天然气地球科学 ›› 2021, Vol. 32 ›› Issue (1): 109–118.doi: 10.11764/j.issn.1672-1926.2020.11.006

• 天然气开发 • 上一篇    下一篇

页岩气储层水力压裂扩展有限元模拟方法及应用

张瑛堃1(),陈尚斌1,2(),李学元1,王慧军1   

  1. 1.中国矿业大学资源与地球科学学院,江苏 徐州 221008
    2.煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221008
  • 收稿日期:2020-08-20 修回日期:2020-10-29 出版日期:2021-01-10 发布日期:2021-02-04
  • 通讯作者: 陈尚斌 E-mail:m15512011623@163.com;shangbinchen@163.com
  • 作者简介:张瑛堃(1997-),女,河北唐山人,硕士研究生,主要从事页岩气地质与开发研究.E-mail: m15512011623@163.com.
  • 基金资助:
    国家自然科学基金(41772141);江苏省自然科学基金(BK20181362)

Hydraulic fracturing simulation technology of shale gas reservoir and application of extended finite element method

Ying-kun ZHANG1(),Shang-bin CHEN1,2(),Xue-yuan LI1,Hui-jun WANG1   

  1. 1.School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221008,China
    2.Key Laboratory of the Ministry of Education on Coalbed Methane Resources and Accumulation Process,Xuzhou 221008,China
  • Received:2020-08-20 Revised:2020-10-29 Online:2021-01-10 Published:2021-02-04
  • Contact: Shang-bin CHEN E-mail:m15512011623@163.com;shangbinchen@163.com
  • Supported by:
    The National Natural Science Foundation of China(41772141);The natural Science Foundation of Jiangsu Province, China(BK20181362)

摘要:

页岩气储层低孔低渗,需用水力压裂等方法进行储层改造方可获得经济产能。储层改造中裂缝的形态和分布对体积改造效果至关重要。为了研究压裂裂缝的模拟方法,系统调研和对比了储层水力压裂模拟常用方法,开展了扩展有限元模拟,研究表明:①水力压裂物理模拟实验能够直观观测裂缝的形态及展布特征,但因试样尺寸等问题难以代表实际储层压裂情形;②常用的数值模拟方法有边界元法、非常规裂缝模型、离散化缝网模型和扩展有限元法等,这些方法各有优缺点,需做有针对性的改进才能更好地模拟真实页岩储层压裂情况;③应用扩展有限元法模拟水力压裂和分段顺序压裂过程中裂缝的延伸情况,得到射孔方向与最大水平主应力之间夹角和诱导应力对压裂裂缝的影响,夹角越大,裂缝偏转角度越小,偏转距离越大,初始破裂压力越高,裂缝稳定延伸的压力也越大,而诱导应力的存在会抑制压裂裂缝的延伸。对实际压裂工程中射孔方向的选择和分段压裂射孔间距的设计具有指导意义。

关键词: 页岩储层, 水力压裂, 物理实验, 数值模拟, 扩展有限元

Abstract:

Low porosity and low permeability of shale gas reservoirs require hydraulic fracturing and other methods to achieve economic productivity. The shape and distribution of fractures are very important to the volume transformation. In order to study the simulation methods of hydraulic fracture, the common methods of reservoir hydraulic fracture simulation are systematically investigated and compared, and the extended finite element simulation is carried out. The results show that: (1) The physical experiment of hydraulic fracturing can visually observe the fracture morphology and distribution characteristics, but it is difficult to represent the actual fracturing situation of the reservoir due to the sample size and other problems. (2) The commonly used numerical simulation methods include boundary element method (BEM), unconventional fracture model (UFM), discrete fracture network (DFN) and extended finite element method (XFEM). These methods have their own advantages and disadvantages, which need to be improved to better simulate the real shale reservoir fracturing. (3) The extended finite element method is used to simulate the fracture extension of hydraulic fracturing and staged sequential fracturing. The influence of the angle between the perforation direction and the direction of the maximum horizontal principal stress and the induced stress on the fracturing pressure is obtained. The larger the angle is, the smaller the fracture deflection angle is, while the larger the fracture deflection distance is. The larger the angle is, the higher the initial fracturing pressure is, and the greater the pressure of stable fracture extension is. The induced stress will hinder the fracture extension. The simulation results have guiding significance for the selection of perforation direction and the design of perforation spacing in staged fracturing in actual engineering.

Key words: Shale reservoir, Hydraulic fracturing, Physical experiment, Numerical simulation, Extended finite element

中图分类号: 

  • TE311

表2

模型参数[35]"

弹性模量E/GPa泊松比单轴抗压强度/MPa抗拉强度/MPa渗透率(K)/(10-3 μm2)
8.4020.2328.342.590.1
孔隙度(φ)/%最大水平主应力(σH)/MPa最小水平主应力(σh)/MPa试验排量/(m3/s)压裂液表观黏度/(mPa·s)
1.85612.1×10-973

图1

水力压裂裂缝延伸形态"

图2

模型射孔方向与最大水平主应力夹角示意"

图3

不同射孔方向扩展有限元模型计算结果"

图4

不同射孔方向下压力随时间的变化曲线"

图5

破裂压力随射孔方向变化关系曲线"

图6

分段压裂初始模型"

图7

分段压裂模型计算结果"

1 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979-1007.
ZOU C N,YANG Z,ZHU R K,et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica,2015,89(6):979-1007.
2 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.
DONG D Z,WANG Y M,LI X J,et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry,2016,36(1):19-32.
3 郑哲敏. 关于中国页岩气持续开发工程科学研究的一点认识[J]. 科学通报,2016,61(1):34-35.
ZHENG Z M. Some knowledge on engineering scientific research of shale gas sustainable development in China[J]. Science Bulletin,2016,61(1):34-35.
4 续震,卢鹏. 国内水力压裂技术现状[J]. 石化技术,2017,24(5):280.
XU Z,LU P. Current situation of domestic hydraulic fracturing technology[J]. Petrochemical Industry Technology,2017,24 (5):280.
5 蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术,2011,39(3):36-40.
JIANG T X,JIA C G,WANG H T,et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques,2011,39(3):36-40.
6 侯振坤,杨春和,王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(2):407-414.
HOU Z K,YANG C H,WANG L,et al. Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test[J]. Rock and Soil Mechanics,2016,37(2):407-414.
7 周治东,程万,魏子俊,等. 基于BEM的水力裂缝起裂与扩展数值模拟[J]. 地球物理学进展,2020,35(2):807-814.
ZHOU Z D,CHENG W,WEI Z J,et al. Numerical simulation of hydraulic fracture initiation and propagation based on BEM[J]. Progress in Geophysics,2020,35(2): 807-814.
8 梁天成,付海峰,刘云志,等. 水力压裂裂缝扩展声发射破裂机制判定方法研究[J]. 实验力学,2019,34(2):358-364.
LIANG T C,FU H F,LIU Y Z,et al. On the determination method of rupture mechanism in acoustic emission used in hydraulic fracturing fracture propagation[J]. Journal of Experimental Mechanics,2019,34(2):358-364.
9 梁冰,岳鹭飞,孙维吉. 页岩矿物组分对裂缝扩展影响的数值模拟分析[J]. 海相油气地质,2019,24(4):97-101.
LIANG B,YUR L F,SUN W J. The influence of shale mineral composition on crack growth:Numerical simulation[J]. Marine Origin Petroleum Geology,2019,24(4):97-101.
10 侯冰,陈勉,谭鹏,等. 页岩气藏缝网压裂物理模拟的声发射监测初探[J]. 中国石油大学学报:自然科学版,2015,39(1):66-71.
HOU B,CHEN M,TAN P,et al. Monitoring of hydraulic fracture network by acoustic emission method in simulated tri-axial fracturing system of shale gas reservoirs[J]. Journal of China University of Petroleum:Edition of Natural Science,2015,39(1):66-71.
11 曾义金,周俊,王海涛,等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报,2019,38(9):1758-1766.
ZENG Y J,ZHOU J,WANG H T,et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering,2019, 38(9):1758-1766.
12 LLANOS E M,JEFFREY R G,HILLIS R,et al. Hydraulic fracture propagation through an orthogonal discontinuity: A laboratory,analytical and numerical study[J]. Rock Mechanics and Rock Engineering,2017,50(8):2101-2118.
13 孙峰,唐梅荣,张翔,等. 水平井定面射孔近井筒的破裂形态[J]. 天然气工业,2019,39(4):62-68.
SUN F,TANG M R,ZHANG X,et al. Fracture geometry near the wellbore of a horizontal well with in-plane perforation[J]. Natural Gas Industry,2019,39(4):62-68.
14 刘奉银,王少宾,徐楠. 定面射孔水力压裂裂缝扩展研究[C]∥中国力学学会,北京理工大学. 中国力学大会,2017暨庆祝中国力学学会成立60周年大会论文集.北京:中国力学学会,2017:1791-1800.
LIU F Y,WANG S B,XU N. Study on fracture expansion of hydraulic fracturing with fixed perforation[C]∥Chinese Society of Theoretical and Applied Mechanics, Beijing Institute of Technology. Proceedings of Proceedings of China mechanical congress,2017 and celebration of the 60th anniversary of the founding of the Chinese society of Mechanics. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2017:1791-1800.
15 刘合,兰中孝,王素玲,等. 水平井定面射孔条件下水力裂缝起裂机理[J]. 石油勘探与开发,2015,42(6):794-800.
LIU H,LAN Z X,WANG S L,et al. Hydraulic fracture initiation mechanism in the definite plane perforating technology of horizontal well[J]. Petroleum Exploration and Development,2015,42(6):794-800.
16 陈勉,庞飞,金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报,2000,19(S1):868-872.
CHEN M,PANG F,JIN Y. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(S1):868-872.
17 STANCHITS S,SURDI A,GATHOGO P. Onset of hydraulic fracture initiation monitored by acoustic emission and volumetric deformation measurements[J].Rock Mechanics and Rock Engineering,2014,47(5):1521-1532.
18 LECAMPION B,DESROCHES J,JEFFREY R G,et al. Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low-permeability materials[J]. Journal of Geophysical Research: Solid Earth,2017,122(2):1239-1263.
19 DEHGHAN A N,GOSHTASBI K,AHANGARI K,et al. Experimental investigation of hydraulic fracture propagation in fractured blocks[J]. Bulletin of Engineering Geology and the Environment,2015,74(3):887-895.
20 解经宇,蒋国盛,王荣璟,等. 射孔对页岩水力裂缝形态影响的物理模拟实验[J]. 煤炭学报,2018,43(3):776-783.
JIE J Y,JIANG G S,WANG R J,et al. Experimental investigation on the influence of perforation on the hydraulic fracture geometry in shale[J]. Journal of China Coal Society,2018,43(3):776-783.
21 考佳玮,金衍,付卫能,等. 注液方式对深层页岩裂缝形态影响实验研究[J]. 地下空间与工程学报,2019,15(1):32-38.
KAO J W,JIN Y,FU W N,et al. Experiments research on the influence of injection method on hydraulic fracture morphology of deep shale[J]. Chinese Journal of Underground Space and Engineering,2019,15(1):32-38.
22 陈铭,张士诚,胥云,等. 基于互补算法的水力裂缝与天然裂缝相互作用边界元模型[J]. 岩石力学与工程学报,2018,37(S2):3947-3957.
CHEN M,ZHANG S C,XU Y,et al. Boundary element model for mechanical interaction between hydraulic fracture and natural fracture based on complementary algorithm[J].Chinese Jou-rnal of Rock Mechanics and Engineering,2018,37(S2):3947-3957.
23 KRESSE O,WENG X,GU H. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering,2013,46(3):555-568.
24 GU H,COHEN C,WENG X,et al. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[J]. SPE Production & Operations,2011,26(4):368-380.
25 卞晓冰,侯磊,蒋廷学,等. 深层页岩裂缝形态影响因素[J]. 岩性油气藏,2019,31(6):161-168.
BIAN X B,HOU L,JIANG T X,et al. Influencing factors of fracture geometry in deep shale gas wells[J]. Lithologic Reservoirs,2019,31(6):161-168.
26 赵猛,范锡彦. 页岩气缝网优化的数值模拟[J]. 大庆石油地质与开发,2019,38(4):167-174.
ZHAO M,FAN X Y. Optimized numerical simulation of the fracture network in the shale gas[J]. Petroleum Geology & Oilfield Development in Daqing,2019,38(4):167-174.
27 欧阳伟平,孙贺东,韩红旭.致密气藏水平井多段体积压裂复杂裂缝网络试井解释新模型[J].天然气工业,2020,40(3):74-81.
OUYANG W P,SUN H D,HAN H X. A new well test interpretation model for complex fracture networks in horizontal wells with multi-stage volume fracturing in tight gas reservoirs[J]. Natural Gas Industry,2020,40(3):74-81.
28 徐加祥,丁云宏,杨立峰,等. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学,2018,29(9):1356-1363.
XU J X,DING Y H,YANG L F,et al. Analysis of stress interference and geometry of hydraulic fractures based on the extended finite element method[J].Natural Gas Geoscience,2018,29(9):1356-1363.
29 曾青冬,姚军. 水平井多裂缝同步扩展数值模拟[J]. 石油学报,2015,36(12):1571-1579.
ZENG Q D, YAO J. Numerical simulation of multiple fra-ctures simultaneous propagation in horizontal wells[J]. Acta Petrolei Sinica,2015,36(12):1571-1579.
30 衡帅,杨春和,曾义金,等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报,2014,36(7):1243-1251.
HENG S,YANG C H,ZENG Y J,et al. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering,2014,36(7):1243-1251.
31 HOSSAIN M M,RAHMAN M K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing[J]. Journal of Petroleum Science & Engineering,2008,60(2):86-104.
32 MEYER B R,BAZAN L W,JACOT R H. Optimization of Multiple Transverse Hydraulic Fractures in Horizontal Wellbores[C]// SPE Unconventional Gas Conference. SPE 131732. Richardson: Society of Petroleum Engineers,2010.
33 MOES N,DOLBOW J,BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
34 BELYTSCHKO T,SUKUMAR N,DAUX C,et al. Arbitrary branched and intersecting cracks with the extended finite element method[J]. International Journal for Numerical Methods in Engineering,2000,48(12):1741-1760.
35 姜浒,陈勉,张广清,等. 定向射孔对水力裂缝起裂与延伸的影响[J]. 岩石力学与工程学报,2009,28(7):1321-1326.
JIANG H,CHEN M,ZHANG G Q,et al. Impact of oriented perforation on hydraulic fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1321-1326.
36 高红,郑颖人,冯夏庭. 岩土材料最大主剪应变破坏准则的推导[J]. 岩石力学与工程学报,2007,26(3):518-524.
GAO H,ZHENG Y R,FENG X T. Deduction of failure criterion for geomaterials based on maximum principal shear strain[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):518-524.
37 张晓咏,戴自航. 应用ABAQUS程序进行渗流作用下边坡稳定分析[J]. 岩石力学与工程学报,2010,29(S1):2927-2934.
ZHANG X Y,DAI Z H. Analysis of slope stability under seepage by using ABAQUS program[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(S1):2927-2934.
38 龚迪光,曲占庆,李建雄,等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. 岩土力学,2016,37(5):1512-1520.
GONG D G,QU Z Q,LI J X,et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics,2016,37(5):1512-1520.
39 薛炳,张广明,吴恒安,等. 油井水力压裂的三维数值模拟[J].中国科学技术大学学报,2008,38(11):1322-1325,1347.
XUE B,ZHANG G M,WU H A,et al. Three-dimensional numerical simulation of hydraulic fracture in oil wells[J]. Journal of University of Science and Technology of China,2008,38(11):1322-1325,1347.
[1] 游利军, 李鑫磊, 康毅力, 陈明君, 刘江. 富有机质页岩储层热激致裂增渗的有利条件[J]. 天然气地球科学, 2020, 31(3): 325-334.
[2] 谭伟, 何胜林, 张海荣, 丁磊, 梁玉楠. 基于自然伽马和电阻率曲线的高温高压气层孔隙度计算方法[J]. 天然气地球科学, 2020, 31(2): 307-316.
[3] 赵金洲,王强,胡永全,任岚,傅成浩,赵超能. 多孔眼裂缝竞争起裂与扩展数值模拟[J]. 天然气地球科学, 2020, 31(10): 1343-1354.
[4] 陈立超, 王生维. 煤岩断裂力学性质对储层压裂改造的影响[J]. 天然气地球科学, 2020, 31(1): 122-131.
[5] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[6] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[7] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[8] 陈立超, 王生维, . 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学, 2019, 30(4): 503-511.
[9] 谢卫东, 王猛, 代旭光, 王彦迪. 山西河东煤田中—南部煤系页岩气储层微观特征[J]. 天然气地球科学, 2019, 30(4): 512-525.
[10] 曾凡辉, 唐波涛, 王涛, 郭建春, 肖勇军, 张守仁. 考虑渗滤效应的压裂裸眼井破裂压力预测模型[J]. 天然气地球科学, 2019, 30(4): 549-556.
[11] 刘壮,郭建春,马辉运,周长林,苟波,任冀川. 提升高温气井酸压有效缝长方法[J]. 天然气地球科学, 2019, 30(12): 1694-1700.
[12] 周彤,苏建政,李凤霞,刘国庆,廖如刚. 基于停泵压力降落曲线分析的压后裂缝参数反演[J]. 天然气地球科学, 2019, 30(11): 1646-1654.
[13] 徐加祥, 丁云宏, 杨立峰, 王臻, 刘哲, 高睿. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学, 2018, 29(9): 1356-1363.
[14] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[15] 刘忠宝,冯动军,高波,李洪文,聂海宽. 上扬子地区下寒武统高演化页岩微观孔隙特征[J]. 天然气地球科学, 2017, 28(7): 1096-1107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈志鹏,梁兴,张介辉,王高成,刘臣,李兆丰,邹辰. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442 -448 .
[2] 刘登科, 孙卫, 任大忠, 张茜, 明红霞, 陈斌. 致密砂岩气藏孔喉结构与可动流体赋存规律——以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136 -2146 .
[3] 万明浩; 王一新; . 瞬变电磁测深(建场测深)法的最新进展与应用前景[J]. 天然气地球科学, 1991, 2(3): 142 -143,136 .
[4] 董伟宏, 杨慎. 气井产量曲线递减趋势影响因素及产量预测[J]. 天然气地球科学, 2009, 20(3): 411 -415 .
[5] 王杰;刘文汇;秦建中;张隽;申宝剑. 苏北盆地黄桥CO2气田成因特征及成藏机制[J]. 天然气地球科学, 2008, 19(06): 826 -834 .
[6] 赵春晨,刘护创,任来义,陈治军,李科社,白晓寅,王小多. 银额盆地YHC1井白垩系气藏形成的地质环境及其远景意义[J]. 天然气地球科学, 2017, 28(3): 439 -451 .
[7] 何治亮,胡宗全,聂海宽,李双建,许锦. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017, 28(5): 724 -733 .
[8] 滕龙,殷启春,方朝刚,郑红军,沈雪华,朱红兵,陈基炜. 利用高密度电阻率法预测第四系浅层生物气——以江苏省南通地区为例[J]. 天然气地球科学, 2018, 29(5): 719 -728 .
[9] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781 -1796 .
[10] 王秀平,牟传龙,肖朝晖,郑斌嵩,陈尧,王启宇,刘惟庆. 湖北鹤峰地区二叠系大隆组黑色岩系特征及成因初探[J]. 天然气地球科学, 2018, 29(3): 382 -396 .