天然气地球科学 ›› 2021, Vol. 32 ›› Issue (2): 262–267.doi: 10.11764/j.issn.1672-1926.2020.10.001

• 天然气开发 • 上一篇    下一篇

基于物质平衡原理的页岩气井产能评价方法

舒志国1(),刘莉1,梁榜1(),陆亚秋1,郑爱维1,包汉勇2   

  1. 1.中国石化江汉油田分公司勘探开发研究院,湖北 武汉 430223
    2.中国石化江汉油田分公司,湖北 潜江 433124
  • 收稿日期:2020-07-13 修回日期:2020-10-01 出版日期:2021-02-10 发布日期:2021-03-10
  • 通讯作者: 梁榜 E-mail:shuzg.jhyt@sinopec.com;liangbang.jhyt@sinopec.com
  • 作者简介:舒志国(1966-),男,湖南常德人,研究员,博士,主要从事非常规天然气勘探开发研究.E-mail:shuzg.jhyt@sinopec.com.
  • 基金资助:
    国家科技重大专项“涪陵页岩气开发示范工程”(2016ZX05060);中国石化页岩气“十条龙”科技攻关项目“涪陵页岩气田焦石坝区块稳产技术”(P18052)

Study on productivity evaluation method of shale gas well based on material balance principle

Zhi-guo SHU1(),Li LIU1,Bang LIANG1(),Ya-qiu LU1,Ai-wei ZHENG1,Han-yong BAO2   

  1. 1.Research Institute of Exploration and Development,Jianghan Oilfield Company,Wuhan 430223,China
    2.SINOPEC Jianghan Oilfield Company,Qianjiang 433124,China
  • Received:2020-07-13 Revised:2020-10-01 Online:2021-02-10 Published:2021-03-10
  • Contact: Bang LIANG E-mail:shuzg.jhyt@sinopec.com;liangbang.jhyt@sinopec.com
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05060);The SINOPEC Ten Keys Programs for Science and Technology Development(P18052)

摘要:

页岩气已成为特低渗透储层中最重要的非常规能源之一,由于其独特的储层性质和多级水力压裂改造的共同作用,形成了复杂的多尺度流动机制。在物质平衡理论的基础上,采用五线性流模型的储层构造简化方式,依据储集容量和渗流特征关系将地层分为基质压力系统和裂缝压力系统,将具有“一井一藏”特征的页岩气井SRV分为基质压力系统和压裂裂缝压力系统,建立了一种基于物质平衡理论的页岩气井产能评价新方法,该方法能准确有效地评价页岩气井产能和地层能量的下降,证明了页岩气井裂缝缝网储集容量是真实存在的、不可忽略的。与RTA软件中的HZ Multifrac模型相比,提出的模型在涪陵页岩气田的典型生产井应用中取得了更准确的评价结果,准确匹配上了不同生产时期的实测井底流压和关井静压,能够为涪陵页岩气井合理配产制度的科学制定提供理论依据。

关键词: 物质平衡, 双压力系统, 产能评价, 分段压裂水平井, 涪陵页岩气田

Abstract:

Shale gas has become one of the most important unconventional energy sources in ultra-low permeability reservoir. Due to its unique reservoir properties and the combined action of multi-stage hydraulic fracturing, it forms a complex multi-scale flow mechanism. On the basis of flow material balance theory, using the simplify way of reservoir structural with Five-lines Flow Model, according to the relationship of reservoir capacity and seepage characteristics, the stratum can be divide into matrix pressure system and fracturing fracture pressure system. This article divided shale gas well SRV into matrix pressure system and fracturing fracture pressure system, built a new method of shale gas well productivity evaluation which is based on the flow material balance theory. This method can accurately and effectively evaluate the decrease in shale gas production and formation energy, and proved the fracture net reservoir capacity of the fractures in shale gas well is existed. Compared with HZ Multifrac model in RTA software, the model in this article has get more accurate evaluation result in typical production wells of Fuling shale gas field, exactly matches the measured flowing bottom hole pressure and shut-in static pressure in different production period, provided a theoretical basis for scientific formulation of reasonable production allocation system for Fuling shale gas wells.

