天然气地球科学 ›› 2021, Vol. 32 ›› Issue (2): 164–173.doi: 10.11764/j.issn.1672-1926.2020.11.007

• 天然气地质学 • 上一篇    下一篇

流体包裹体拉曼定量技术在致密砂岩气藏研究中的应用——以四川盆地中部侏罗系沙溪庙组为例

韦腾强1(),吴长江1,黄亚浩2(),洪海涛1,王小娟1,唐友军2,潘珂1   

  1. 1.中国石油西南油气田公司勘探开发研究院,四川 成都 610041
    2.长江大学资源与环境学院,湖北 武汉 430100
  • 收稿日期:2020-06-23 修回日期:2020-11-01 出版日期:2021-02-10 发布日期:2021-03-10
  • 通讯作者: 黄亚浩 E-mail:tqwei@petrochina.com.cn;hyhtr08916@163.com
  • 作者简介:韦腾强(1984-),男,广西马山人,工程师,硕士,主要从事油气勘探地质研究.E-mail:tqwei@petrochina.com.cn.
  • 基金资助:
    国家自然科学基金面上项目“苯基多环芳烃检测及其石油地球化学意义”(41972148)

Application of fluid inclusion Raman quantitative technique to the study of tight sandstone gas reservoirs: Case study of Jurassic Shaximiao Formation in central Sichuan Basin

Teng-qiang WEI1(),Chang-jiang WU1,Ya-hao HUANG2(),Hai-tao HONG1,Xiao-juan WANG1,You-jun TANG2,Ke PAN1   

  1. 1.Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company,Chengdu 610041,China
    2.College of Resources and Environment,Yangtze University,Wuhan 430100,China
  • Received:2020-06-23 Revised:2020-11-01 Online:2021-02-10 Published:2021-03-10
  • Contact: Ya-hao HUANG E-mail:tqwei@petrochina.com.cn;hyhtr08916@163.com
  • Supported by:
    The National Natural Science Foundation of China(41972148)

摘要:

致密气勘探是中国非常规能源战略的重要组成部分,四川盆地中部金秋气田侏罗系沙溪庙组致密气多期河道立体勘探连续取得上产突破,致密气藏烃类流体演化过程分析是致密气成藏机理研究的关键。以四川盆地中部秋林、金华气田侏罗系沙溪庙组储层砂岩岩心为研究对象,基于岩石学观察和原位显微拉曼光谱观测,发现储层成岩矿物赋存有纯CH4气包裹体、纯CO2气包裹体、混合CH4—CO2气包裹体和富N2气包裹体4类。通过流体包裹体定量拉曼分析和热力学模型得到了含CH4和CO2包裹体的压力—温度—时间—组成(PVTx)性质,利用CO2费米双峰的间距计算出纯CO2包裹体的密度,并发现2期CO2流体成藏阶段:原生CO2成藏期(高密度:0.874~1.020 g/cm3; 高均一温度:>210 oC)和次生CO2成藏期(高密度:0.514~0.715 g/cm3; 低均一温度:约180~200 oC)。异常高均一温度的CO2流体推测深部热液流体活动产生,并对储层产生侵位作用。通过甲烷拉曼v1伸缩振动峰计算的甲烷包裹体捕获时古流体压力为44.0~58.5 MPa,平均古压力系数为1.29,提供了恢复压力演化的重要证据。油气成藏于白垩纪晚期(约75~65 Ma),此时期接近于早喜马拉雅隆升早期(地层埋藏最深阶段),晚期有机气驱替早期无机CO2成藏。流体包裹体古压力恢复表明储层是从弱超压到常压状态的演化过程,抬升早期弱超压指示气藏具有较好的保存条件。

关键词: 致密气, 成藏期次, 古压力, 流体包裹体, 拉曼定量光谱分析

Abstract:

