天然气地球科学 ›› 2020, Vol. 31 ›› Issue (11): 1654–1662.doi: 10.11764/j.issn.1672-1926.2020.08.006

• 天然气资源与经济 • 上一篇    下一篇

气藏型储气库微地震监测系统设计及应用

廖伟1(),刘国良1,戴勇2,张士杰1,胥洪成3,4,孙德强5(),郑强1,赵楠1,李超5   

  1. 1.中国石油新疆油田分公司呼图壁储气库作业区,新疆 克拉玛依 834000
    2.中国石油新疆油田分公司开发处,新疆 克拉玛依 834000
    3.中国石油勘探开发研究院,北京 100083
    4.中国石油天然气集团公司油气地下储库工程重点实验室,北京 100083
    5.中国科学院科技战略咨询研究院,北京 100190
  • 收稿日期:2020-04-03 修回日期:2020-08-05 出版日期:2020-11-10 发布日期:2020-11-24
  • 通讯作者: 孙德强 E-mail:liaow2009@petrochina.com.cn;sdq@casisd.cn
  • 作者简介:廖伟(1980-),男,湖北恩施人,高级工程师,主要从事油气田开发研究. E-mail:liaow2009@petrochina.com.cn.
  • 基金资助:
    中国工程院咨询项目(2016-ZD-07-05-03);国家自然科学基金重点项目(71133005)

Design and application of micro-seismic monitoring system for gas reservoir-type gas storage: Case study of Xinjiang H gas storage

Wei LIAO1(),Guo-liang LIU1,Yong DAI2,Shi-jie ZHANG1,Hong-cheng XU3,4,De-qiang SUN5(),Qiang ZHENG1,Nan ZHAO1,Chao LI5   

  1. 1.Hutubi Gas Storage Operation Area of PetroChina Xinjiang Oilfield Company,Karamay 834000,China
    2.Development Department of PetroChina Xinjiang Oilfield Company,Karamay 834000,China
    3.Research Institute of Petroleum Exploration and Development,Beijing 100083,China
    4.Key Laboratory of Underground Oil and Gas Storage Engineering of China National Petroleum Corporation,Beijing 100083,China
    5.Institues of Science and Development,Chinese Academy of Sciences,Beijing 100190,China
  • Received:2020-04-03 Revised:2020-08-05 Online:2020-11-10 Published:2020-11-24
  • Contact: De-qiang SUN E-mail:liaow2009@petrochina.com.cn;sdq@casisd.cn
  • Supported by:
    The Consulting project of Chinese Academy of Engineering(2016-ZD-07-05-03);The Key Project of Natural Science Foundation of China(71133005)

摘要:

地下储气库(以下简称储气库)设计注采运行30~50年,安全问题是储气库注采运行的重中之重。为保障储气库长期安全平稳运行,除常规监测手段外,微地震实时监测技术是储气库断层、盖层、储层及井筒监测的有效手段。新疆H储气库是国内最大陆相储气库,断裂较多,砂体变化较快,针对不同观测系统,采用微地震实时监测系统可论证监测范围、最小震级、定位精度等,在此基础上优选最优的微地震监测系统设计方案。研究过程中监测井采用“6口浅井、3口半深井”的组合井监测方式,监测能级为-0.6~-0.5级,定位精度为30 m,地面监测系统利用太阳能供电,数据采集系统通过无线传输方式,并应用微地震数据体处理解释和观测系统,实现对储气库高强度注采运行过程中动态密封性的实时监测与分析。经过5年的现场监测实践证明,该监测系统现场应用方便,灵敏度高,监测反馈速度快,能够精确地识别生产活动引起的微地震事件,有效指导了储气库注采运行过程中参数优化调整,保障了安全平稳高效运行。

关键词: 储气库, 气藏型, 微地震, 监测系统, 定位精度, 参数优化

Abstract:

