天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1343–1354.doi: 10.11764/j.issn.1672-1926.2020.07.008

• 天然气开发 •    下一篇

多孔眼裂缝竞争起裂与扩展数值模拟

赵金洲1(),王强1(),胡永全1,任岚1,傅成浩2,赵超能1   

  1. 1.油气藏地质及开发工程国家重点实验室·西南石油大学,四川 成都 610500
    2.中国石化江汉油田采油气工程技术服务中心,湖北 潜江 433124
  • 收稿日期:2020-07-09 修回日期:2020-07-24 出版日期:2020-10-10 发布日期:2020-09-30
  • 通讯作者: 王强 E-mail:zhaojz@swpu.edu.cn;402038424@qq. com
  • 作者简介:赵金洲(1962-), 男, 湖北仙桃人, 教授, 博士生导师, 主要从事油气藏压裂酸化理论与应用研究和教学工作. E-mail:zhaojz@swpu.edu.cn.
  • 基金资助:
    国家科技重大专项“涪陵页岩气开发示范工程”(2016ZX05060)

Numerical simulation of multi-hole fracture competition initiation and propagation

Jin-zhou ZHAO1(),Qiang WANG1(),Yong-quan HU1,Lan REN1,Cheng-hao FU2,Chao-neng ZHAO1   

  1. 1.State Key Laboratory of Oil?Gas Reservoir Geology & Exploitation,Southwest Petroleum University,Chengdu 610500,China
    2.Sinopec Jianghan Oilfield Oil and Gas Production Engineering and Technical Service Center,Qianjiang 433124,China
  • Received:2020-07-09 Revised:2020-07-24 Online:2020-10-10 Published:2020-09-30
  • Contact: Qiang WANG E-mail:zhaojz@swpu.edu.cn;402038424@qq. com
  • Supported by:
    The China National Science & Technology Major Project (Grant No. 2016ZX05060).

摘要:

射孔是水力压裂作业成功实施的关键因素之一,射孔参数研究对于储层改造、油气开采具有重要意义。基于全局嵌入黏聚区域模型(Cohesive Zone Model),建立了模拟多孔眼裂缝起裂、扩展的有限元模型。模型把储层考虑为致密、低渗透性的孔弹性介质,耦合了裂缝中流体流动与地质应力间的相互作用。KGD解析解与模拟结果保持吻合,验证了黏聚区域模型的准确性。研究结果表明多孔眼起裂会表现出4种竞争起裂模式:第一,初期就起裂并维持张开;第二,孔眼张开但未曾起裂;第三,初期起裂扩展后又闭合;第四,初期未起裂中后期才起裂。随着射孔密度的增加,孔眼的起裂率和平均破裂压力逐渐降低,近井筒区域裂缝复杂度增加。随着排量与黏度的增加,孔眼的初始起裂率、形成的主裂缝以及微裂缝数量都呈增加的趋势,水平应力差的影响则与之相反。多个射孔孔眼存在时,裂缝通过合并或闭合的方式呈现出由复杂到简单的变化,裂缝数量表现出由多到少的变化,最终形成以2~4条主裂缝为主(按孔眼起裂形成的主缝数进行统计),微裂缝为辅的扩展模式。

关键词: 裂缝扩展, 射孔密度, 水力压裂, 竞争起裂, 黏聚区域模型

Abstract:

Perforation is the key to the successful implementation of hydraulic fracturing, and the study of perforation parameters is of great significance for reservoir reconstruction and oil and gas exploitation. Based on the global embedded cohesive zone model, a finite element model is established to simulate the initiation and propagation of multi-hole fractures. In the model, the reservoir is considered as a dense, low-permeability porous elastic medium, and the coupling effect of fluid and geomechanics during fracturing are considered. The KGD analytical solution is consistent with the simulation results, which verifies the accuracy of the cohesive zone model. The results show that there are four competitive modes for multi-hole crack initiation. Firstly, the cracks open at the beginning and remain open; Secondly, the hole is open but not cracked; Thirdly, the initial initiation extends and then closes; Finally, the initial crack did not start in the late crack. With the increase of perforation density, the perforation initiation rate and average fracture pressure gradually decrease, and the fracture complexity in the near-wellbore area increases. With the increase of displacement and viscosity, the initial crack rate, the number of main cracks and microcracks formed in the hole tend to increase, while the influence of horizontal stress difference is opposite. In the presence of multiple perforating holes, the crack propagation presents a change from complex to simple, and the number of cracks presents a change from more to less,Statistics are made according to the number of main hydraulic fractures formed at the perforation. The expansion mode is formed with 2-4 main cracks and micro cracks as auxiliary.