Tight gas exploration is an important part of China's unconventional energy strategy. The multi-stage channel three-dimensional exploration of Jurassic Shaximiao Formation tight gas in Jinqiu Gas Field in central Sichuan Basin has made continuous production breakthroughs. The evolution process analysis of hydrocarbon fluids in tight gas reservoirs is the key to study the accumulation mechanism of tight gas. Taking the sandstone core of Jurassic Shaximiao Formation in Qiulin and Jinhua gas fields in central Sichuan Basin as the research objects, based on petrological observation and in-situ micro-Raman spectroscopy observation, it is found that there are four types of reservoir diagenetic minerals: pure CH4 inclusions, pure CO2 inclusions, mixed CH4-CO2 gas inclusions and N2 rich gas inclusions. The pressure-temperature-time-composition (PVT-x) properties of CH4 and CO2 inclusions are obtained by Raman analysis and thermodynamic model of fluid inclusions. The density of pure CO2 inclusions is calculated by using the distance between Fermi peaks of carbon dioxide, two stages of CO2 fluid accumulation were found: primary CO2 accumulation stage (high density: 0.874-1.020 g/cm3; high homogenization temperature:>210 ℃) and secondary carbon dioxide accumulation period (high density: 0.514-0.715 g/cm3; low homogenization temperature: about 180-200 ℃). CO2 fluids with abnormal high and uniform temperatures speculate that deep hydrothermal fluid activity and emplacement of reservoirs. The paleo-fluid pressure (44.0-58.5 MPa, mean paleo-pressure coefficient of 1.29) calculated by the methane Raman stretching vibration peak provides important evidence to recover the pressure evolution. The hydrocarbon accumulation was in the Late Cretaceous (about 75-65 Ma), close to the early Himalayan uplift period (the deepest stage of stratigraphic burial), and the late organic gas displacement replaced the early inorganic carbon dioxide accumulation. The paleo-pressure recovery of fluid inclusions indicates that the reservoir evolves from weak overpressure to atmospheric pressure, and the weak overpressure indicates that the reservoir has better preservation conditions in the early uplift.

Key words: Tight gas, Accumulation period, Paleo-pressure, Fluid inclusions, Raman quantitative spectral analysis

中图分类号: 

  • TE122.3

图1

研究区位置及井位分布"

图2

四川盆地川中地区三叠系—侏罗系地层综合柱状图"

图3

流体包裹体岩相学特征(a)石英裂隙内发育的不混溶甲烷体系包裹体群,透射光;(b)石英加大边内部次生二氧化碳气包裹体,透射光;(c)孤立状分布的原生二氧化碳气包裹体以及沿裂隙分布的次生甲烷气包裹体,透射光;(d)石英加大边内部的次生二氧化碳和甲烷混合气包裹体,透射光;(e)石英颗粒内部的原生二氧化碳气包裹体,透射光;(f)石英愈合裂隙内发育的次生甲烷和二氧化碳混合气包裹体,透射光;(g)石英微裂隙内次生甲烷和二氧化碳气包裹体,透射光;(h)石英加大边内部纯二氧化碳气包裹体和穿过石英颗粒以及石英加大边的纯甲烷气包裹体,透射光;(i)晚期次生混合气包裹体群(FIA3)切穿早期次生混合气包裹体群(FIA4)"

图4

秋林—金华地区侏罗系沙溪庙组流体包裹体均一温度与盐度直方图"

图5

典型流体包裹体拉曼光谱(a)纯甲烷包裹体拉曼光谱(300光栅和1 800光栅)以及氖灯拉曼光谱图;(b)纯二氧化碳包裹体拉曼光谱(300光栅和1800光栅)以及氖灯拉曼光谱图;(c)甲烷和二氧化碳混合气包裹体拉曼光谱图;(d)富氮气包裹体拉曼光谱图"

表1

纯甲烷包裹体拉曼定量参数汇总"

