有利区,LZ区块龙一14小层地质条件优越、具备双层立体开发可行性。

关键词: 五峰组—龙马溪组, 深层页岩气, 富集条件, 差异性, 启示

Abstract:

In recent years, shale gas exploration and development of O3w-S1l1 in southern Sichuan Basin have gradually expanded to the deep reservoirs (vertical depth between 3 500 m and 4 500 m). Preliminary progress have been made in two deep areas, including LZ block and DZ block, and the results of shale gas exploration and development are different (the former is obviously superior to the latter), which is mainly related to the difference of enrichment conditions. This article takes Wufeng-Longmaxi formations of LZ block and DZ block as the research objects, and has comprehensively made use of the latest data of drilling, logging, well logging, seismic and experiments, and finally has clarified the characteristics, differences and main controlling factors of enrichment conditions in two blocks. The researches show that: (1)LZ block is superior to DZ block in shale gas enrichment elements, such as formation thickness, organic matter abundance, physical property characteristics, gas bearing property, as well as the thickness and quality of shale reservoir. (2)During the formation period of Wufeng-Longmaxi formations, LZ block was always located in the sedimentary center of deep-water continental shelf in southern Sichuan basin, and its paleosedimentary environment was superior to that of DZ block. And the difference of paleosedimentary environment resulted in the difference of organic matter accumulation and reservoir scale (thickness and quality) in the two blocks. (3)The preservation condition of DZ block is obviously controlled by fault-natural fracture system, while the shale gas leakage in LZ block is less affected by fault-natural fracture system. The pressure coefficient is the largest in southern Sichuan Basin, and the preservation condition is better. The comprehensive study suggests that, in the two deep areas of LZ block and DZ block in southern Sichuan Basin, the main controlling factors of shale gas enrichment difference are paleosedimentary environment and preservation conditions. The concept of "exploring deep-water shale reservoir in the deep area" should be upheld in the exploration and development of deep shale gas in southern Sichuan Basin. Several wide and slow syncline structures which developed among the fault-anticlines in the south side of southern Huayingshan fault-zones should be the potential favorable areas for shale gas exploration in the next stage. And the geological conditions of S1l1-1-4 in LZ block are superior, with the feasibility of three-dimensional development for double-layers.

Key words: Wufeng-Longmaxi formations, Deep shale gas, Enrichment conditions, Difference, Enlightenment

中图分类号: 

  • TE121.1

图1

LZ、DZ区块构造位置及五峰组底界构造特征示意"

图2

LZ区块、DZ区块典型井五峰组—龙一1亚段综合评价柱状图"

表1

LZ区块、DZ区块五峰组—龙一1亚段各小层储层参数实验数据统计"

区块地层地层厚度/m脆性矿物 含量/%TOC/%孔隙度/%含气量/(m3/t)含气饱和度 /%
LZ龙一1亚段龙一14小层55.7~6861.228~8155.50.16~3.92.22.2~7.45.11.1~8.75.655.0~71.462.4
龙一13小层5~9.16.845~8764.92.18~4.763.43.77~7.635.54.3~9.57.060.6~74.469.2
龙一12小层2.9~6.24.464~9082.63.1~4.563.83.97~6.85.16.2~9.07.867.1~86.677.7
龙一11小层1.5~3.21.955~8275.33.8~7.34.84.22~6.354.96.6~9.57.964.6~86.876.7
五峰组5.9~10.88.248~8969.20.2~5.12.71.31~5.493.51.7~7.64.168.1~73.871.1
DZ龙一1亚段龙一14小层20.7~31.826.141.2~76.358.60.52~2.241.41.92~5.884.01.9~5.83.944.4~61.856.2
龙一13小层1.2~2.72.142.2~83.867.11.39~3.422.51.8~6.54.24.0~5.44.647.9~69.460.8
龙一12小层1.2~2.61.663.8~88.674.81.89~4.772.81.5~5.63.53.7~6.64.830.3~73.958.9
龙一11小层1.2~2.41.871.2~89.480.93.18~5.314.31.77~6.014.25.6~8.56.751.3~76.565.3
五峰组6.4~8.87.758.9~88.982.50.31~3.581.82.0~5.03.60.33~5.02.548.8~69.262.1