Underground gas storage (hereinafter referred to as gas storage) is designed for injection and production operation for 30-50 years, and safety issues are the top priority of injection and production operation of gas storage. In order to ensure long-term safe and stable operation of gas storage, in addition to conventional monitoring methods, microseismic real-time monitoring technology is an effective method for monitoring faults, caps, reservoirs and wellbores of gas storage. Xinjiang H gas storage is the most continental facies in China. It has many faults and rapid changes in sand bodies. For its relatively complex geological conditions, the design of a microseismic monitoring system is closely integrated with the geological characteristics of the gas storage. Observation system, system evaluation, monitoring range, minimum magnitude, positioning accuracy, etc., the optimal microseismic monitoring system design scheme is preferred. The monitoring well adopts a combined well monitoring method of “6 shallow wells and 3 semi-deep wells”. The monitoring energy level is from -0.6 to -0.5 level and the positioning accuracy is 30 m. The ground monitoring system uses solar power. The data acquisition system is wirelessly transmitted and applied Microseismic data volume processing interpretation and observation system, real-time monitoring and analysis of dynamic tightness of gas storage during high-intensity injection-production operation. After five years of on-site monitoring practice, the monitoring system has been proved to be convenient in field application, high sensitivity, fast monitoring feedback, accurate identification of microseismic events caused by production activities, and effective guidance of parameter optimization and adjustment during injection and production operations of gas storage to ensure safe, stable and efficient operation.

Key words: Gas storage, Gas reservoir type, Microseismic, Monitoring system, Positioning accuracy, Parameter optimization

中图分类号: 

  • TE341

表1

微地震数据采集方式优缺点对比"

对比指标监测数据采集方式
井筒采集地表采集浅井长期埋置采集
干扰波中等
水平精度随距离而降低较高
水平距离100~2 000 m不受限不受限
垂直精度较低中等
垂直深度不受限>3 000 m>4 000 m
采集效率中等
局限性需利用邻井弱微地震事件检测能力低投资成本高

图1

微地震数据处理流程"

图2

地震矩、压力、地震能级、拐角频率及震源半径相互关系量"

图3

微地震事件定位精度计算示意"

图4

新疆H储气库地层沉积模式"

图5

新疆H储气库构造及微地震监测深浅井位分布"

表2

新疆H储气库微地震监测模型正演模拟结果[20]"

实验类型

井数

/口

感应器数

(单井)

井深

/m

感应器间距

/m

灵敏度

(储层深度2 000 m)

定位精度

/m

浅井647015-0.20-0.5050
647015-0.40-0.5070
1047015-0.20-0.5030
6415015-0.20-0.5050
64300100-0.30-0.5060
6415050-0.10-0.5050
447015-0.10-0.4060
847015-0.20-0.5040
半深井3121 20050-0.60-0.5050
2121 20050-0.50-0.5050
3151 20040-0.50-0.5050
3151 20050-0.50-0.5050
381 20075-0.50-0.5060
3121 00050-0.40-0.5050
3121 50050-0.60-0.5050
深井3123 50050-1.20-0.5020
3122 80050-1.00-0.5030
3123 00050-1.10-0.5020

组合井

(浅井+半深井)

6+34+1270/1 20015/50-0.60-0.5030
6+24+1270/1 20015/50-0.60-0.5030
10+34+1270/1 20015/50-0.60-0.5030

图6

新疆H储气库微地震监测地面工程示意"

图7

新疆H储气库微地震事件空间分布"

1 谢丽华,张宏,李鹤林.枯竭油气藏型地下储气库事故分析及风险识别[J].天然气工业,2009,29(11):116-119.
XIE L H,ZHANG H,LI H L. Accident analysis and risk identification of depleted oil and gas reservoir[J].Natural Gas Industry,2009,29(11):116-119.
2 赵博雄,王忠仁,刘瑞.国内外微地震监测技术综述[J].地球物理学进展,2014,29(4):1882-1888.
ZHAO B X,WANG Z R,LIU R.Review of microseismic monitoring technology research[J]. Progress in Geophysics,2014,29(4):1882-1888.
3 RENOUX P, FORTIER E, MAISONS C. Microseismicity Induced Within Hydrocarbon Storage in Salt Caverns, Manos-que, France[C]//Solution Mining Research Institute Fall 2013
Conference Technical, 30 September-1 October 2013, Avignon, France.
4 KRAAIJPOEL D A, NIEUWLAND D A, DOST B. Microseismic Monitoring and Subseismic Fault Detection in an Underground Gas Storage[C]//Eage Passive Seismic Workshop, 2013.
5 井岗,李龙,巴金红,等.实时微地震监测金坛岩穴储气库稳定性[J].西南石油大学学报:自然科学版,2018,40(5):140-146.
JING G, LI L, BA J H, et al. Real-time microseismic monitoring of stability of salt-cavern gas storage in Jintan[J]. Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(5):140-146.
6 张山,刘清林,赵群,等.微地震监测技术在油田开发中的应用[J].石油物探,2002,41(2):226-231.
ZHANG S,LIU Q L,ZHAO Q,et al. Application of microseismic monitoring technology in development of oil field[J].Geophysical Prospecting for Petroleum,2002,41(2):226-231.
7 吴军.地面微地震监测数据处理难点及对策[J].环境与发展,2017,29(9):127-129.
WU J. Difficulties and countermeasures of ground microseismic monitoring data processing[J]. Environment and Development,2017,29(9):127-129.
8 崔庆辉,尚新民,芮拥军,等.非常规油气水力压裂微地震监测处理系统的设计及研发[J].科技通报,2017,33(12):65-69,200.
CUI Q H, SHANG X M, RUI Y J ,et al. Design and development of processing system of hydraulic fracturing microseismic monitoring in unconventional oil and gas[J]. Bulletin of Science and Technology,2017,33(12):65-69,200.
9 邵晓光,董宏丽,代丽艳.微地震监测技术综述[J].吉林大学学报:信息科学版,2018,36(1):55-61.
SHAO X G,DONG H L, DAI LY. Review of microseismic monitoring technology[J]. Journal of Jilin University:Information Science Edition,2018,36(1):55-61.
10 冯天.油气田开发中微地震监测技术的应用[J].化工设计通讯,2018,44(7):47.
FENG T. Application of micro-seismic monitoring technology in oil and gas field development[J]. Chemical Engineering Design Communications,2018,44(7):47.
11 井岗,何俊,陈加松,等.盐穴储气库稳定性的实时微地震监测[J].油气储运,2018,37(7):751-756.
JING G, HE J, CHEN J S, et al. Application of real time micro-seismic technique to the stability monitoring of salt cavern gas storage[J]. Oil & Gas Storage and Transportation,2018,37(7):751-756.
12 田峰.地面微地震压裂监测技术在煤层气开发中的应用[J].中国煤炭地质,2018,30(8):75-78,90.
TIAN F. Application of surface microseismic fracturing monitoring technology in CBM exploitation[J]. Coal Geology of China,2018,30(8):75-78,90.
13 魏路路,井岗,徐刚,等.微地震监测技术在地下储气库中的应用[J].天然气工业,2018,38(8):41-46.
WEI L L, JING G, XU G, et al. Application of microseismic monitoring technology in underground gas storage[J]. Natural Gas Industry,2018,38(8):41-46.
14 任朝发,赵海波,陈百军,等地面微地震监测采集观测系统定位精度的影响因素分析——以大庆SZ探区为例[J].石油物探,2018,57(5):668-677.
REN C F,ZHAO H B,CHEN B J,et al.Analysis of location precision factors in surface microseismic monitoring acquisition geometry:A case study of an SZ exploration area in Daqing, China[J].Geophysical Prospecting for Petroleum,2018,57(5):668-677.
15 余洋洋,梁春涛,康亮,等.微地震地面监测系统的优化设计[J].石油地球物理勘探,2017,52(5):974-983,879.
YU Y Y, LIANG C T, KANG L, et al.Design optimization of surface-based microseismic monitoring system for hydraulic fracturing[J]. Oil Geophysical Prospecting,2017,52(5):974-983,879.
16 CHEN T, HUANG L J. Optimal design of microseismic monitoring network: Synthetic study for the Kimberlina CO2 storage demonstration site[J]. International Journal of Greenhouse Gas Control,2020:95.
17 黄小贞,谷红陶.井中微地震监测技术在平桥南页岩气区块应用效果分析[J].油气藏评价与开发,2020,10(1):43-48.
HUANG X Z, GU H T. Microseismic monitoring technology of shale gas block in the southern part of Pingqiao[J]. Reservoir Evaluation and Development,2020,10(1):43-48.
18 陈芷若,江山,刘亚昊,等.微地震裂缝监测技术及其进展[J].能源与环保,2019,41(2):73-76,81.
CHEN Z R,JIANG S,LIU Y H,et al.Overview and progress of microseismic fracture monitoring technology[J]. China Energy and Environmental Protection,2019,41(2):73-76,81.
19 王飞,黄振华,郭晓中,等.微地震地面监测技术在城口页岩气勘查区的应用[J].重庆科技学院学报:自然科学版,2019,21(1):1-4.
WANG F,HUANG Z H,GUO X Z,et al. Application of surface microseismic monitoring technology in Chengkou shale gas exploration area[J].Journal of Chongqing University of Science and Technology:Natural Sciences Edition,2019,21(1):1-4.
20 张国红,庞晶,蒲丽萍,等.呼图壁储气库微地震监测系统设计及配套工艺研究[J].新疆石油天然气,2014,10(4):82-86,5-6.
ZHANG G H,PANG J,PU L L,et al. Research on design of micro-seismic monitoring system and matching technology for undergrand gas storage of Hutubi[J].Xinjiang Oil & Gas,2014,10(4):82-86,5-6.
[1] 舒志恒, 方栋梁, 郑爱维, 刘超, 刘莉, 吉婧, 梁榜. 四川盆地焦石坝地区龙马溪组一段上部页岩气层地质特征及开发潜力[J]. 天然气地球科学, 2020, 31(3): 393-401.
[2] 胥洪成, 张士杰, 李翔, 郑得文, 王皆明, 宋丽娜, 赵凯, 裴根, 殷子橫. 气藏改建储气库下限压力设计新方法[J]. 天然气地球科学, 2020, 31(11): 1648-1653.
[3] 冯青, 王涛, 杨浩, 黄子俊, 李啸南. 煤层气压裂井裂缝参数优化及效果评价[J]. 天然气地球科学, 2018, 29(11): 1639-1646.
[4] 金凤鸣,贾善坡,张辉,林建品,尚翠娟,刘静,刘团辉,赵政嘉,席增强. 京津冀地区断陷盆地含水层储气库评价体系及目标优选[J]. 天然气地球科学, 2017, 28(9): 1433-1445.
[5] 费世祥,王东旭,林刚,潘晓丽,王勇,张保国,徐运动,刘雪玲. 致密砂岩气藏水平井整体开发关键地质技术——以苏里格气田苏东南区为例[J]. 天然气地球科学, 2014, 25(10): 1620-1629.
[6] 于刚,杜京蔚,邹晓燕,赵 新,狄 鹏. 华北储气库注采气井管柱优选研究[J]. 天然气地球科学, 2013, 24(5): 1086-1090.
[7] 班凡生,肖立志,袁光杰,申瑞臣.
大尺寸盐岩溶腔模型制备研究及应用
[J]. 天然气地球科学, 2012, 23(4): 804-806.
[8] 班凡生, 高树生, 王皆明. 枯竭油藏改建储气库注采运行机理研究[J]. 天然气地球科学, 2009, 20(6): 1005-1008.
[9] 王皆明,姜凤光. 砂岩油藏改建地下储气库注气能力预测方法[J]. 天然气地球科学, 2008, 19(05): 727-729.
[10] 王皆明, 姜凤光. 裂缝性潜山含水构造改建地下储气库库容计算方法[J]. 天然气地球科学, 2007, 18(5): 771-773.
[11] 王皆明;郭平;姜凤光;. 含水层储气库气驱多相渗流机理物理模拟研究[J]. 天然气地球科学, 2006, 17(4): 597-600.
[12] 班凡生,耿晶,高树生,单文文. 岩盐储气库水溶建腔的基本原理及影响因素研究[J]. 天然气地球科学, 2006, 17(2): 261-266.
[13] 王皆明;王丽娟;耿晶;. 含水层储气库建库注气驱动机理数值模拟研究[J]. 天然气地球科学, 2005, 16(5): 673-676.
[14] 孙以剑;王皆明;朱亚东;孟庆春;耿晶;. 一种预测砂岩油藏改建的地下储气库最大工作气量的新方法[J]. 天然气地球科学, 2005, 16(5): 677-679.
[15] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390-393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390 -393 .
[2] 王万春,刘文汇, 刘全有. 浅层混源天然气判识的碳同位素地球化学分析[J]. 天然气地球科学, 2003, 14(6): 469 -473 .
[3] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[4] 刘建锋 彭军 周康 殷孝梅 唐勇 刘金库. 川中—川南过渡带须家河组二段高分辨率层序地层学研究[J]. 天然气地球科学, 2009, 20(2): 199 -203 .
[5] 郭振华, 赵彦超. 大牛地气田盒2段致密砂岩气层测井评价[J]. 天然气地球科学, 2010, 21(1): 87 -94 .
[6] 王明艳, 郭建华, 旷理雄, 朱锐. 湘中坳陷涟源凹陷烃源岩油气地球化学特征[J]. 天然气地球科学, 2010, 21(5): 721 -726 .
[7] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .
[8] 赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球科学, 2012, 23(3): 393 -406 .
[9] 吉利明, 罗鹏. 样品粒度对黏土矿物甲烷吸附容量测定的影响[J]. 天然气地球科学, 2012, 23(3): 535 -540 .
[10] 游利军,李雷,康毅力,石玉江,张海涛,杨小明. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学, 2012, 23(4): 764 -769 .