序号井名深度/mvtrue /cm密度/(g/cm3)同期盐水包裹体均一温度/oC捕获压力/MPa压力系数
1QL-172 166.82 911.950.230130.056.91.32
2QL-172 166.82 912.300.210128.049.11.14
3QL-172 168.22 911.910.229121.554.51.43
4QL-172 168.22 911.980.225122.553.31.38
5QL-172 182.22 911.850.232127.057.01.36
6QL-172 182.22 912.600.195127.044.01.05
7QL-182 093.12 911.750.237125.058.51.43
8QL-182 093.12 912.060.220125.052.01.27
9QL-182 087.12 912.030.220127.052.41.25
10QL-182 087.12 912.100.219124.051.41.25
11JH-92 212.92 912.380.210120.047.51.25
12JH-92 212.92 911.820.230126.456.11.34
13JH-92 212.92 911.860.230126.456.11.34

表2

纯二氧化碳包裹体拉曼定量参数汇总"

序号井名深度/m费米双峰间距/cm-1密度/(g/cm3)同期盐水包裹体均一温度/oC捕获压力/MPa
1QL-172 168.2103.480.514193.041.3
2QL-172 168.2104.350.921188.5114.8
3QL-172 182.2103.910.701201.368.4
4QL-172 182.2104.350.921203.5122.9
5QL-182 093.1103.850.673189.160.1
6QL-182 093.1103.940.715189.166.8
7QL-182 087.1104.260.874223.3117.5
8QL-182 087.1104.440.970245165.9
9QL-182 087.1104.531.020245191.1

图6

流体包裹体古压力恢复投图"

图7

川中地区侏罗系沙溪庙组油气成藏史"