Key words: Fracture propagation, Perforation density, Hydraulic fracturing, Competitive initiation, Cohesive zone model

中图分类号: 

  • TE371

图1

分段多簇射孔及多孔眼理想裂缝扩展与真实裂缝扩展示意"

图2

黏聚区域模型与双线性牵引—分离定律"

图3

KGD解析解与本文模型结果的对比"

表1

模型中主要的输入参数"

输入参数
孔隙度0.1
初始孔隙压力/MPa10
基质抗张强度/MPa5
基质抗剪切强度/MPa20
岩石的拉伸临界断裂能/(J/m2)100
岩石的剪切临界断裂能/(J/m2)4 500
弹性模量/GPa10
泊松比0.25
流体黏度/(mPa·s)1
流体比重/(KN/m3)9.8
滤失系数/[(m3/s)·Pa]1×10-14
摩擦系数0.615

表2

5个研究示例的模型参数"

孔眼密度/孔射孔范围/m孔间距/m射孔深度/m模型大小(长/m×宽/m)
例1210.510×10
例2410.50.510×10
例3810.330.510×10
例41210.20.510×10
例51610.1430.510×10

图4

模型参数及网格结构"

图5

孔眼密度为16孔/m时裂缝的起裂与扩展动态"

图6

不同孔眼密度下裂缝起裂对比"

图7

孔眼在不同注入时间的起裂与闭合情况"

图8

压裂初期的起裂率以及射孔密度对平均破裂压力的影响"

图9

在10 s时不同射孔密度对应裂缝扩展形态的比较"

图10

5个实例在不同时刻的裂缝数量(基于孔眼底部的裂缝扩展情况进行统计)"

图11

不同孔眼密度下的裂缝总长度"

图12

排量对多孔眼裂缝起裂与扩展的影响"

图13

黏度对多孔眼裂缝起裂与扩展的影响"

图14

应力差对多孔眼裂缝起裂与扩展的影响"