图3

LZ区块、DZ区块页岩微观孔隙类型(a)LZ区块Y2-7井,4 150.5 m,龙一11小层,有机孔;(b) LZ区块Y2-7井,4 102.3 m,龙一14小层,有机孔;(c) LZ区块Y4-4井,4 140.1 m,龙一13小层,方解石粒内孔;(d) LZ区块Y2-7井,4 110.1 m,龙一14小层,微裂缝;(e) DZ区块Z3井,4 102.1 m,龙一11小层,有机孔;(f) DZ区块Z3井,4 098.7 m,龙一12小层,粒间孔、粒内孔"

图4

LZ区块、DZ区块龙一11小层页岩不同孔隙类型面孔率直方图(部分数据引自文献[3])"

表2

LZ、DZ区块五峰组—龙一1亚段压力系数统计"

区块井号埋深 /m压力系数区块井号埋深 /m压力系数
DZZ1-H14 4021.89LZY4-54 0602.17
Z23 9801.86Y10-33 8112.12
Z34 1741.96Y13 5302.25
Z2H3-23 5772.03Y1-H23 4032.24
Z3H1-14 0842.03Y2-H13 8952.18
Z53 6601.93Y3-H13 4422.1

图5

LZ区块、DZ区块五峰组—龙一1亚段下部连续Ⅰ类储层参数对比(a)Ⅰ类储层连续厚度;(b)脆性矿物含量;(c)TOC;(d)孔隙度;(e)含气量"

图6

LZ区块、DZ区块五峰组—龙一1亚段TOC与含气量、U/Th、Ni/Co关系(a)TOC与含气量的关系;(b)TOC与U/Th的关系;(c)TOC与Ni/Co的关系"

表3

微量元素指标与沉积环境关系统计[30-33]"

指标缺氧贫氧常氧
深水强还原环境半深水弱还原环境浅水氧化环境
水体溶氧量<0.1 mL/L0.1~1 mL/L>1 mL/L
V/(V+Ni)>0.540.46~0.54<0.46
Ni/Co>75.00~7.00<5
U/Th>1.250.75~1.25<0.75
Re/Mo<0.8×10-3(0.8~9)×10-3>9×10-3

图7

川南地区五峰组—龙一1亚段沉积相平面展布与沉积模式(沉积相平面展布据文献[1-2]修改;Ⅰ类储层厚度等值线据文献[3]修改)"

图8

DZ区块、LZ区块岩心裂缝观测(a) DZ区块Z2井,3 891.35 m,五峰组,羽状方解石充填缝; (b) DZ区块Z7井,4 390.1 m,龙一11小层,垂直缝; (c) LZ区块G2井,3 830.5 m,龙一12小层,水平缝; (d) LZ区块D1井,3 645.5 m,龙一14小层,低角度缝"

图9

DZ区块水平井测试产量与距断层距离的关系"

图10

LZ区块压力系数与距断层距离的关系"

图11

LZ区块、DZ区块页岩气保存与富集模式(剖面位置见图1)(a) LZ区块低陡状背斜夹较宽缓向斜页岩气藏模式;(b) DZ区块断背斜夹向斜页岩气藏模式"

图12

LZ区块Y2-7井与焦石坝区块JY1井五峰组—龙一1亚段储层连井对比"