Key words: Material balance, Dual-pressure system, Productivity evaluation, Staged fracturing horizontal well, Fuling shale gas field

中图分类号: 

  • TE34

图1

多级水力压裂改造后的页岩气井地层结构数值模拟结果"

图2

页岩气井单个流动单元结构和渗流顺序关系"

图3

页岩气井不同压力系统流动图"

表1

储层物性参数汇总"

参数/单位数值参数/单位数值
原始地层压力/MPa37.80地层温度/℃89.86
吸附体积/(m3/m3)0.27吸附压力/ MPa6.00
气体黏度/(mPa·s)0.02气相相对分子量16.22
基质孔隙度/%3.22基质渗透率/(10-6 μm2)127.00
压裂段数/段22储层有效厚度/m32.00
水平段长/ m1 486综合压缩系数/(10-3 MPa-1)2.51

表2

双压力系统物质平衡模型与Hz Multifrac模型的计算结果对比"

模型名称xf/mxe/mKf/(10-15 m3)?f/%βm
新模型135.07142.281.874.931.97
Hz Multifrac122.58134.61---

图4

双压力系统物质平衡模型压力拟合结果"

1 李玉喜,乔德武,姜文利,等.页岩气含气量和页岩气地质评价综述[J].地质通报,2011,30(Z1):308-317.
LI Y X,QIAO D W,JIANG W L,et al.Gas content of gas-bearing shale and its geological evaluation summary[J].Geolo-gical Bulletin of China,2011,30(Z1):308-317.
2 张金川, 金之钧, 袁明生.页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18.
ZHANG J C,JIN Z J, YUAN M S.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry, 2004, 24(7):15-18.
3 郑爱维,李继庆,卢文涛,等.涪陵页岩气田分段压裂水平井非稳态产能评价方法[J].油气井测试,2018,27(1):22-30.
ZHENG A W,LI J Q,LU W T,et al.Unsteady productivity evaluation of horizontal wells with staged fracturing in Fuling shale gas field[J].Well Testing, 2018,27(1):22-30.
4 廖勇,谭判,石文睿,等.涪陵页岩气储层产气性评价方法[J].石油钻探技术,2018,46(5):69-75.
LIAO Y,TAN P,SHI W R,et al.An evaluation method for gas production property for shale gas reservoirs in the Fuling area[J]. Petroleum Drilling Techniques,2018,46(5):69-75.
5 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.
ZOU C N,DONG D Z,WANG S J,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010,37(6):641-653.
6 陈勉,葛洪魁,赵金洲,等.页岩油气高效开发的关键基础理论与挑战[J].石油钻探技术,2015,43(5):7-14.
CHEN M,GE H K,ZHAO J Z,et al.The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges[J]. Petroleum Drilling Techniques,2015,43(5):7-14.
7 OZKAN E, RAGHAVAN R S, APAYDIN O G. Modeling of Fluid Transfer From Shale Matrix to Fracture Network[C]. Paper SPE 134830-MS. Presented at the SPE Annual Technical Conference and Exhibition. 19-22 September 2010, Florence, Italy.
8 吴克柳,李相方,陈掌星.页岩气纳米孔气体传输模型[J].石油学报,2015,36(7):837-848,889.
WU K L,LI X F,CHEN Z X. A model for gas transport through nanopores of shale gas reservoirs[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848,889.
9 盛茂,李根生,黄中伟,等.考虑表面扩散作用的页岩气瞬态流动模型[J].石油学报,2014,35(2):347-352.
SHENG M,LI G S,HUANG Z W,et al. Shale gas transient flow model with effects of surface diffusion[J].Acta Petrolei Sinica, 2014,35(2):347-352.
10 任岚,林然,赵金洲,等.页岩气水平井增产改造体积评价模型及其应用[J].天然气工业,2018,38(8):47-56.
REN L, LIN R, ZHAO J Z,et al. A stimulated reservoir volume(SRV)evaluation model and its application to shale gas well productivity enhancement[J].Natural Gas Industry,2018,38(8):47-56.
11 ARPS J J. Analysis of decline curves[J]. Transactions of the AIME, 1945, 160(1): 228-247.
12 ILK D, RUSHING J A, PEREGO A D, et al. Exponential vs. hyperbolic decline in tight gas sands: Understanding the origin and implications for reserve estimates using Arps' decline curves[C]// SPE annual technical conference and exhibition. Society of Petroleum Engineers, 2008.
13 VALKÓ P P, LEE W J. A better way to forecast production from unconventional gas wells[C]//SPE Annual technical conference and exhibition. Society of Petroleum Engineers, 2010.
14 DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 377-387.
15 MOGHADAM S, JEJE O, MATTAR L. Advanced gas material balance in simplified format[J]. Journal of Canadian Petroleum Technology, 2011, 50(1):90-98.
16 XU Y M, ADEFIDIPE O, DEHGHANPOUR H. A flowing material balance equation for two-phase flowback analysis[J].Journal of Petroleum Science and Engineering, 2016, 142(6):170-185.
17 梅海燕,何浪,张茂林,等.考虑多因素的页岩气藏物质平衡方程[J].新疆石油地质,2018,39(4):456-461.
MEI H Y,HE L,ZHANG M L, et al.A multifactorial material balance equation for shale gas reservoirs[J].Xinjiang Petroleum Geology, 2018,39(4):456-461.
18 YOU X T, JIA C S,LI J. A New Quantitive predicting model of fracturing fluid flow-back: Based on fractal theory and fuzzy statistic method[J]. Energy Procedia, 2019, 158(15): 3696-3701.
19 FAN L, THOMPSON J W, ROBINSON J R.Understanding gas production mechanism and effectiveness of well stimulation in the Haynesville shale through reservoir simulation[J].Society of Petroleum Engineers, 2010, 10(21):1-15
20 STALGOROVA E, MATTAR L. Analytical model for history matching and forecasting production in multifrac composite systems[J]. Society of Petroleum Engineers,2012,10(30):20-32
21 COKAR M, FORD B,KALLOS M S. New gas material balance to quantify biogenic gas generation rates from;shallow organic-matter-rich shales[J]. Fuel, 2013, 104(2):443-451.
22 梁榜,李继庆,郑爱维,等.涪陵页岩气田水平井开发效果评价[J].天然气地球科学,2018,29(2):289-295.
LIANG B,LI J Q,ZHENG A W,et al. Development effect evaluation for shale gas wells in Fuling shale gasfield[J]. Natural Gas Geoscience, 2018,29(2):289-295.
[1] 陈京元, 位云生, 王军磊, 于伟, 齐亚东, 吴建发, 罗万静. 页岩气井间干扰分析及井距优化[J]. 天然气地球科学, 2021, 32(7): 931-940.
[2] 张立侠, 郭春秋, 赫英旭, 余洋, 刘晨超. 利用生产数据确定异常高压气藏储量[J]. 天然气地球科学, 2021, 32(5): 703-717.
[3] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
[4] 张芨强,雷霄,张乔良,薛国庆,汤明光. 低渗透气藏产水压裂水平井产能评价[J]. 天然气地球科学, 2019, 30(12): 1701-1708.
[5] 王怒涛,陈仲良,祝明谦,王玉根,张琰. 基于质量守恒原理的凝析气藏单井动态储量计算[J]. 天然气地球科学, 2018, 29(3): 424-428.
[6] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[7] 梁榜,李继庆,郑爱维,卢文涛,张谦. 涪陵页岩气田水平井开发效果评价[J]. 天然气地球科学, 2018, 29(2): 289-295.
[8] 王琰琛, 陈军, 邓亚, 肖聪. 页岩气藏体积压裂水平井渗流模型[J]. 天然气地球科学, 2018, 29(12): 1795-1802.
[9] 杜凌云, 王怒涛, 陈晖, 张梦丽, 李舫. 计算水驱气藏水侵量及动态地质储量的集成方法[J]. 天然气地球科学, 2018, 29(12): 1803-1808.
[10] 杨斌,游利军,康毅力,何志君,李相臣. 基于物质平衡的页岩气井压裂改造裂缝体积与面积计算[J]. 天然气地球科学, 2017, 28(7): 1059-1064.
[11] 何治亮,胡宗全,聂海宽,李双建,许锦. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733.
[12] 乔霞, 罗明高, 王洪峰, 肖香姣, 阳建平. 一种利用生产动态历史评价异常高压气井产能的新方法[J]. 天然气地球科学, 2017, 28(12): 1908-1913.
[13] 朱苏阳, 杜志敏, 李传亮, 彭小龙. 基于复合解吸理论的煤层气物质平衡方法[J]. 天然气地球科学, 2016, 27(6): 1128-1133.
[14] 魏祥峰,郭彤楼,刘若冰. 涪陵页岩气田焦石坝地区页岩气地球化学特征及成因[J]. 天然气地球科学, 2016, 27(3): 539-548.
[15] 尚颖雪,李晓平,宋力. 考虑水溶气的页岩气藏物质平衡方程及储量计算方法[J]. 天然气地球科学, 2015, 26(6): 1183-1189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[3] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[4] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[5] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[6] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[7] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .
[8] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[9] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[10] 倪金龙;吕宝凤;夏斌;. 渤海湾盆地八面河缓坡带断裂系统及其对孔店组油气成藏的影响[J]. 天然气地球科学, 2006, 17(3): 370 -373 .