1 吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术——内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358.
WU Q, XU Y, WANG X Q, et al. Volume fracturing technology of unconventional reservoirs: Connotation,optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.
2 黄中伟, 李根生. 水力射孔参数对起裂压力影响的实验研究[J]. 中国石油大学学报:自然科学版, 2007, 31(6): 48-54.
HUANG Z W, LI G S. Experimental study on effects of hydrau-perforation parameters on initial fracturing pressure[J]. Journal of China University of Petroleum: Edition of Natural Science, 2007, 31(6):48-54.
3 张广清, 陈勉, 殷有泉, 等. 射孔对地层破裂压力的影响研究[J]. 岩石力学与工程学报, 2003, 22(1): 40-44.
ZHANG G Q, CHEN M, YIN Y Q, et al. Study on influence of perforation on formation fracturing pressure[J]. Chinese Journal of Rock Mechanics and Engineering. 2003, 22 (1):40-44.
4 殷有泉, 陈朝伟, 李平恩. 套管—水泥环—地层应力分布的理论解[J]. 力学学报, 2006, 38(6): 835-842.
YIN Y Q, CHEN C W, LI P E. Theoretical solutions of stress distribution in casing-cement and stratum system[J]. Chinese Journal of Theoretical and Applied Mechanics. 2006, 38(6): 835-842.
5 任岚, 林然, 赵金洲, 等. 页岩气水平井增产改造体积评价模型及其应用[J]. 天然气工业, 2018, 38(8): 47-56.
REN L, LIN R, ZHAO J Z, et al. A stimulated reservoir volume(SRV)evaluation model and its application to shale gas well productivity enhancement[J].Natural Gas Industry, 2018, 38(8): 47-56.
6 赵金洲, 王松, 李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业 , 2012, 32(4): 46-49.
ZHAO J Z, WANG S, LI Y M. Difficulties and key techniques in the fracturing treatment of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46-49.
7 王祖文, 郭大立, 邓金根, 等. 射孔方式对压裂压力及裂缝形态的影响[J]. 西南石油学院学报, 2005, 27(5):47-50.
WANG Z W, GUO D L, DENG J G, et al. Effect of perforation mode on the fracturing pressure and cranny geometric shape[J]. Journal of Southwest Petroleum College, 2005, 27(5):47-50.
8 DANESHY A A. Experimental investigation of hydraulic fracturing through perforations[J].Journal of Petroleum Technology, 1973, 25(10):1201-1206.
9 RABAA W E. Experimental study of hydraulic fracture geometry initiated from horizontal wells[C]∥Paper SPE-19720-MS, Presented at the SPE Annual Technical Conference and Exhibition, 8-11October 1989, San Antonio, Texas.
10 ZHANG R, HOU B, SHAN Q, et al. Hydraulic fracturing initiation and near-wellbore nonplanar propagation from horizontal perforated boreholes in tight formation[J].Journal of Natural Gas Science and Engineering, 2018, 55: 337-349.
11 WANG B, LI J, LIU G, et al. Near-wellbore fracture propagation physical simulation based on innovative interlaced fixed perforation[J]. Petroleum Exploration and Development, 2019, 46(6): 1260-1270.
12 ISPAS I, EVE R, HICKMAN R J, et al. Laboratory testing and numerical modelling of fracture propagation from deviated wells in poorly consolidated formations[C]∥Paper SPE-159262- MS, Presented at the SPE Annual Technical Conference and Exhibition, 8-10October 2014, San Antonio, Texas, USA.
13 ZHANG X, JEFFREY R G, BUNGER A P, et al. Initiation and growth of a hydraulic fracture from a circular wellbore[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48: 984-995.
14 ZHAO J Z, CHEN X Y, LI Y M, et al. Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J].Petroleum Exploration and Development, 2017, 44(1): 119-126.
15 刘泉声, 甘亮, 吴志军, 等. 基于零厚度黏聚力单元的水力压裂裂隙空间分布影响分析[J]. 煤炭学报, 2018, 43(S2): 393-402.
LIU Q S, GAN L, WU Z J, et al. Analysis of spatial distribution of cracks caused by hydraulic fracturing based on zero-thickness cohesive elements[J].Journal of China Coal Society, 2018, 43(S2):393-402.
16 梁卫国, 杨健锋, 廉浩杰, 等. 基于黏聚型裂纹本构关系的煤岩水力压裂韧性破坏模型[J]. 煤炭学报, 2019, 44(1): 263-270.
LIANG W G, YANG J F, LIAN H J, et al. Modelling ductile failure of coals in hydraulic fracturing based on the constitutive equations of cohesive cracks[J]. Journal of China Coal Society, 2019, 44(1): 263-270.
17 张汝生,王强,张祖国, 等. 水力压裂裂缝三维扩展ABAQUS数值模拟研究[J]. 石油钻采工艺, 2012, 34(6): 69-72.
ZHANG R S, WANG Q, ZHANG Z G, et al. Research of ABAQUS numerical simulation of 3D fracture propagation in hydraulic fracturing process[J]. Oil Drilling & Production Technology, 2012, 34(6): 69-72.
18 龚迪光, 曲占庆, 李建雄, 等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. 岩土力学, 2016, 37(5): 1512-1520.
GONG D G, QU Z Q, LI J X, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 2016, 37(5): 1512-1520.
19 WANG H. Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method[J].Journal of Petroleum Science and Engineering, 2015, 135: 127-140.