1 马新华.四川盆地南部页岩气富集规律与规模有效开发探索[J].天然气工业,2018,38(10):1-10.
MA X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry,2018,38(10):1-10.
2 马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发,2018,45(1):161-169.
MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development,2018,45(1):161-169.
3 杨洪志,赵圣贤,刘勇,等.泸州区块深层页岩气富集高产主控因素[J].天然气工业,2019,39(11):55-63.
YANG H Z, ZHAO S X, LIU Y, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry,2019,39(11):55-63.
4 沈骋,谢军,赵金洲,等.泸州—渝西区块海相页岩可压性演化差异[J].中国矿业大学学报,2020,49(4): 742-754.
SHEN C, XIE J, ZHAO J Z, et al. Evolution difference of fracability of marine shale gas reservoir in Luzhou and west Chongqing block, Sichuan Basin[J].Journal of China University of Mining & Technology,2020,49(4): 742-754.
5 张成林,张鉴,李武广,等.渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J].天然气地球科学,2019,30(12):1794-1804.
ZHANG C L, ZHANG J, LI W G, et al. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi formations in Dazu area, western Chongqing[J].Natural Gas Geoscience,2019,30(12):1794-1804.
6 郭旭升.南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J].地质学报, 2014,88(7):1209-1218.
GUO X S. Rules of two-factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica,2014, 88(7):1209-1218.
7 郭彤楼.涪陵页岩气田发现的启示与思考[J].地学前缘,2016,23(1):29-43.
GUO T L. Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers,2016,23(1):29-43.
8 金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘, 2016,23(1):1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formation, south-eastern Sichuan Basin[J].Earth Science Frontiers,2016,23(1):1-10.
9 赵圣贤,杨跃明,张鉴,等.四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J].天然气地球科学,2016,27(3):470-487.
ZHAO S X, YANG Y M, ZHANG J, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J].Natural Gas Geoscience,2016,27(3):470-487.
10 谢军,赵圣贤,石学文,等.四川盆地页岩气水平井高产的地质主控因素[J].天然气工业,2017,37(7):1-12.
XIE J, ZHAO S X, SHI X W, et al. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin[J].Natural Gas Industry,2017,37(7): 1-12.
11 舒志恒,方栋梁,郑爱维,等.四川盆地焦石坝地区龙马溪组一段上部页岩气层地质特征及开发潜力[J].天然气地球科学,2020,31(3):393-401.
SHU Z H,FANG D L,ZHENG A W, et al. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin[J].Natural Gas Geoscience,2020,31(3):393-401.
12 焦方正.页岩气“体积开发”理论认识、核心技术与实践[J].天然气工业,2019,39(5):1-14.
JIAO F Z. Theoretical insights,core technologies and practices concerning “volume development” of shale gas in China[J].Natural Gas Industry,2019,39(5):1-14.
13 马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发,2018,45(4):561-574.
MA Y S, CAI X Y, ZHAO P R. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development,2018,45(4):561-574.
14 张金川,聂海宽,徐波,等.四川盆地页岩气成藏地质条件[J].天然气工业,2008,28(2):151-156.
ZHANG J C, NIE H K, XU B, et al. Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry,2008,28(2):151-156.
15 聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.
NIE H K, TANG X, BIAN R K. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica,2009,30(4):484-491.
16 中华人民共和国国土资源部. DZ/T0254-2014页岩气资源/储量计算与评价技术规范[S].北京:中国标准出版社,2014.
Ministry of Land and Resources of the People's Republic of China. DZ/T0254-2014 Regulation of Shale Gas Resources/Reserves Estimation[S].Beijing:Standards Press of China, 2014.
17 赵金洲,任岚,沈骋,等.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业,2018,38(3):1-14.
ZHAO J Z, REN L, SHEN C, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14.
18 丰国秀,陈盛吉.岩石中沥青反射率与镜质体反射率之间的关系[J].天然气工业,1988,8(3): 20-25.
FENG G X, CHEN S J. Relationship between the reflectance of bitumen and vitrinite in rock[J].Natural Gas Industry,1988,8(3): 20-25.
19 朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401.
ZHU H Q, JIA A L, WEI Y S, et al. Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin[J]. Acta Petrolei Sinica,2018,39(4):391-401.
20 SHI M, YU B S, ZHANG J C, et al. Microstructural characterization of pores in marine shales of the Lower Silurian Longmaxi Formation, southeastern Sichuan Basin, China[J].Marine & Petroleum Geology,2018, 94(6):166-178.
21 YANG R, HE S, YI J Z, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine & Petroleum Geology,2016,70(2):27-45.
22 XI Z D, WANG J, HU J G, et al. Experimental investigation of evolution of pore structure in Longmaxi marine shale using an anhydrous pyrolysis technique[J].Mineral,2018,8(6):226-236.
23 贾成业,贾爱林,何东博,等.页岩气水平井产量影响因素分析[J].天然气工业,2017,37(4):80-88.
JIA C Y, JIA A L, HE D B, et al. Key factors influencing shale gas horizontal well production[J].Natural Gas Industry,2017,37(4):80-88.
24 刘乃震,王国勇.四川盆地威远区块页岩气甜点厘定与精准导向钻井[J].石油勘探与开发,2016,43(6): 978-985.
LIU N Z, WANG G Y. Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin,SW China[J].Petroleum Exploration and Development, 2016,43(6):978-985.
25 刘文平,张成林,高贵冬,等.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报,2017,38(2): 175-184.
LIU W P, ZHANG C L, GAO G D, et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation,Sichuan Basin[J].Acta Petrolei Sinica,2017,38(2):175-184.
26 中华人民共和国国家能源局.SY/T 6940-2013页岩气含气量测定方法[S].北京:中国标准出版社,2013.
National Energy Administration of the People’s Republic of China. SY/T 6940-2013 Measurement Method of Shale Gas Content[S]. Beijing: Standards Press of China, 2013.
27 蒋廷学,卞晓冰,王海涛,等.深层页岩气水平井体积压裂技术[J].天然气工业,2017,37(1):90-96.
JIANG T X, BIAN X B, WANG H T, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry,2017,37(1):90-96.
28 曾义金,陈作,卞晓冰.川东南深层页岩气分段压裂技术的突破与认识[J].天然气工业,2016,36(1):61-67.
ZENG Y J, CHEN Z, BIAN X B. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J].Natural Gas Industry,2016,36(1):61-67.
29 郭彤楼.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发,2016,43(3):317-326.
GUO T L. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development,2016,43(3):317-326.
30 邱振,邹才能,王红岩,等.中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J].天然气地球科学,2020,31(2):163-175.
QIU Z,ZOU C N,WANG H Y, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience,2020,31(2):163-175.
31 王玉满,董大忠,李新景,等.四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J].天然气工业,2015,35(3):12-21.
WANG Y M, DONG D Z, LI X J, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015,35(3):12-21.
32 郑和荣,高波,彭勇民,等.上扬子地区下志留统沉积演化与页岩气勘探方向[J].古地理学报,2013,15(5):645-656.
ZHENG H R, GAO B, PENG Y M, et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in middle-upper Yangtze area[J]. Journal of Palaeogeography,2013,15(5):645-656.
33 HTACH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pensylvanian(Missourian) stark shale member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A.[J].Chemical Geology,1992,99(1):65-82.
34 胡东风,张汉荣,倪楷,等.四川盆地东南缘海相页岩气保存条件及其主控因素[J].天然气工业,2014,34(6): 17-23.
HU D F, ZHANG H R, NI K, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry,2014,34(6):17-23.
35 何治亮,胡宗全,聂海宽,等.四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J].天然气地球科学,2017,28(5):724-733.
HE Z L,HU Z Q,NIE H K, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction transformation evolution sequence[J]. Natural Gas Geoscience,2017,28(5):724-733.
36 刘树根,邓宾,钟勇,等.四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J].地学前缘,2016,23(1):11-28.
LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J].Earth Science Frontiers,2016,23(1):11-28.
37 CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin,2002,86(11):1921-1938.
[1] 李剑, 王晓波, 侯连华, 陈昌, 国建英, 杨春龙, 王义凤, 李志生, 崔会英, 郝爱胜, 张璐. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106.
[2] 田继先, 姜晓华, 国建英, 孔骅, 任世霞, 周飞, 沈晓双, 沙威, 乔柏翰, 张娜, 周胤男. 柴西湖相碳酸盐岩致密气藏地质特征及规模富集条件[J]. 天然气地球科学, 2021, 32(8): 1223-1234.
[3] 张光荣, 聂海宽, 唐玄, 李东晖, 孙川翔, 张培先. 基于有机孔和生物成因硅优选页岩气富集高产层段的方法及应用[J]. 天然气地球科学, 2021, 32(6): 888-898.
[4] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[5] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[6] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[7] 张成林,张鉴,李武广,田冲,罗超,赵圣贤,钟文雯. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804.
[8] 梁兴,陈科洛,张廷山,张朝,张介辉,舒红林. 沉积环境对页岩孔隙的控制作用[J]. 天然气地球科学, 2019, 30(10): 1393-1405.
[9] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[10] 赵文韬, 荆铁亚, 吴斌, 周游, 熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 李登华,刘卓亚,张国生,郑志红,贾君,高煖,昝昕. 中美致密油成藏条件、分布特征和开发现状对比与启示[J]. 天然气地球科学, 2017, 28(7): 1126-1138.
[13] 冯子齐,黄士鹏,吴伟,房忱琛,刘丹. 北美页岩气和我国煤成气发展历程对我国页岩气发展的启示[J]. 天然气地球科学, 2016, 27(3): 449-460.
[14] 管全中,董大忠,王淑芳,黄金亮,王玉满,张晨. 海相和陆相页岩储层微观结构差异性分析[J]. 天然气地球科学, 2016, 27(3): 524-531.
[15] 倪新锋,沈安江,陈永权,关宝珠,俞广,严威,熊冉,李维岭,黄理力. 塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示[J]. 天然气地球科学, 2015, 26(7): 1245-1255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 赵生才;. 香山科学会议第268次学术讨论会“中国煤层气资源及产业化”召开[J]. 天然气地球科学, 0, (): 6 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .