天然气地球科学 ›› 2021, Vol. 32 ›› Issue (3): 334–346.doi: 10.11764/j.issn.1672-1926.2020.11.017

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义

马安来1(),林会喜1,云露2,曹自成2,朱秀香2,李王鹏1,吴鲜2   

  1. 1.中国石化石油勘探开发研究院,北京 100083
    2.中国石化西北油田分公司,新疆 乌鲁木齐 830011
  • 收稿日期:2020-09-11 修回日期:2020-11-24 出版日期:2021-03-10 发布日期:2021-03-22
  • 作者简介:马安来(1969-),男,安徽淮南人,副教授,博士,主要从事有机地球化学及成藏机理研究. E-mail:maal.syky@sinopec.com.
  • 基金资助:
    国家自然科学基金(U19B6003);中国石油化工股份有限公司科技部项目(P16079)

Characteristics of diamondoids in oils from the ultra-deep Ordovician in the North Shuntuoguole area in Tarim Basin, NW China

An-lai MA1(),Hui-xi LIN1,Lu YUN2,Zi-cheng CAO2,Xiu-xiang ZHU2,Wang-peng LI1,Xian WU2   

  1. 1.Petroleum Exploration & Production Research Institute,SINOPEC,Beijing 100083,China
    2.SINOPEC Northwest Oilfield Company,Urumqi 830011,China
  • Received:2020-09-11 Revised:2020-11-24 Online:2021-03-10 Published:2021-03-22
  • Supported by:
    The National Natural Science Foundation of China(U19B6003);The SINOPEC Ministry of Science and Technology(P16079)

摘要:

塔里木盆地顺北地区奥陶系超深层一间房组—鹰山组获得了工业油气产能,不同断裂带油气相态存在差异。使用色谱?质谱、色谱×色谱?飞行时间质谱方法研究了顺北地区原油中金刚烷的分布及含量。顺北地区奥陶系原油金刚烷组成中,1号断裂带(分支断裂、次级断裂)和3号断裂带原油单金刚烷相对含量高于5号断裂带和7号断裂带原油。顺北地区原油金刚烷总量与4?甲基二苯并噻吩/1?甲基二苯并噻吩值之间呈现正相关关系,表明成熟度决定了原油中金刚烷总量。不同断裂带原油中单金刚烷系列、双金刚烷系列相对比例的不同与油气藏多期成藏及油气藏保存条件不同有关。1号断裂带油气藏喜马拉雅晚期较高成熟度天然气的充注,从深部携带了较高比例的单金刚烷系列,造成原油单金刚烷系列含量相对较高。5号断裂带油气藏保存条件逊色于1号断裂带油气藏,轻质组分不同程度损失,导致原油中单金刚烷比例较低。由于金刚烷内组成含量的差异,分别使用22 μg/g、33 μg/g作为1号断裂带、5号断裂带原油中甲基双金刚烷基线,1号断裂带(含分支、次级断裂带)、5号断裂带中段及5号断裂带南段原油裂解比例分别为0~42%、20%~33%和54%。

关键词: 金刚烷, 原油裂解, 顺北地区, 超深层, 奥陶系, 塔里木盆地

Abstract:

Industrial oil & gas production was obtained in the ultra-deep Ordovician Yijianfang to Yingshan formations from North Shuntuoguole area in Tarim Basin, NW China. The reservoir phases varied among different faults. Using the GG-MS and GC×GC-TOFMS methods, the study focused on the distribution and concentrations of diamondoids of the Ordovician oil in the North Shuntuoguole area. In the relative content of diamonoids, oil samples from No.1 (including splay and sub-faults) and No.3 faults have higher contents of adamantanes than that of the oils from No.5 and No.7 faults. The concentrations of diamondoids of oil samples from the North Shuntuoguole area showed positive correlation with the 4-/1-MDBT ratio, suggesting that the concentrations of diamondoids of oil samples were controlled by the maturity. The difference of the relative content of adamantanes and diamantanes of oil samples from the different faults may be related to the multiple hydrocarbon filling history and the different preservation condition. The reservoirs of No.1 fault were charged with the natural gas with relative higher maturity in late Himalayan, receiving more content of admanantanes from the deep strata and leading to the enrichment of adamantanes in oils. The preservation condition of the reservoirs from No.5 fault were inferior to that of the No.1 faults, represented by the loss of the light hydrocarbon to some degree, and resulted in the decrease of adamantanes in oil samples from No.5 fault. Because of the difference in the relative contents of diamondoids, the (4-+3-) methyldiamantane concentrations of 22 μg/g and 33 μg/g were used as the baseline values for the oil samples from No.1 and No.5 faults, respectively. Using the method proposed by Dahl et al, the degree of oil-cracking of the oil samples from the No.1 fault (including sub-fault and splay fault), the middle part and the south part of No.5 fault are 0-42%, 20%-33% and 54%, respectively.

Key words: Diamondoid, Oil-cracking, North Shuntuoguole area, Ultra-deep, Ordovician, Tarim Basin

中图分类号: 

  • TE122.1+13

图1

塔里木盆地顺托果勒低隆起构造位置"

图2

顺北一区不同断裂带钻井井位分布"

表1

顺北地区不同断裂带原油物性数据"

断裂带井号井深/m

密度(20 ℃)

/(g/cm3)

黏度(50 ℃)

/(mPa·s)

凝固点 /℃

含硫量

/%

含蜡量

/%

气油比

/(m3/ m3)

1号断裂

SB1-3H7 255.70~7 389.510.795 52.52-200.1038.23363
SB1CX7 259.27~7 526.160.794 42.15-300.1461.86305
SB1-107 299.50~8 225.400.798 22.82-32.00.1163.22395
SB1-6H7 288.16~7 789.070.789 32.16-160.1042.84384
SB1-7H7 339.36~7 947.210.797 42.65-80.1283.35345
SB1-1H7 458.00~7 613.050.795 53.11-40.1202.82349
SB1-4H7 459.00~8 049.500.796 92.88-140.1335.29332
SB1-5H7 474.52~7 745.520.798 02.90-31.00.125-383
SB1-2H7 469.00~7 778.110.808 83.28-140.1092.28288
SB1-117 558.60~7 723.170.793 42.56-340.1064.58311
SB1-147 580.00~7 710.000.800 92.92<-340.1023.55282
SB1-127 600.00~7 648.330.793 42.48<-340.096 73.22280
SB1-157 614.00~8 010.000.793 82.52-240.1153.94273
SB1-167 619.00~7 992.400.799 92.92-240.1171.85306
1号分支SB1-97 372.74~7 630.000.793 62.37-40.1071.62322
SBP37 395.52~7 842.930.792 82.32317
SB1-87 414.50~7 844.480.792 22.30-200.1131.81305
1号次级SB27 348.60~8 169.270.800 02.83-160.1174.88-
SBP1H7 376.63~8 430.000.804 23.11-200.25.38-
3号断裂SB37 607.00~8 120.240.814 37.91-140.032--

5号断裂

北段

SB5-4H7 393.60~8 064.230.845 98.09<-340.194-46
SB5-11H7 414.00~8 014.000.835 66.367
SB5-37 349.00~7 932.140.839 07.69-160.1423.8855
SB57 315.00~7 352.950.829 64.37<-340.1984.3857
SB5-12H7 476.00~8 424.050.822 16.72<-340.172-67
SB5-27 460.33~7 527.160.823 45.18<-240.1951.0562
SB5-1X7 468.00~7 888.770.823 45.26-160.183.6762

中段

SB51X7 553.64~7 871.000.802 43.66-140.0944.24200
SB5-57 630.00~8 200.000.800 65.52<-340.078 4-270
SB5-67 518.00~8 026.000.809 85.38-100.093-125
中段次级SB5017 628.00~7 960.000.807 23.17-340.1093.46125
南段SB53X7 738.28~8 362.000.788 83.53-160.06762.23678
7号断裂SB77 568.45~8 121.000.859 118.72-160.1593.6569

图3

原油4-MDBT/1-MDBT与(2-+3-)/1-MDBT之间的关系(a)、4-MDBT/1-MDBT与F1之间的关系(b)"

图4

SB1-2井原油金刚烷质量色谱"

图5

顺北地区原油金刚烷系列、单金刚烷系列、双金刚烷系列含量分布直方图"

表2

顺北地区不同断裂带原油金刚烷含量及参数"

井号

As/

(μg/g)

Ds/

(μg/g)

(As+Ds)

/(μg/g)

C29 S

/(μg/g)

MAI /%MDI %

Rc.MDI

/%

EAI

/%

MPI1

Rc1

/%

Rc2

/%

F1

Rc3

/%

MDR

Rc4

/%

SB1-31 044.5895.381 139.965.5674.345.61.5549.01.051.031.670.571.1030.641.80
SB1779.2671.48850.7430.6971.642.31.4747.40.740.841.860.420.7814.431.60
SB1-10900.1479.36979.5011.5773.944.51.5348.01.011.001.700.551.0625.411.75
SB1-6750.1974.49824.687.7573.443.11.4948.21.111.071.630.561.0826.901.77
SB1-7724.9477.60802.544.1571.247.01.5953.31.081.051.650.551.0628.751.79
SB1-1H922.9286.201 009.125.8273.645.91.5649.71.121.071.630.551.0827.651.78
SB1-4715.2679.15794.415.0871.446.11.5651.61.021.011.690.551.0631.901.81
SB1-5699.8577.08776.935.7472.245.41.5551.41.101.061.640.551.0628.551.78
SB1-2998.6997.831 096.518.9172.645.61.5548.11.041.021.680.551.0725.311.75
SB1-11807.2684.12891.385.6470.843.61.5054.11.101.061.640.551.0729.431.79
SB1-14735.6983.77819.47070.143.91.5151.71.111.071.630.551.0729.961.80
SB1-12H929.25111.741 040.992.0270.747.41.6055.11.121.071.630.551.0832.961.82
SB1-15746.7483.24829.98069.944.71.5352.41.141.081.620.561.0932.191.82
SB1-16H738.4587.04825.49070.144.31.5255.21.151.091.610.561.1036.151.85
SB1-91 058.1292.591 150.705.3573.245.61.5549.01.011.011.690.531.0223.241.73
SBP3794.8380.23875.075.0272.946.51.5753.40.980.991.710.520.9922.071.72
SB1-8911.2386.40997.637.5672.347.01.5950.60.980.991.710.510.9822.181.72
SB3598.9964.26663.24063.652.51.7258.21.061.041.660.531.0213.601.59
SB2528.1758.88587.0520.1166.449.61.6556.10.860.911.790.460.8719.201.68
SBP1407.6241.48449.1022.1468.145.61.5554.80.950.971.730.500.9527.151.77
SB5-4H449.9593.39543.3454.1071.147.51.6069.00.650.791.910.410.756.071.38
SB5-11515.6195.40611.0155.7171.147.51.6067.70.690.811.890.420.786.861.41
SB5-3596.43114.86711.2958.7070.445.21.5464.90.710.831.870.430.807.221.42
SB5586.72113.37697.0951.0568.245.81.5656.50.700.821.880.430.797.371.43
SB5-12569.90108.87678.7747.9469.645.61.5565.30.720.831.870.430.808.411.46
SB5-2599.68113.13712.8045.4268.944.81.5358.70.730.841.860.440.818.921.48
SB5-1621.36125.17746.5345.8769.743.91.5157.60.750.851.850.440.839.521.50
SB51X874.81147.481 022.3026.7069.448.01.6165.81.011.001.700.531.0227.521.77
SB5-5H930.24149.611 079.8512.7370.146.41.5760.21.061.031.670.551.0637.031.85
SB5-6H974.93147.651 122.5810.3169.147.91.6156.31.131.081.620.571.1243.101.89
SB501693.83116.26810.094.4871.247.01.5966.31.081.051.650.531.0336.921.85
SB53X1 388.83225.191 614.029.3770.347.01.5951.11.451.271.430.701.4075.112.04
SB7157.2825.63182.9137.8164.946.51.5780.70.660.801.900.420.776.151.38

表3

GC?MS、GC×GC?TOFMS分析获得的原油金刚烷化合物含量"

井号As/(μg/g)Ds/(μg/g)
方法1方法2方法1方法2
SB1-14735.691 812.1883.77204.64
SB5-12569.901 188.43108.87240.90
SB501693.831 742.78116.26290.34

图6

顺北地区原油金刚烷含量与4-MDBT/1-MDBT之间的关系"

图7

顺北地区不同断裂带原油MAI、MDI比值之间的关系"

图8

不同断裂带原油(1-+2)MA与(4-+3-)MD含量之间的关系"

图9

原油正构烷烃摩尔分数与碳数之间的关系"

图10

顺北地区原油全油气相色谱"

图11

顺北地区原油(4-+3-)甲基双金刚烷含量与C29 ααα20R含量之间的关系"

1 CHEN J H, FU J M, SHENG G Y, et al. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190.
2 DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999,399(6731): 54-57.
3 马安来,金之钧,朱翠山,等. 塔河油田原油中金刚烷化合物绝对定量分析[J].石油学报, 2009, 30(2):214-218.
MA A L, JIN Z J, ZHU C S, et al. Quantitative analysis on absolute concentration of diamondoids in oils from Tahe Oilfield[J]. Acta Petrolei Sinica, 2009, 30(2): 214-218.
4 ZHANG S C, HUANG H P, XIAO Z Y, et al. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China. Part 2: Maturity assessment[J]. Organic Geochemistry, 2005, 36: 1215-1225.
5 ZHANG S C, SU J, WANG X M, et al. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J]. Organic Geochemistry, 2011, 42:1394-1410.
6 LI Y, XIONG Y Q, LIANG Q Y, et al. The application of diamondoid indices in the Tarim oils[J]. AAPG Bulletin, 2018, 102(2): 267-291.
7 ZHANG S C, SU J, HUANG H P, et al. Genetic origin of sour gas condensates in the Paleozoic dolomite reservoirs of the Tazhong Uplift, Tarim Basin[J]. Marine & Petroleum Geology, 2015, 68:107-119.
8 ZHANG S C, HUANG H P, SU J, et al. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China: Part 5. Effect of maturation, TSR, and mixing on the occurrence and distribution of alkyldibenzothiophenes[J]. Organic Geochemistry, 2015, 86:5-18.
9 马安来, 金之钧, 朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学, 2017, 28(2): 313-323.
MA A L, JIN Z J, ZHU C S. Cracking and thermal maturity of Ordovician oils from Tahe Oilfield, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2017,28(2):313-323.
10 ZHU G Y, MILKOV A V, CHEN F R. et al. Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim Basin,China[J]. Marine & Petroleum Geology,2018,89:252-262.
11 马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J].地球科学, 2020, 42(5):1737-1753.
MA A L, JIN Z J, LI H L, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 42(5): 1737-1753.
12 CHAI Z, CHEN Z H, LIU H, et al. Light hydrocarbons and diamondoids of light oils in deep reservoirs of Shuntuoguole Low Uplift, Tarim Basin: Implication for the evaluation on thermal maturity, secondary alteration and source characteristics[J]. Marine & Petroleum Geology, 2020, 117: 104388.https://doi.org/10.1016/j.marpetgeo.2020.104388
13 MOLDOWAN J K, DAHL J, ZINNIKER D, et al. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. The diamondoids[J]. Journal of Petroleum Science and Engineering, 2015, 126:87-96.
14 ZHU G Y, LI J F, CHI L X, et al. The influence of gas invasion on the composition of crude oil and the controlling factors for reservoir fluid phase[J]. Energy & Fuels, 2020,34(3):2710-2725.
15 ZHANG Z Y, ZHANG Y J, ZHU G Y, et al. Impacts of thermochemical sulfate reduction, oil cracking, and gas mixing on petroleum fluid phase in the Tazhong area, Tarim Basin, China[J]. Energy & Fuels, 2019,33(2):968-978.
16 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
QI L X. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1):102-111.
17 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.
JIAO F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5):831-839.
18 马安来, 金之钧, 朱翠山, 等. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据[J]. 石油与天然气地质, 2018, 39(4): 730-737.
MA A L, JIN Z J, ZHU C S, et al. Effect of TSR on the crude oil in Ordovician reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from molecular markers[J]. Oil & Gas Geology, 2018, 39(4):730-737.
19 李二庭, 陈俊, 迪丽达尔·肉孜, 等. 准噶尔盆地腹部地区原油金刚烷化合物特征及应用[J]. 石油实验地质, 2019, 41(4): 569-576.
LI E T, CHEN J, ROUZI D, et al. Characteristics of diamondoids in crude oil and its application in hinterland of Junggar Basin[J]. Petroleum Geology & Experiment, 2019, 41(4):569-576.
20 SMITH V S, TEJA A S. Solubilities of diamondoids in supercritical solvents[J]. Journal of Chemical and Engineering Data, 1996,41(4): 923-925.
21 CHAKHMAKHCHEV A, SANDERSON J, PEARSON C, et al. Compositional changes of diamondoid distributions cau-sed by simulated evaporative fractionation[J]. Organic Geochemistry, 2017, 113:224-228.
22 KISSIN Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes[J]. Geochimica et Cosmochimica Acta, 1987, 51:2445-2457.
23 LOSH S, CATHLES L, MEULBROEK P. Gas washing of oil along a regional transect, offshore Louisiana[J]. Organic Geochemistry, 2002, 33: 655-663.
24 张水昌, 朱光有, 杨海军, 等. 塔里木盆地北部奥陶系油气相态及其成因分析[J]. 岩石学报, 2011, 27(8): 2447-2460.
ZHANG S C, ZHU G Y, YANG H J, et al. The phases of Ordovician hydrocarbon and their origin in the Tabei Uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2447-2460.
25 CHENG B, LIU H, CAO Z C, et al. Origin of deep oil accumulations in carbonate reservoirs within the north Tarim Basin: Insights from molecular and isotopic compositions[J]. Organic Geochemistry, 2020,139: 103931.
26 王玉伟, 陈红汉, 郭会芳, 等. 塔里木盆地顺1走滑断裂带超深储层油气充注历史[J]. 石油与天然气地质, 2019, 40(5): 972-989.
WANG Y W, CHEN H H, GUO H F, et al. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin[J]. Oil & Gas Geology,2019,40(5): 972-989.
27 LI Y, XIONG Y Q, CHEN Y, et al. The effect of evaporation on the concentration and distribution of diamondoids in oils[J].Organic Geochemistry, 2014,69:88-97.
28 PETERSEN H I, CUMMING D, DUJONCQUO Y E. Geochemical composition of oils in the Dunga Field, western Kazakhstan: Evidence for a lacustrine source and a complex filling history[J]. Organic Geochemistry, 2018,115:174-187.
29 YURCHENKO I A,MOLDOWAN J M,PETERS K E,et al. The role of calcareous and shaly source rocks in the composition of petroleum expelled from the Triassic Shublik Formation, Alaska North Slope[J].Organic Geochemistry,2018,122:52-67.
30 张水昌, 赵文智, 王飞宇,等. 塔里木盆地东部地区古生界原油裂解气成藏历史分析——以英南2气藏为例[J]. 天然气地球科学, 2004,15(5): 441-451.
ZHANG S C, ZHAO W Z, WANG F Y, et al. Paleozoic oil cracking gas accumulation history from eastern part of the Tarim Basin:A case study of the YN2 gas reservoir[J]. Natural Gas Geoscience, 2004, 15(5):441-451.
31 ZHANG S C, HUANG H P, SU J, et al. Ultra-deep liquid hydrocarbon exploration potential in cratonic region of the Tarim Basin inferred gas condensate genesis[J]. Fuel, 2015, 160:583-595.
32 SU J, ZHANG S C, HUANG H P, et al. New insights into the formation mechanism of high hydrogen sulfide-bearing gas condensates: Case study of Lower Ordovician dolomite reservoirs in the Tazhong Uplift, Tarim Basin[J]. AAPG Bulletin, 2015, 100(6):893-916.
33 FANG C C, XIONG Y Q, LI Y, et al. The origin and evolution of adamantanes and diamantanes in petroleum[J]. Geochimica et Cosmochimica Acta, 2013, 120:109-120.
34 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报,2018, 39(1): 42-53.
MA A L, JIN Z J, ZHU C S. Detection and research significance of thiadiamondoids from crude oil in Well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53.
[1] 朱光有,张怀顺,汤顺林,孙广义,丁玉祥. 塔里木盆地海相原油汞同位素组成特征[J]. 天然气地球科学, 2021, 32(3): 347-355.
[2] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[3] 李慧莉, 尤东华, 韩俊, 钱一雄, 沙旭光, 席斌斌. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125.
[4] 曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
[5] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[6] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[7] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[8] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[9] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[10] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[11] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[12] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[13] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[14] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[15] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡国艺, 贺飞, 米敬奎, 袁懿琳, 郭谨豪. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力[J]. 天然气地球科学, 2021, 32(3): 319 -333 .
[2] 朱光有,张怀顺,汤顺林,孙广义,丁玉祥. 塔里木盆地海相原油汞同位素组成特征[J]. 天然气地球科学, 2021, 32(3): 347 -355 .
[3] 韩中喜,垢艳侠,李谨,葛守国,田闻年,黄恒. 四川盆地天然气汞含量分布特征及成因分析[J]. 天然气地球科学, 2021, 32(3): 356 -362 .
[4] 张怀顺,朱光有,丁玉祥,周玉萍,姚晓洁,吴高恩,汤顺林. 天然气中汞的来源及脱汞技术[J]. 天然气地球科学, 2021, 32(3): 363 -371 .
[5] 王国建,袁玉松,李武,吴传芝,邹雨,卢丽,李凤丽. 天然气扩散系数研究现状及存在问题[J]. 天然气地球科学, 2021, 32(3): 372 -381 .
[6] 刘桂珍,高伟,尉加盛,唐文. 混积层系沉积、层序特征——以鄂尔多斯盆地高桥地区本溪组为例[J]. 天然气地球科学, 2021, 32(3): 382 -392 .
[7] 潘世乐,蒋赟,朱文军,刘振宇,王晔桐,孙国强,张顺存. 柴达木盆地北缘冷湖七号地区下干柴沟组上段沉积—成岩特征[J]. 天然气地球科学, 2021, 32(3): 393 -404 .
[8] 郭飞飞,柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征[J]. 天然气地球科学, 2021, 32(3): 405 -415 .
[9] 郭广山,柳迎红,李林涛. 鄂尔多斯盆地东缘北段煤层含气量变化规律及控制因素[J]. 天然气地球科学, 2021, 32(3): 416 -422 .
[10] 贾腾飞,王猛,高星月,赵健光,朱俊卿. 低阶煤储层孔隙结构特征及分形模型评价[J]. 天然气地球科学, 2021, 32(3): 423 -436 .