天然气地球科学 ›› 2021, Vol. 32 ›› Issue (1): 98–108.doi: 10.11764/j.issn.1672-1926.2020.11.008

• 天然气开发 • 上一篇    下一篇

页岩与致密砂岩气井产气机理及生产动态模拟对比

高树生(),刘华勋(),叶礼友,安为国,朱文卿   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2020-07-06 修回日期:2020-10-20 出版日期:2021-01-10 发布日期:2021-02-04
  • 通讯作者: 刘华勋 E-mail:gaoshusheng69@petrochina.com.cn;liuhuaxun@petrochina.com.cn
  • 作者简介:高树生(1969-),男,河北张家口人,高级工程师,博士,主要从事复杂油气藏渗流机理方面的研究. E-mail:gaoshusheng69@petrochina.com.cn.
  • 基金资助:
    国家“十三五”科技重大专项(2016ZX05062)

A comparative study on production mechanism & dynamics simulation of tight sandstone and shale gas well

Shu-sheng GAO(),Hua-xun LIU(),Li-you YE,Wei-guo AN,Wen-qing ZHU   

  1. Research Institute of Petroleum Exploration and Development,China National Petroleum Corporation,Beijing 100083,China
  • Received:2020-07-06 Revised:2020-10-20 Online:2021-01-10 Published:2021-02-04
  • Contact: Hua-xun LIU E-mail:gaoshusheng69@petrochina.com.cn;liuhuaxun@petrochina.com.cn
  • Supported by:
    The China National Science & Technology Major Project(2016ZX05062)

摘要:

为揭示页岩和致密砂岩气开发方式差异性的原因,运用页岩与致密砂岩全直径岩心模拟气井全生命周期开发动态,研究2种气藏产气机理。实验结果表明:页岩气生产过程包括高速、中速和低速开发3个阶段,只有中速开发阶段地层视压力与累计产气量呈线性关系,压力降到12 MPa时偏离原有的线性关系;而致密砂岩地层视压力与累计产气量基本呈线性关系,只在压力接近于0.1 MPa时偏离原有的线性关系。致密砂岩高速开采阶段采出程度达90%,低速开发采出程度低;而页岩高速开采阶段采出程度只有17%,中低速开发阶段采出程度可以达到50%,二者低速开发阶段单位压降采气量大幅增加,证明都含有一定量的吸附气,差别在于页岩解吸压力和吸附气量占总气量比例相对较高。最后,根据页岩渗透率和吸附气的认识,建立考虑滑移效应与Langmiur吸附效应的相对简单的页岩全生命周期渗流模型,数值模拟页岩全直径岩心全生命周期生产动态,视压力曲线、日产气递减曲线与实验结果具有很好的一致性,拟合游离气量和吸附气量相对误差不足5%,证明该模型预测页岩气井产能的可行性。

关键词: 致密砂岩, 页岩, 全直径岩心, 吸附气, 游离气, 产气机理, 生产动态, 控制方程

Abstract:

In order to reveal the reasons for the differences between the shale and tight sandstone gas development methods, the full-diameter cores of the shale and tight sandstone are used to simulate the whole life-cycle development dynamics of gas wells and study the gas production mechanism of the two kinds of gas reservoirs. The experimental results show that the shale gas production process includes three stages: high-speed, medium-speed and low-speed development stage, and only in the medium-speed development stage the stratigraphic apparent pressure has a linear relationship with the cumulative gas production, which deviates from the original linear relationship when the pressure drops to 12 MPa. The tight sandstone formations, on the other hand, have an essentially linear relationship between apparent pressure and cumulative gas production, deviating from the original linear relationship only when the pressure approaches 0.1 MPa. The recovery percent of tight sandstone is 90% in the high-speed stage, and that in low-speed stage is low. While the recovery percent of shale is only 17% in the high-speed stage and can reach 50% in the medium-speed and low-speed stage. In the low-speed stage, the gas production per unit pressure drop increases greatly, which proves that both of shale and tight sandstone contain a certain amount of adsorbed gas, and the difference lies in the relatively high proportion of desorption pressure and adsorbed gas in the total gas volume of shale. Finally, this paper builds a relatively simple whole life-cycle percolation model for shale that considers the slippage effect and Langmiur adsorption effect based on the knowledge of shale permeability and adsorbed gas. Numerical simulation of the whole life-cycle production dynamics of the full-diameter shale core, the apparent pressure curve, daily gas production decreasing curve are in good agreement with the experimental results, and the relative error of the fitted free gas volume and adsorbed gas volume is less than 5%, which proves the feasibility of the model in predicting the production capacity of shale gas wells.

Key words: Tight sandstone, Shale, Full-diameter cores, Absorbed gas, Free gas, Gas production mechanism, Development dynamics of gas wells, Governing equations

中图分类号: 

  • TE32

表1

页岩与致密砂岩实验岩心基础数据"

类型长度/cm直径/cm孔隙度/%渗透率/(10-3 μm2)兰氏VL /(m3/m3)兰氏PL/MPa饱和压力/MPa备注
致密砂岩16.689.989.350.025----29安岳须二组
页岩15.2510.021.052×10-93.010.029昭通龙马溪组

图1

气井全生命周期生产物理模拟实验流程示意"

图2

全直径岩心日产气与累计产气量随时间变化曲线(a)页岩生产曲线;(b)致密砂岩生产曲线"

图3

全直径岩心视压力与累计产气量关系曲线(a)页岩岩心;(b)致密砂岩岩心"

图4

致密砂岩累计产气量曲线"

图5

页岩累计产气量变曲线"

图6

致密砂岩视压力曲线"

图7

页岩视压力曲线"

表2

低速开发阶段三段生产数据与斜率"

阶段生产时间 /d

δP

/(MPa/d)

δq/(mL/d)(δP/δq) /(MPa/mL)(δq/δP) /(mL/MPa)
14710.007 61.980.003 84260.53
26820.004 01.130.003 54282.50
37140.002 40.7150.003 36297.92
预测4867.5------314

图8

低速开发阶段平均采气速度、压降速率与时间关系曲线(a)阶段平均采气速度;(b)阶段平均压降速率"

表3

页岩与砂岩全生命周期生产数据"

类型阶段产气量 /mL时间 /d速度 /(mL/d)压力/MPa单位压降产气量 /(mL/MPa)游离气 /mL吸附气 /mL吸附气占比 /%
致密砂岩120 8900.3658 027.83.8829.020 890.00.0--
23 0554.69651.40.2848.63 055.00.0--
31 656.3645.52.60.001 68 348.030.01 656.3--
合计25 601.3651.539.3--882.823 945.01 656.36.13
页岩1982.535.028.116.880.5982.50.0--
2927408.02.311.8185.4800.8126.213.6
32 605.61 866.31.46.3473.71 407.21 198.446.0
合计4 515.12 309.32.0--190.53 190.51 324.629.3

图9

岩心视压力与累计产气量关系曲线"

图10

岩心日产气量与时间关系曲线"

图11

SRV区域基质岩块边长0.55 m时生产曲线(a)日产气量;(b)累计产气量"

图12

SRV区域基质岩块边长10 m时生产曲线(a)日产气量;(b)累计产气量"

1 邹才能,杨智,何东博,等.常规—非常规天然气理论、技术及前景[J].石油勘探与开发,2018,45(4):575-587.
ZOU C N, YANG Z, HE D B, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development,2018,45(4):575-587.
2 钟光海,谢冰,周肖,等.四川盆地页岩气储层含气量的测井评价方法[J].天然气工业,2016, 36(8):43-51.
ZHONG G H, XIE B, ZHOU X, et al. A logging evaluation method for gas content of shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry,2016,36(8):43-51.
3 吴克柳,李相方,陈掌星.页岩气纳米孔气体传输模型[J].石油学报,2015,36(7):837-848,889.
WU K L,LI X F,CHEN Z X. A model for gas transport through nanopores of shale gas reservoirs[J].Acta Petrolei Sinica,2015,36(7):837-848,889.
4 段永刚,魏明强,李建秋,等.页岩气藏渗流机理及压裂井产能评价[J].重庆大学学报,2011, 34(4):62-66.
DUAN Y G, WEI M Q,LI J Q, et al. Shale gas seepage mechanism and fractured wells' production evaluation[J].Journal of Chongqing University,2011,34(4):62-66.
5 JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology,2007,46(10):55-61.
6 SCHEPERS K C, GONZALEZ R J, KOPERNA G J, et al. Reservoir modeling in support of shale gas exploration[C]//Society of Petroleum Engineers. Latin American and Caribbean Petroleum Engineering Conference. Cartagena: Society of Petroleum Engineers, 2009.
7 吴奇,胥云,王腾飞,等.增产改造理念的重大变革——体积改造技术概论[J].天然气工业, 2011,31(4):7-12.
WU Q, XU Y,WANG T F, et al. The revolution of reservoir stimulation: An introduction of volume fracturing[J].Natural Gas Industry,2011,31(4): 7-12.
8 高树生,刘华勋,叶礼友,等.页岩气藏SRV区域气体扩散与渗流耦合数学模型[J].天然气工业,2017,37(1):97-104.
GAO S S, LIU H X, YE L Y, et al. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoir[J].Natural Gas Industry,2017,37(1):97-104.
9 高树生,刘华勋,叶礼友,等.页岩气井全生命周期物理模拟实验及数值反演[J].石油学报,2018,39(4):435-444.
GAO S S, LIU H X, YE L Y, et al. The physical experiment and numerical inversion of the full lifecycle depletion drive process of the shale gas well[J].Acta Petrolei Sinica,2018,39(4):435-444.
10 叶礼友,高树生,杨洪志,等.致密砂岩气藏产水机理与开发对策[J].天然气工业,2015,35(2): 41-46.
YE L Y, GAO S S, YANG H Z, et al. Water production mechanism and development strategy of tight sandstone gas reservoirs[J].Natural Gas Industry,2015,35(2):41-46.
11 高树生,叶礼友,熊伟,等.致密砂岩气藏阈压梯度对采收率的影响[J].天然气地球科学,2014, 25(9):1444-1449.
GAO S S, YE L Y, XIONG W, et al. Influence of the threshold pressure gradient on tight sandstone gas reservoir recovery[J]. Natural Gas Geoscience,2014,25(9):1444-1449.
12 王峰,田景春,陈蓉,等.鄂尔多斯盆地北部上古生界盒8储层特征及控制因素分析[J].沉积学报,2009,27(2):238-245.
WANG F, TIAN J C, CHEN R, et al. Analysis on controlling factors and characteristics of sandstone reservoir of He8 (Upper Paleozoic) in the northern Ordos Basin[J]. Acta Sedimentologica Sinica,2009,27(2):238-245.
13 刘晓鹏,赵会涛,闫小雄,等.克拉通盆地致密气藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J].天然气地球科学,2019,30(3):331-343.
LIU X P, ZHAO H T, YAN X X, et al. The geological characteristics of tight sandstone gas and exploration target evaluation in the craton basin:Case study of the Upper Palaeozoic of Ordos Basin[J].Natural Gas Geoscience,2019,30(3):331-343.
14 宋新飞,李忠诚,郭先涛,等.松辽盆地南部德惠断陷合隆—兰家反转带泉一段致密气储层特征及分级评价[J].天然气地球科学,2020,31(3):375-384.
SONG X F, LI Z C, GUO X T, et al. Characteristics and classification evaluation of tight gas reservoirs in the 1st member of Quantou Formation of Helong-Lanjia inversion zone in Dehui Fault Depression[J]. Natural Gas Geoscience,2020,31(3):375-384.
15 马新华,贾爱林,谭健,等.中国致密砂岩气开发工程技术与实践[J].石油勘探与开发,2012, 39(5):572-579.
MA X H, JIA A L, TAN J, et al. Tight sand gas development technologies and practices in China[J].Petroleum Exploration and Development,2012,39(5):572-579.
16 位云生,贾爱林,何东博,等.中国页岩气与致密气开发特征与开发技术异同[J].天然气工业,2017,37(11):43-52.
WEI Y S, JIA A L, HE D B, et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China[J].Natural Gas Industry,2017,37(11):43-52.
17 孙贺东.油气井现代产量递减分析方法及应用[M].北京:石油工业出版社,2013:21-74.
SUN H D. Advanced Production Decline Analysis and Application[M]. Beijing: Petroleum Industry Press,2013:21-74.
18 何东博,王丽娟,冀光,等.苏里格致密砂岩气田开发井距优化[J].石油勘探与开发,2012,39(4):458-464.
HE D B, WANG L J, JI G, et al. Well spacing optimization for Sulige tight sand gas field, NW China[J]. Petroleum Exploration and Development,2012,39(4):458-464.
19 何东博,贾爱林,冀光,等.苏里格大型致密砂岩气田开发井型井网技术[J].石油勘探与开发, 2013,40(1):79-89.
HE D B,JIA A L,JI G,et al.Well type and pattern optimization technology for large scale tight sand gas, Sulige Gas Field[J].Petroleum Exploration and Development,2013,40(1):79-89.
20 杨华,刘新社,黄道军,等.长庆油田天然气勘探开发进展与“十三五”发展方向[J].天然气工业,2016,36(5):1-14.
YANG H, LIU X S, HUANG D J, et al. Natural gas exploration and development in the PetroChina Changing and its prospect in the 13th Five-Year Plan[J].Natural Gas Industry, 2016,36(5):1-14.
21 邵昭媛,宁宁,刘华勋,等.压裂水平井生产动态数值模拟研究[J].天然气地球科学,2015,26(4):737-743.
SHAO Z Y, NING N, LIU H X, et al. Numerical simulation research of fractured horizontal well production performance[J].Natural Gas Geoscience,2015,26(4):737-743.
22 孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,2010.
KONG X Y. Advanced Mechanics of Fluids in Porous Media[M]. Hefei: Press of University of Science and Technology of China,2010.
23 李熙喆,万玉金,陆家亮,等.复杂气藏开发技术[M].北京:石油工业出版社,2010.
LI X Z, WANG Y J, LU J L, et al. Complex Gas Reservoir Development Technology[M].Beijing: Petroleum Industry Press,2010.
24 王玉普,左罗,胡志明,等.页岩高温高压吸附实验及吸附模型[J].中南大学学报:自然科学版,2015,46(11):4129-4135.
WANG Y P, ZUO L, HU Z M, et al. Experiment of supercritical methane adsorption on shale and adsorption modelling[J].Journal of Central South University: Science and Technology,2015, 46(11):4129-4135.
25 SCHEPERS K C, GONZALEZ R J, KOPERNA G J, et al. Reservoir Modeling in Support of Shale Gas Exploration[C]// Latin American and Cavibbeau Petroleum Engineering Conterence. SPE 123057. Richardson:Society of Petroleum Engineers, 2009.
26 CIVAN F, RAI C S, SONDERGELD C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms[J]. Transport in Porous Media,2011,86(3):925-944.
27 程远方,李友志,时贤,等.页岩气体积压裂缝网模型分析及应用[J].天然气工业,2013,33(9): 53-59.
CHENG Y F, LI Y Z, SHI X, et al. Analysis and application of fracture network models of volume fracturing in shale gas reservoirs[J].Natural Gas Industry,2013,33(9): 53-59.
28 左罗,蒋廷学,罗莉涛,等.基于渗流新模型分析页岩气流动影响因素及规律[J].天然气地球科学,2018,29(2):296-304.
ZUO L, JIANG T X, LUO L T, et al. Analysis of the influencing factors and rules of shale gas flow based on a new porous flow equation[J]. Natural Gas Geoscience,2018,29(2):296-304.
29 陈璐,胡志明,熊伟,等.页岩气扩散实验与数学模型[J].天然气地球科学,2020,31(9):1285-1293.
CHEN L, HU Z M, XIONG W, et al. Diffusion experiment of shale gas and mathematical model[J]. Natural Gas Geoscience,2020,31(9):1285-1293.
30 高树生,于兴河,刘华勋.滑脱效应对页岩气井产能影响的分析[J].天然气工业,2011,31(4):55-58.
GAO S S, YU X H, LIU H X. Impact of slippage effect on shale gas well productivity[J]. Natural Gas Industry,2011,31(4):55-58.
[1] 张瑛堃,陈尚斌,李学元,王慧军. 页岩气储层水力压裂扩展有限元模拟方法及应用[J]. 天然气地球科学, 2021, 32(1): 109-118.
[2] 马继胜,蔡亚,胡振秦,卢冲,王伟. 沁水盆地榆社区块太原组煤系页岩中水含量及其对孔隙特征影响[J]. 天然气地球科学, 2021, 32(1): 145-154.
[3] 李松, 刘玲, 吴疆, 王琳霖, 张智礼. 鄂尔多斯盆地南部山西组—下石盒子组致密砂岩成岩演化[J]. 天然气地球科学, 2021, 32(1): 47-56.
[4] 康毅力, 杨东升, 游利军, 李鑫磊, 白佳佳, 邵佳新, 曾涛. 富有机质页岩高温热激增渗效果实验评价方法[J]. 天然气地球科学, 2021, 32(1): 86-97.
[5] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[6] 薛培, 张丽霞, 梁全胜, 师毅, 曹成, 汤延帅. 页岩吸附超临界CH4的热力学特征[J]. 天然气地球科学, 2020, 31(9): 1261-1270.
[7] 李腾飞, 田辉, 肖贤明, 程鹏, 王星, 伍耀文, 吴子瑾. 样品粒径对高过成熟度页岩低压气体吸附实验结果的影响[J]. 天然气地球科学, 2020, 31(9): 1271-1284.
[8] 陈璐, 胡志明, 熊伟, 端祥刚, 常进. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293.
[9] 牛强, 张焕旭, 朱地, 徐志尧, 仰云峰, 丁安徐, 高和群, 张立生. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学, 2020, 31(9): 1294-1305.
[10] 胡勇, 梅青燕, 王继平, 陈颖莉, 徐轩, 焦春艳, 郭长敏. 致密砂岩气藏井网加密优化[J]. 天然气地球科学, 2020, 31(9): 1326-1333.
[11] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[12] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
[13] 王志战. 页岩油储层DT2核磁共振解释方法[J]. 天然气地球科学, 2020, 31(8): 1178-1184.
[14] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[15] 于萍, 张瑜, 闫建萍, 邵德勇, 张六六, 罗欢, 乔博, 张同伟. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7): 1016-1027.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段传丽;陈践发. 生物降解原油的地球化学特征及其意义[J]. 天然气地球科学, 2007, 18(2): 278 -283 .
[2] 王杰;刘文汇;秦建中;张隽;申宝剑. 苏北盆地黄桥CO2气田成因特征及成藏机制[J]. 天然气地球科学, 2008, 19(06): 826 -834 .
[3] 董伟宏, 杨慎. 气井产量曲线递减趋势影响因素及产量预测[J]. 天然气地球科学, 2009, 20(3): 411 -415 .
[4] 王国仓,张晓宝,孟仟祥,房嬛,胡慧瑜,孙敏卓,徐茵. 低熟烃源岩有机质在微生物作用下的地球化学特征[J]. 天然气地球科学, 2009, 20(5): 768 -773 .
[5] 刘群明, 唐海发, 冀光, 孟德伟, 王键. 苏里格致密砂岩气田水平井开发地质目标优选[J]. 天然气地球科学, 2016, 27(7): 1360 -1366 .
[6] 刘登科, 孙卫, 任大忠, 张茜, 明红霞, 陈斌. 致密砂岩气藏孔喉结构与可动流体赋存规律——以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136 -2146 .
[7] 张合文,邹洪岚,刘双双,鄢雪梅,梁冲. 碳酸盐岩酸蚀蚓孔双重分形描述方法[J]. 天然气地球科学, 2017, 28(3): 466 -472 .
[8] 李登华,刘卓亚,张国生,郑志红,贾君,高煖,昝昕. 中美致密油成藏条件、分布特征和开发现状对比与启示[J]. 天然气地球科学, 2017, 28(7): 1126 -1138 .
[9] 陈俊飞, 李琦, 朱如凯, 毛治国. 鄂尔多斯盆地陕北地区长101低孔低渗储层孔隙演化及其定量模式[J]. 天然气地球科学, 2019, 30(1): 83 -94 .
[10] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95 -101 .