20 WANG H. HF propagation in naturally fractured reservoirs: Complex fracture or fracture networks[J].Journal of Natural Gas Science and Engineering, 2019, 68: 102911.
21 尚校森, 丁云宏, 杨立峰, 等. 基于结构弱面及缝间干扰的页岩缝网压裂技术[J]. 天然气地球科学, 2016, 27(10): 1883-1891.
SHANG X S, DING Y H, YANG L F, et al. Network fracturing technique in shale reservoirs based on weak discontinuity and fracture interaction[J]. Natural Gas Geoscience, 2016, 27(10): 1883-1891.
22 王宇, 李晓, 王金波, 等. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941-1950.
WANG Y, LI X, WANG J B, et al. Numerical modeling of stress shadow effect on hydraulic fracturing[J]. Natural Gas Geoscience, 2015, 26(10): 1941-1950.
23 赵金洲, 周莲莲, 马建军, 等. 考虑解吸扩散的页岩气藏气水两相压裂数值模拟[J]. 天然气地球科学, 2015, 26(9): 1640-1645.
ZHAO J Z, ZHOU L L, MA J J, et al. Numerical simulation of fracturing wells considering desorption and diffusion effect for shale gas with gas-water two phases[J]. Natural Gas Geoscience, 2015, 26(9): 1640-1645.
24 赵立强, 刘飞, 王佩珊, 等. 复杂水力裂缝网络延伸规律研究进展[J]. 石油与天然气地质, 2014, 35(4): 562-569.
ZHAO L Q, LIU F, WANG P S, et al. A review of creation and propagation of complex hydraulic fracture network[J]. Oil & Gas Geology, 2014, 35(4): 562-569.
25 赵博雄, 王忠仁, 刘瑞, 等. 国内外微地震监测技术综述[J]. 地球物理学进展, 2014, 29(4): 1882-1888.
ZHAO B X, WANG Z R, LIU R, et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics, 2014, 29(4): 1882-1888.
26 TOMAR V, ZHAI J, ZHOU M. Bounds for element size in a variable stiffness cohesive finite element model[J] International Journal for Numerical Methods in Engineering, 2004, 61(11): 1894-1920.
27 GUO J, ZHAO X, ZHU H, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science and Engineering,2015, 25: 180-188.
28 DAHI-TALEGHANI A, GONZALEZ-CHAVEZ M, YU H, et al. Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model[J].Journal of Petroleum Science and Engineering, 2018, 165: 42-57.
29 KANNINEN M F, POPELAR C H. Advanced Fracture Mechanics[M]. first editor. Oxford University Press, Oxford, UK, 1985.
30 KHRISTIANOVICH S, ZHELTOV Y. Formation of vertical fractures by means of highly viscous fluids[C]. Proc. 4th World Petroleum Congress, Rome, Sec. 1955, II 579-586.
31 GEERTSMA J, DE KLERK F. A rapid method of predicting width and extent of hydraulic induced fractures[J]. Journal of Petroleum Technology.1969, 246: 1571-1581.
[1] 游利军, 李鑫磊, 康毅力, 陈明君, 刘江. 富有机质页岩储层热激致裂增渗的有利条件[J]. 天然气地球科学, 2020, 31(3): 325-334.
[2] 陈立超, 王生维. 煤岩断裂力学性质对储层压裂改造的影响[J]. 天然气地球科学, 2020, 31(1): 122-131.
[3] 陈立超, 王生维, . 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学, 2019, 30(4): 503-511.
[4] 曾凡辉, 唐波涛, 王涛, 郭建春, 肖勇军, 张守仁. 考虑渗滤效应的压裂裸眼井破裂压力预测模型[J]. 天然气地球科学, 2019, 30(4): 549-556.
[5] 赵金洲,赵金,胡永全,黄婷,刘欣佳. 水力压裂裂缝应力场变化规律[J]. 天然气地球科学, 2019, 30(12): 1677-1683.
[6] 周彤,苏建政,李凤霞,刘国庆,廖如刚. 基于停泵压力降落曲线分析的压后裂缝参数反演[J]. 天然气地球科学, 2019, 30(11): 1646-1654.
[7] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[8] 巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268-276.
[9] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[10] 付海峰, 刘云志, 梁天成, 翁定为, 卢拥军, 修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[11] 杜书恒, 赵晔, 庞姗, 师永民. 岩石水力压裂微观破裂机制[J]. 天然气地球科学, 2016, 27(12): 2237-2245.
[12] 尚校森, 丁云宏, 杨立峰, 卢拥军, 鄢雪梅, 王永辉. 基于结构弱面及缝间干扰的页岩缝网压裂技术[J]. 天然气地球科学, 2016, 27(10): 1883-1891.
[13] 王宇,李晓,王金波,郑博,张搏,赵志恒. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941-1950.
[14] 杜书恒,师永民. 低渗油气藏水力压裂理想水驱波及范围预测新方法[J]. 天然气地球科学, 2015, 26(10): 1956-1962.
[15] 张小东,张硕,杨艳磊,张鹏,魏高洋. 基于分形理论的煤储层水力压裂裂缝数值模拟[J]. 天然气地球科学, 2015, 26(10): 1992-1998.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙陈启林,. 岩性圈闭与陆相盆地岩性油气藏勘探[J]. 天然气地球科学, 2006, 17(5): 616 -621 .
[2] 杨满平,李允. 考虑储层初始有效应力的岩石应力敏感性分析[J]. 天然气地球科学, 2004, 15(6): 601 -603 .
[3] 李树同,王多云,王彬,陶辉飞,刘志伟 . 坳陷型湖盆缓坡边缘沉积坡折带的识别—以鄂尔多斯盆地三叠纪延长期沉积坡折带为例[J]. 天然气地球科学, 2008, 19(1): 83 -88 .
[4] 马玉杰,郜国玺,张丽娟,周厉,黄新林,郝祥宝 . 迪那2气田气藏类型研究[J]. 天然气地球科学, 2004, 15(1): 91 -94 .
[5] 洪 峰,宋 岩,柳少波,赵孟军,秦胜飞,傅国友 . 中国中西部前陆盆地生储盖组合及成藏基本要素匹配分析[J]. 天然气地球科学, 2007, 18(1): 27 -31 .
[6] 于俊峰;夏斌;许静;. 对渤海湾盆地张扭、压扭性构造的一点认识[J]. 天然气地球科学, 2006, 17(4): 473 -476 .
[7] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .
[8] 朱华银,胡 勇,韩永新,邵 锐,杨桂梅 . 大庆深层火山岩储层应力敏感性研究[J]. 天然气地球科学, 2007, 18(2): 197 -199 .
[9] 刘全有,刘文汇,孟仟祥. 热模拟实验中煤岩及显微组分饱和烃甾烷系列化合物有机地球化学特征[J]. 天然气地球科学, 2007, 18(2): 249 -253 .
[10] 周新桂;张林炎;范 昆. 含油气盆地低渗透储层构造裂缝定量预测方法和实例[J]. 天然气地球科学, 2007, 18(3): 328 -333 .