1 杨华, 付金华, 刘新社, 等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发, 2012,39(3):295-303.
YANG H, FU J H, LIU X S, et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development, 2012, 39(3):295-303.
2 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理与展望——以中国致密气为例[C].北京:中国石油地质年会,2011.
ZOU C N, ZHU R K, WU S T, et al. Types, Characteristics, Mechanism and Prospect of Conventional and Unconventional Oil and Gas Accumulation-A Case Study of China's Dense Oil and Gas[C]. Beijing:China Petroleum Geology Annual Conference, 2011.
3 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012,39(3):257-264.
DAI J X, NI Y Y, WU X Q. Tight sandstone gas in China and its significance in exploration and development[J]. Petroleum Exploration and Development,2012,39(3):257-264.
4 OLSON J E, LAUBACH S E, LANDER R H. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009,93(11):1535-1549.
5 赵正望, 李楠, 刘敏, 等. 四川盆地须家河组致密气藏天然气富集高产成因[J]. 天然气勘探与开发, 2019,42(2):39-47.
ZHAO Z W, LI N, LIU M, et al. Origin of gas accumulation and high yield in tight gas reservoirs of Xujiahe Formation, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019,42(2):39-47.
6 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019,46(6):1015-1026.
SUN L D, ZOU C N, JIA A L, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019,46(6):1015-1026.
7 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012,39(2):129-136.
JIA C Z, ZHENG M, ZHANG Y F. Unconventional oil and gas resources and exploration and development prospects in China[J].Petroleum Exploration and Development,2012,39(2):129-136.
8 BONDAR E, KOEL M. Application of supercritical fluid extraction to organic geochemical studies of oil shales[J]. Fuel, 1998,77(3):211-213.
9 ZOZULYA A A, DIDDAMS S A, CLEMENT T S. Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman,shock,and third-order phase effects[J]. Phy-sical Review A, 1998,58(4):3303-3310.
10 LU W, CHOU I, BURRUSS R C, et al. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. Geochimica et Cosmochimica Acta, 2007,71(16):3969-3978.
11 SEITZ J C, PASTERIS J D, CHOU I M. Raman spectroscopic characterization of gas mixtures; I, Quantitative composition and pressure determination of CH4, N2 and their mixtures[J]. American Journal of Science, 1993,293(4):297-321.
12 HUANG Y, TARANTOLA A, WANG W, et al. Charge history of CO2 in Lishui Sag, East China Sea Basin: Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J]. Marine and Petroleum Geology, 2018,98:50-65.
13 WANG X, CHOU I M, HU W, et al. Raman spectroscopic measurements of CO2 density: Experimental c alibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations[J]. Geochimica et Cosmochimica Acta, 2011,75(14):4080-4093.
14 DUBESSY J, LHOMME T, BOIRON M, et al. Determination of chlorinity in aqueous fluids using raman spectroscopy of the stretching band of water at room temperature: Application to fluid inclusions[J]. Applied Spectroscopy, 2002,56(1):99-106.
15 DUBESSY J, POTY B, RAMBOZ C. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions (English Title: Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions)[J]. European Journal of Mineralogy, 1989,1(4):517-534.
16 BURKE E A J. Raman microspectrometry of fluid inclusions[J]. Lithos, 2001,55(1):139-158.
17 GARCIA-BAONZA V, RULL F, DUBESSY J. Raman spectroscopy of gases, water and other geological fluids[J]. European Mineralogical Union Notes in Mineralogy, 2012,12(1):279-320.
18 FREZZOTTI M L, TECCE F, CASAGLI A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012,112(1):1-20.
19 GUILLAUME D, TEINTURIER S, DUBESSY J, et al. Calibration of methane analysis by Raman spectroscopy in H2O-NaCl-CH4 fluid inclusions[J]. Chemical Geology, 2003,194(1-3):41-49.
20 PIRONON J, GRIMMER J O W, TEINTURIER S, et al. Dissolved methane in water: Temperature effect on Ramanquantification in fluid inclusions[J]. Journal of Geochemical Exploration, 2003,78-79:111-115.
21 AZBEJ T, SEVERS M J, RUSK B G, et al. In-situ quantitative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy[J]. Chemical Geology, 2007,237(3):255-263.
22 BAUMGARTNER M, BAKKER R J. Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz: A study of polarization effects[J]. Mineralogy and Petrology, 2009,95(1-2):1-15.
23 CAUMON M, DUBESSY J, ROBERT P, et al. Fused-silica capillary capsules (FSCCs) as reference synthetic aqueous fluid inclusions to determine chlorinity by Raman spectroscopy[J]. European Journal of Mineralogy, 2013,25(5):755-763.
24 CAUMON M, TARANTOLA A, MOSSER-RUCK R. Raman spectra of water in fluid inclusions: I. Effect of host mineral birefringence on salinity measurement: Effect of mineral birefringence on salinity measured by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2015,46(10):969-976.
25 FABRE D, THIÉRY M M, VU H, et al. Raman spectra of solid CH4 under pressure. I. Phase transition between phases II and III[J]. Journal of Chemical Physics, 1979,71(7):3081-3088.
26 ZHANG J, QIAO S, LU W, et al. An equation for determining methane densities in fluid inclusions with Raman shifts[J]. Journal of Geochemical Exploration, 2016,171:20-28.
27 李晓清, 汪泽成. 四川盆地古隆起特征及天然气的控制作用[J]. 石油与天然气地质, 2001,22(4):347-351.
LI X Q, WANG Z C. Characteristics of paleo-uplift in Sichuan Basin and controlling effect of natural gas[J]. Oil & Gas Geology, 2001,22(4):347-351.
28 王庭斌. 天然气与石油成藏条件差异及中国气田成藏模式[J]. 天然气地球科学, 2003,14(2):4-11.
WANG T B. The difference of gas and oil accumulation conditions and the gas accumulation model in China[J]. Natural Gas Geoscience, 2003,14 (2):4-11.
29 王平, 刘少峰, 郑洪波, 等. 四川盆地东部弧形构造控制的地形和水系发育[J]. 第四纪研究, 2013,33(3):461-470.
WANG P, LIU S F, ZHENG H B, et al. Topography and drainage system development controlled by arc-shaped structures in the eastern Sichuan Basin[J]. Quaternary Research, 2013,33(3):461-470.
30 唐大海, 陈洪斌, 谢继容, 等. 四川盆地西部侏罗系沙溪庙组气藏成藏条件[J]. 天然气勘探与开发, 2005,28(3):14-19.
TANG D H, CHEN H B, XIE J R, et al. Accumulation conditions of Jurassic Shaximiao Formation gas reservoir in western Sichuan Basin[J]. Natural Gas Exploration and Development,2005,28(3):14-19.
31 蒋裕强, 漆麟, 邓海波, 等. 四川盆地侏罗系油气成藏条件及勘探潜力[J]. 天然气工业, 2010,30(3):22-26.
JIANG Y Q, QI L, DENG H B, et al. Accumulation conditions and exploration potential of Jurassic oil and gas in Sichuan Basin[J]. Natural Gas Industry, 2010,30(3):22-26.
33 肖富森, 马廷虎. 川东北五宝场构造沙溪庙组气藏勘探开发认识[J]. 天然气工业, 2007,27(5):4-7.
XIAO F S, MA T H. Exploration and development of gas reservoir in Shaximiao Formation of Wubaochang structure in northeast Sichuan[J]. Natural Gas Industry, 2007,27(5):4-7.
32 肖富森, 黄东, 张本健, 等. 四川盆地侏罗系沙溪庙组天然气地球化学特征及地质意义[J]. 石油学报, 2019,40(5):568-576, 586.
XIAO F S, HUANG D, ZHANG B J, et al. Geochemical characteristics and geological significance of natural gas in Jurassic Shaximiao Formation, Sichuan Basin[J]. Acta Petrolei Sinica. 2019,40(5):568-576, 586.
34 林小云, 魏民生, 丰勇, 等. 四川盆地川西坳陷东坡沙溪庙组油气成藏关键时刻研究[J]. 石油实验地质, 2017,39(1):50-57.
LIN X Y, WEI M S, FENG Y, et al. Study on the key moments of hydrocarbon accumulation in Shaximiao Formation in the Dongpo of west Sichuan Depression, Sichuan Basin[J].Petroleum Geology and Experiment. 2017,39(1):50-57.
35 刘树根, 孙玮, 李智武, 等. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏[J]. 天然气地球科学, 2008, 19(3):294-300.
LIU S G, SUN W, LI Z W, et al. Tectonic uplift and gas accumulation since Late Cretaceous in Sichuan Basin[J]. Natural Gas Geoscience,2008, 19(3):294-300.
36 PENG D Y, ROBINSON D B. Two and three phase equilibrium calculations for systems containing water[J]. Canadian Journal of Chemical Engineering, 1976,54(6):595-599.
37 DUAN Z, MAO S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000 bar[J]. Geochimica et Cosmochimica Acta, 2006,70(13):3369-3386.
38 张小菊, 伏美燕, 邓虎成, 等. 川西东斜坡地区沙溪庙组致密砂岩储层断-砂配置关系对天然气富集的控制作用[J]. 矿物岩石, 2020,40(3):107-119.
ZHANG X J, FU M Y, DENG H C, et al. The controlling effect of fault-sand allocation relationship on gas enrichment in tight sandstone reservoirs of Shaximiao Formation in the slope area of the southwestern Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2020,40(3):107-119.
39 OSBORNE M, HASZELDINE S. Evidence for resetting of fluid inclusion temperatures from quartz cements in oilfields[J]. Marine & Petroleum Geology, 1993,12(3):271-278.
[1] 国建英, 齐雪宁, 侯连华, 郝爱胜, 曾旭, 林世国, 蒲秀刚, 谢增业, 王义凤, 王晓波, 陈大伟. 渤海湾盆地特低渗—致密砂(砾)岩天然气成因及成藏模式[J]. 天然气地球科学, 2022, 33(2): 181-194.
[2] 李彬册, 赖枫鹏, 赵立斌, 许东东, 逯广腾. 致密气储层流体赋存与气水共渗规律实验[J]. 天然气地球科学, 2021, 32(9): 1410-1420.
[3] 赵会涛, 刘晓鹏, 贾丽, 虎建玲, 卢子兴, 周国晓. 鄂尔多斯盆地天环坳陷北段低生烃强度区致密气成藏富集规律及勘探目标[J]. 天然气地球科学, 2021, 32(8): 1190-1200.
[4] 田继先, 姜晓华, 国建英, 孔骅, 任世霞, 周飞, 沈晓双, 沙威, 乔柏翰, 张娜, 周胤男. 柴西湖相碳酸盐岩致密气藏地质特征及规模富集条件[J]. 天然气地球科学, 2021, 32(8): 1223-1234.
[5] 刘刚, 李建忠, 齐雪峰, 朱明, 袁波, 庞志超. 准噶尔盆地南缘西段下部成藏组合油气藏形成过程[J]. 天然气地球科学, 2021, 32(7): 1009-1021.
[6] 张锐锋, 陈柯童, 朱洁琼, 唐玄, 鱼占文, 张宇飞, 赵旭, 江涛. 渤海湾盆地冀中坳陷束鹿凹陷中深层湖相碳酸盐岩致密储层天然气成藏条件与资源潜力[J]. 天然气地球科学, 2021, 32(5): 623-632.
[7] 王华, 崔越华, 刘雪玲, 强阵阵, 王世成. 致密砂岩气藏多层系水平井立体开发技术——以鄂尔多斯盆地致密气示范区为例[J]. 天然气地球科学, 2021, 32(4): 472-480.
[8] 刘超威, 郭旭光, 王泽胜, 朱伶俐, 张蓉, 陈洪. 准噶尔盆地阜康凹陷东斜坡侏罗系头屯河组油气成藏期次[J]. 天然气地球科学, 2020, 31(7): 962-969.
[9] 王碧维, 徐新德, 吴杨瑜, 游君君, 雷明珠. 珠江口盆地西部文昌凹陷油气来源与成藏特征[J]. 天然气地球科学, 2020, 31(7): 980-992.
[10] 宋新飞, 李忠诚, 郭先涛, 白龙辉, 李志龙. 松辽盆地南部德惠断陷合隆—兰家反转带泉一段致密气储层特征及分级评价[J]. 天然气地球科学, 2020, 31(3): 375-384.
[11] 薛楠, 朱光有, 吕修祥, 贺涛, 吴郑辉. 油气成藏年代学研究进展[J]. 天然气地球科学, 2020, 31(12): 1733-1748.
[12] 宋昆鹏,罗静兰,刘新社,侯云东,盛伟琰,曹江骏,毛倩茹. 鄂尔多斯盆地西南部上古生界致密砂岩中碳酸盐胶结物特征及成因[J]. 天然气地球科学, 2020, 31(11): 1562-1573.
[13] 魏强, 李贤庆, 孙可欣, 李瑾, 肖中尧, 梁万乐, 张亚超, . 塔里木盆地库车坳陷克深大气田深层天然气成藏地球化学特征[J]. 天然气地球科学, 2019, 30(6): 897-907.
[14] 刘晓鹏, 赵会涛, 闫小雄, 贾亚妮, . 克拉通盆地致密气成藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J]. 天然气地球科学, 2019, 30(3): 331-343.
[15] 韩小琴,房涛,曹军,高怀琳,张冰,张立宽,王若谷,周伟. 鄂尔多斯盆地延安气田山西组致密砂岩储层天然气充注模拟实验及含气性变化规律[J]. 天然气地球科学, 2019, 30(12): 1721-1731.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[2] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[3] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[4] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .
[5] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[6] 李亮,万晓龙,李志伟,张永强,张振红. 油气成藏模拟实验在白于山油藏开发中的应用[J]. 天然气地球科学, 2006, 17(2): 219 -222 .
[7] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[8] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[9] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[10] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .