天然气地球科学 ›› 2021, Vol. 32 ›› Issue (4): 465–471.doi: 10.11764/j.issn.1672-1926.2020.10.006

• 天然气开发 •    下一篇

水力压裂条件下裂隙性煤储层垂直试验井产能预测

王志荣(),温震洋,陈玲霞   

  1. 郑州大学水利科学与工程学院,河南 郑州 450001
  • 收稿日期:2020-08-28 修回日期:2020-09-28 出版日期:2021-04-10 发布日期:2021-04-09
  • 作者简介:王志荣(1963-),男,浙江嘉善人,教授,博士,主要从事地质工程与地质灾害防治研究. E-mail:wangzhirong513@sina.com.
  • 基金资助:
    国家自然科学基金项目(41272339);河南省自然科学基金项目(182300410149)

Productivity prediction of vertical test well for fractured coal reservoir under hydraulic fracturing

Zhi-rong WANG(),Zhen-yang WEN,Ling-xia CHEN   

  1. School of Hydraulic Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2020-08-28 Revised:2020-09-28 Online:2021-04-10 Published:2021-04-09
  • Supported by:
    The National Natural Science Foundation of China(41272339);the Natural Science Foundation of Henan Province, China(182300410149)

摘要:

煤层气井产能预测一直是天然气工业领域试图解决的技术性难题。为探究水力压裂条件下裂隙性煤储层气渗透机理及产能规律,首先考虑其原生裂隙的几何特征对裂缝扩展规律的影响,结合经典PKN模型建立了改进的水力裂缝扩展模型;其次考虑排采过程中水力裂缝几何尺寸变化对煤储层孔隙率的影响,基于储层压力梯度动态方程建立了储层动态渗透率模型;最后运用流体质量守恒原理建立了裂隙性储层煤层气垂直井产能预测模型。运用该模型对河南焦作“三软”矿区GW试?008井进行了试验期70 d的产能计算,并与实际排采值进行对比,发现理论计算值与实际排采值动态变化曲线吻合度较高,平均日产气量分别为360.768 m3/d与381.489 m3/d,相对误差仅为6%,验证了产能模型的正确性。研究成果对我国“三软”矿区煤层气的开发利用具有重要的借鉴意义。

关键词: 原生裂隙, 水力裂缝, 动态渗透率, 产能模型

Abstract:

Production capacity prediction of CBM is a difficult technical problem that the natural gas industry tries to solve. In order to explore the permeability mechanism and productivity rule of fractured CBM reservoirs in the "three soft" coking mining area under the condition of hydraulic fracturing, firstly, the influence of geometric characteristics of primary fractures on fracture growth rule was considered, and an improved hydraulic fracture growth model was established in combination with the classical PKN model; secondly, a reservoir dynamic permeability model was established based on the dynamic equation of reservoir pressure gradient, considering the influence of the geometric size change of hydraulic fractures on the porosity of primary fractures in coal during drainage and production; finally, based on the principle of fluid mass conservation, the productivity prediction model of CBM vertical wells in fractured reservoirs was established. This model was used to calculate the production capacity of Well GW-008 during the trial period of 70 days in the mining area, and it was compared with the actual discharge and production value. It was founded that the dynamic change curve of the theoretical calculation value and the actual discharge and production value was in good agreement with each other. The average daily gas output is 360.768 m3/d and 381.489 m3/d respectively, and the relative error is only 6%, thus verifying the correctness of the production capacity model. The research results are of great significance to the development and utilization of coalbed methane in the “three soft” areas of China.

Key words: Native fissure, Hydraulic fracturing, Dynamic permeability, Productivity model

中图分类号: 

  • TE32

图1

裂缝扩展模型"

表1

GW试-008井压裂施工参数"

参数数值
煤层深度/m583.50
煤层厚度/m7.01
施工排量/(m3/min)7.60
时间/min50
压裂液/m3前置液200.00
携砂液204.00
替置液5.80
压裂液总量409.80
平均砂比/%18.20
施工压力/MPa破裂压力9.80
停泵压力6.60

图2

GW试-008井渗透率动态变化曲线"

图3

GW试-008井产气量实测值与理论值对比"

1 李辉,马遵敬,王旭东,等.沁水盆地南部地区砂体与煤层空间叠置特征及其在煤层气和致密气合采开发中的意义[J].科学技术与工程,2019,19(7):70-77.
LI H, MA Z J, WANG X D, et al. Characteristics of spatial superimposition between sandbody and coal seam and its implications to commingling production for coal-bed methane and tight gas in the southern Qinshui Basin[J]. Science Technology and Engineering,2019,19(7):70-77.
2 王志荣,郭志伟,徐培远,等.九里山煤矿垂直井起裂压力对煤层气产能的影响[J].水文地质工程地质,2017,44(4):124-128,159.
WANG Z R, GUO Z W, XU P Y, et al. Influence of fracturing pressure of vertical well to CBM capacity in Jiulishan coal mine[J].Hydrogeology & Engineering Geology,2017,44(4):124-128,159.
3 付江伟,傅雪海,胡晓,等.焦作矿区煤层气开发的水文地质条件分析[J].中国矿业,2011,20(4):105-110.
FU J W, FU X H,HU X, et al. Analysis on hydrogeological condition for coal bed methane exploitation in Jiaozuo coal-mine area[J].China Mining Magazine,2011,20(4):105-110.
4 高灶其,刘文波,闫广厚,等.焦作煤田煤层气富集的控制因素[J].矿产保护与利用,2015(3):20-24.
GAO Z Q, LIU W B,YAN G H, et al. The controlling factors of coal seam gas enrichment in Jiaozuo Coalfield[J]. Conservation and Utilization of Mineral Resources,2015(3):20-24.
5 李宏欣.焦作九里山井田煤层气赋存特征分析[J].中州煤炭,2012(9):4-6,33.
LI H X, Analysis on CBM occurrence characteristics of Jiulishan Coalfield in Jiaozuo[J].China Energy and Environmental Protection,2012(9):4-6,33.
6 孙文洁,王亚伟,李学奎,等.华北型煤田矿井水文地质类型与水害事故分析[J].煤炭工程,2015,47(6):103-105.
SUN W J, WANG Y W, LI X K, et al. Analysis on hydrogeological classification and water inrush accidents in north China coal mines[J]. Coal Engineering,2015,47(6):103-105.
7 张党育,蒋勤明,高春芳,等.华北型煤田底板岩溶水害区域治理关键技术研究进展[J].煤炭科学技术,2020,48(6):31-36.
ZHANG D Y, JIANG Q M, GAO C F, et al. Study progress on key technologies for regional treatment of karst water damage control in the of North China coalfield[J]. Coal Science and Technology,2020,48(6):31-36.
8 岑学齐,吴晓东,梁伟,等.煤层气井产能影响因素分析[J].科学技术与工程,2014,14(4):201-204,216.
CEN X Q, WU X D, LIANG W, et al. Analysis of factors affecting productivity of coalbed gas wells[J]. Science Technology and Engineering,2014,14(4):201-204,216.
9 吴静.焦坪矿区低阶煤储层因素对煤层气井产能的影响及敏感性分析[J].煤田地质与勘探,2015,43(5):44-48.
WU J. Influence of reservoir factors on low-rank coalbed methane well production and sensitivity analysis[J]. Coal Geology & Exploration,2015,43(5):44-48.
10 王保辉,闫相祯,杨秀娟.基于煤岩割理正交各向异性的煤层气产能预测[J].科学技术与工程,2017,17(32):229-232.
WANG B H, YAN X Z, YANG X J. Production prediction with the consideration of the orthotropic permeability of coal seam[J]. Science Technology and Engineering,2017,17(32):229-232.
11 王琰琛,陈胜,孙兰兰.煤层气产能预测新模型[J].天然气与石油,2018,36(4):92-97.
WANG Y C, CHEN S, SUN L L. A new model for productivity prediction of coal-bed methane[J]. Natural Gas and Oil,2018,36(4):92-97.
12 PANTEHA G, MAHMOUD J, EBRAHIM A, et al. A new and simple model for the prediction of horizontal well productivity in gas condensate reservoirs[J].Fuel,2018,223:431-450.
13 郭肖,汪志明,曾泉树.煤层气/砂岩气混合气藏合采产能预测及排采优化[J].科学技术与工程,2019,19(17):162-167.
GUO X, WANG Z M, ZENG Q S. Production prediction of hybrid gas reservoirs including coal seams and sandstone seams and development optimization[J]. Science Technology and Engineering,2019,19(17):162-167.
14 王志荣,贺平,郭志伟,等.考虑裂缝特性指标的煤层气“垂直井”起裂压力计算方法[J].岩土力学,2018,39(S1):369-377.
WANG Z R, HE P, GUO Z W, et al. Calculation of initiation pressure of vertical well for coalbed methane considering crack characteristic index[J].Rock and Soil Mechanics,2018,39(S1):369-377.
15 张小东,张鹏,刘浩,等.高煤级煤储层水力压裂裂缝扩展模型研究[J].中国矿业大学学报,2013,42(4):573-579.
ZHANG X D, ZHANG P, LIU H, et al. Fracture extended model under hydraulic fracturing engineering for high rank coal reservoirs[J]. Journal of China University of Mining & Technology,2013,42(4):573-579.
16 于本福,闫相祯,杨秀娟,等.考虑储层孔隙介质分形特点的衰竭气藏储气库储层压力分布预测[J].石油学报,2013,34(5):1017-1022.
YU B F, YAN X Z, YANG X J, et al. Dynamic reservoir pressure prediction of depleted reservoir gas storage considering the fractal feature of porous medium[J]. Acta Petrolei Sinica,2013,34(5):1017-1022.
17 徐刚,马瑞峰,牟全斌.煤层水力裂缝参数对煤层气井产气量的影响[J].煤炭技术,2014,33(5):243-246.
XU G, MA R F, MU Q B. Impact of hydraulic fracture parameters on production of coalbed methane wells[J]. Coal Te-chnology,2014,33(5):243-246.
18 赵群,王红岩,李景明,等.快速排采对低渗透煤层气井产能伤害的机理研究[J].山东科技大学学报:自然科学版,2008,27(3):27-31.
ZHAO Q, WANG H Y, LI J M, et al. Study on mechanism of harm to CBM well capability in low permeability seam with quick drainage method[J].Journal of Shandong University of Science and Technology:Natural Science,2008,27(3):27-31.
[1] 黄小青, 王建君, 杜悦, 李林, 张卓. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨[J]. 天然气地球科学, 2019, 30(4): 557-565.
[2] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[3] 朱维耀, 马东旭, 朱华银, 安来志, 李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892-897.
[4] 王宇,李晓,王金波,郑博,张搏,赵志恒. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941-1950.
[5] 赵金洲,杨海,李勇明,王刚,伍洲. 水力裂缝逼近时天然裂缝稳定性分析[J]. 天然气地球科学, 2014, 25(3): 402-408.
[6] 程远方,徐太双,吴百烈,李娜,袁征,孙元伟,王欣. 煤岩水力压裂裂缝形态实验研究[J]. 天然气地球科学, 2013, 24(1): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 倪云燕,姚立邈,廖凤蓉,高金亮,陈建平,隋建立,张蒂嘉. 四川盆地威远返排液元素地球化学特征及排放处理建议[J]. 天然气地球科学, 2021, 32(4): 492 -509 .
[2] 王华,崔越华,刘雪玲,强阵阵,王世成. 致密砂岩气藏多层系水平井立体开发技术——以鄂尔多斯盆地致密气示范区为例[J]. 天然气地球科学, 2021, 32(4): 472 -480 .
[3] 史文洋,程时清,孙兵,张睿,高敏. 具有纵向非均匀复合半径的储层合采井压力响应特征[J]. 天然气地球科学, 2021, 32(4): 481 -491 .
[4] 李二庭,靳军,高秀伟,李际,何丹,刘翠敏,张晓刚,王海静. 黏土矿物对不同类型烃源岩热解参数影响[J]. 天然气地球科学, 2021, 32(4): 510 -517 .
[5] 陈大伟,李剑,国建英,李志生,郝爱胜,齐雪宁. 砂岩介质下陆相原油裂解生气模拟[J]. 天然气地球科学, 2021, 32(4): 518 -528 .
[6] 刘佳宜,刘全有,朱东亚,孟庆强,李鹏,梁新平. Li同位素示踪作用及其在凝灰岩鉴别中的应用[J]. 天然气地球科学, 2021, 32(4): 529 -539 .
[7] 邹妞妞,张大权,史基安,鲁新川,张顺存. 准噶尔盆地中拐凸起二叠系上乌尔禾组油气成藏及其主控因素[J]. 天然气地球科学, 2021, 32(4): 540 -550 .
[8] 钱海涛,苏东旭,阿布力米提·依明null,王学勇,李宗浩,王国栋. 准噶尔盆地盆1井西凹陷斜坡区油气地质特征及勘探潜力[J]. 天然气地球科学, 2021, 32(4): 551 -561 .