天然气地球科学 ›› 2020, Vol. 31 ›› Issue (8): 1111–1125.doi: 10.11764/j.issn.1672-1926.2020.07.002

• 天然气地质学 • 上一篇    下一篇

塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示

李慧莉1(),尤东华2,韩俊3,钱一雄2,沙旭光3,席斌斌2   

  1. 1.中国石化石油勘探开发研究院,北京 100083
    2.中国石化石油勘探开发研究院无锡石油地质研究所,江苏  无锡  214126
    3.中国石化西北油田分公司勘探开发研究院,新疆  乌鲁木齐  830011
  • 收稿日期:2020-05-25 修回日期:2020-06-20 出版日期:2020-08-10 发布日期:2020-07-29
  • 作者简介:李慧莉(1972-),女,天津武清人,高级工程师,博士,主要从事油气成藏与石油地质综合研究. E-mail: lihl.syky@sinopec.com.
  • 基金资助:
    中国石油化工股份有限公司科技部项目“顺北地区地质流体对碳酸盐岩储层的改造作用”(P18047-1);中国科学院战略性先导科技专项(A类) “深层油气勘探目标评价与优选”(XDA14010406)

The fluid origin of calcite veins in Shunnan-Gucheng area of Tarim Basin and its implications for hydrocarbon accumulation

Hui-li LI1(),Dong-hua YOU2,Jun HAN3,Yi-xiong QIAN2,Xu-guang SHA3,Bin-bin XI2   

  1. 1.Petroleum Exploration & Production Research Institute, SINOPEC, Beijing 100083, China
    2.Wuxi Research Institute of Petroleum Geology, Petroleum Exploration & Production Research Institute, SINOPEC, Wuxi 214126, China
    3.Northwest Oilfield Branch of Exploration and Development Research Institute, SINOPEC, Urumqi 830011, China
  • Received:2020-05-25 Revised:2020-06-20 Online:2020-08-10 Published:2020-07-29
  • Supported by:
    The Technology Department Program of SINOPEC(P18047-1);The Chinese Academy of Sciences Strategic Leading Science and Technology Project (Class A)(XDA14010406)

摘要:

钻井揭示塔里木盆地顺南—古城地区奥陶系碳酸盐岩方解石脉发育,为探讨该区断裂带流体属性及油气成藏事件提供了重要素材。在详细的岩心观察基础上,开展了方解石脉的流体包裹体以及灰岩基质与方解石脉的地球化学特征对比研究。方解石脉具有多类型的烃类包裹体,包括沥青包裹体、三相烃包裹体、油水液相包裹体以及富气包裹体。方解石脉中与烃类包裹体共生的盐水包裹体具有较高的均一温度(130~160 ℃)。贫18O(δ18O =-13.1‰~-8.7‰)、富87Sr(87Sr/86Sr=0.708 879~0.710 432)、偏高稀土元素总量和正铕异常表明构造成因方解石脉主要来源于围岩的溶解以及成岩—成烃流体,未发现大气淡水参与的迹象。方解石脉中富含烃类包裹体可能表明研究区北东向走滑断裂带是油气运移与聚集的重要通道。

关键词: 方解石脉, 成岩—成烃流体, 顺南—古城地区, 塔里木盆地

Abstract:

The high-angle, structural genetic calcite veins of the Ordovician in Shunnan-Gucheng area in Tarim Basin provide a convenient to study the fluid properties and hydrocarbon migration to accumulation events in fault zone of this area. Based on detailed core investigation, studies of fluid inclusions in calcite veins and comparison of geochemical characteristics of limestone matrix and calcite veins were carried out. Multiple types of hydrocarbons inclusion, including dry asphalt inclusion, three-phase hydrocarbon inclusion, oil and water inclusion, gas-rich inclusion, were found in calcite veins. And the coexisted aqueous inclusions with gas-liquid phase had high homogenization temperature (130-160 ℃). The distribution characteristics of 18O-depleted (δ18O: -13.1‰ to -8.7‰), 87Sr-enriched (87Sr/86Sr: 0.708 879 to 0.710 432), relatively high total Rare Earth Elements and positive Europium Anomalies indicated that the structural origin of calcite veins were mainly derived from the dissolution of surrounding rocks and diagenetic-hydrocarbon fluids. Participation signs of meteoric water were not proved. The rich hydrocarbon inclusions in the calcite veins indicated that the north-east strike-slip fault zone in Shunnan-Gucheng area is an important channel for hydrocarbon migration and accumulation.

Key words: Calcite veins, Diagenetic-hydrocarbon fluid, Shunnan-Gucheng area, Tarim Basin

中图分类号: 

  • TE122

图1

顺南—古城地区的构造单元位置、主要钻井与地层岩性柱状图"

图2

研究区奥陶系灰岩方解石脉的典型特征(a) 终止于缝合线的方解石脉; (b) 切割缝合线的构造缝方解石脉且边缘不平直;(c) 边缘平直的构造缝方解石脉; (d) 雁列式构造缝方解石脉(边缘平直)"

表1

顺南—古城地区钻井岩心的方解石脉特征及样品采集"

井名样品编号岩心块号深度/m产状描述
性质倾角与宽度边缘特征
顺南1SN1-12-4/406 531.3构造缝70°~80°,细脉边缘平直
SN1-22-12/406 532.2构造缝60°~80°,下细上粗边缘呈阶梯状
SN1-32-13/406 532.34构造缝
SN1-42-15/406 532.9构造缝
顺南2SN2-11-7/366 376.18构造缝60°~70°,粗脉边缘平直
SN2-92-22/476 454.4构造缝80°~90°,粗脉边缘不平直,具压溶特征
SN2-253-55/566 554.56构造缝近垂直,粗脉切割缝合线,较平直
SN2-345-14/496 870.95构造缝近垂直,粗脉边缘不平直,伴生次级裂缝
SN2-355-27/496 872.6构造缝50°~60°,中—粗脉边缘较平直,切割缝合线,伴生次级裂缝
古隆2GL2-11-23/455 757.73构造缝60°~70°,粗脉边缘平直,伴生次级裂缝
GL2-21-41/455 761.73构造缝近垂直,粗脉边缘不平直,碎裂缝
GL2-32-8/475 783.6构造缝60°~70°,中细脉边缘平直,具压溶特征
GL2-42-22/475 786.95构造缝60°左右,粗脉边缘较平直
古隆3GL3-52-22/626 062.32构造缝60°~70°,中细脉雁列式,边缘平直
GL3-62-37/626 064.6构造缝60°~70°,中细脉边缘平直
GL3-72-47/626 065.9构造缝60°~70°,细脉边缘平直
GL3-82-48/626 066.2构造缝

表2

顺南—古城地区方解石与围岩的碳氧同位素、锶同位素分析结果"

样号样品名称井深/m岩心块号层位δ13C/‰(VPDB)δ18O/‰(VPDB)锶同位素
87Sr/86Sr标准方差
SN1-2-2方解石脉6 532.22-12/40O2yj0.708 8810.000 012
SN1-3-1基质6 532.342-13/400.1-7.70.708 7060.000 019
SN1-3-2方解石脉-0.2-9.30.708 8790.000 015
GL2-1-1基质5 757.731-23/45O2yj0.5-8.60.709 2320.000 011
GL2-1-2方解石脉0.2-10.20.710 1060.000 017
GL2-2-1基质5 761.731-41/450.4-8.60.709 2260.000 011
GL2-2-2方解石脉0.4-10.60.709 950.000 016
GL2-3-1基质5 783.62-8/470.2-8.30.709 3750.000 016
GL2-3-2方解石脉-0.4-9.60.709 9770.000 018
GL2-4-1基质5 786.952-22/470.2-8.20.709 2820.000 017
GL2-4-2方解石脉0.2-10.30.709 8080.000 017
SN2-1-1基质6 376.181-7/36O3qe1-10.20.709 710.000 01
SN2-1-2方解石脉-1-11.60.710 4320.000 009
SN2-9-1基质6 454.42-22/47O2yj-0.2-9.10.708 760.000 015
SN2-9-2方解石脉-1.7-11.80.709 3860.000 012
SN2-25-1基质6 554.563-55/56O1-2ys-0.3-9.70.708 9140.000 014
SN2-25-2方解石脉-0.3-10.80.709 6340.000 016
SN2-35-1基质6 872.65-27/49-2.4-11.4
SN2-35-2方解石脉-2.4-13.1
GL3-5-1基质6 062.322-22/62O2yj-0.5-7.50.708 9890.000 01
GL3-5-2方解石脉-1.3-11.4
GL3-6-1基质6 064.62-37/62-0.7-7.20.709 0020.000 013
GL3-6-2方解石脉-1-8.7
GL3-7-1基质6 065.92-47/62-0.5-7.40.708 9450.000 01
GL3-7-2方解石脉-1.1-10.70.709 3950.000 013
GL3-8-1基质6 066.22-48/62-0.6-7.60.709 0250.000 011
GL3-8-2方解石脉-1.5-120.709 6040.000 018

表3

顺南—古城地区奥陶系碳酸盐岩方解石脉与围岩的稀土元素分析结果"

样号

样品

名称

井深/m地质年代La/(μg/g)Ce/(μg/g)Pr/(μg/g)Nd/(μg/g)Sm/(μg/g)Eu/(μg/g)Gd/(μg/g)Tb/(μg/g)Dy/(μg/g)Ho/(μg/g)Er/(μg/g)Tm/(μg/g)Yb/(μg/g)Lu/(μg/g)∑REE
SN1-1-1基质6 531.3O2yj1.251.810.240.930.180.0420.220.0290.180.0380.120.0140.0950.0135.16
SN1-1-2方解石脉1.542.830.381.610.300.180.360.0400.180.0310.070.0070.0300.0047.55
SN1-2-1基质6 532.21.251.680.230.920.170.0470.230.0300.190.0430.130.0180.1120.0165.06
SN1-2-2方解石脉0.931.740.281.240.270.140.370.0470.270.0530.120.0120.0560.0075.55
SN1-3-1基质6 532.341.291.760.240.950.180.0460.220.0320.210.0440.140.0170.1140.0175.25
SN1-3-2方解石脉1.062.120.341.510.360.170.450.0600.310.0560.140.0130.0560.0076.64
SN1-4-1基质6 532.91.451.950.271.070.210.050.250.0380.230.0510.150.0200.1300.0205.88
SN1-4-2方解石脉1.202.310.361.610.370.190.460.0600.320.0580.140.0130.0580.0067.16
GL2-1-1基质5 757.73O2yj0.901.460.200.770.150.0340.190.0280.180.0400.120.0170.1090.0164.21
GL2-1-2方解石脉0.741.480.210.910.190.0710.250.0320.200.0390.110.0120.0660.0084.33
GL2-2-1基质5 761.730.931.390.180.730.130.0330.160.0230.150.0310.100.0140.0900.0143.96
GL2-2-2方解石脉0.941.710.230.940.200.0650.250.0340.200.0400.120.0140.0890.0124.83
GL2-3-1基质5 783.60.761.140.150.630.120.0320.160.0240.150.0330.110.0140.0960.0133.42
GL2-3-2方解石脉0.651.070.150.640.130.0650.170.0260.140.0300.080.0100.0460.0073.22
GL2-4-1基质5 786.951.081.590.220.850.160.0380.200.0300.190.0430.130.0190.1230.0184.69
GL2-4-2方解石脉0.821.490.220.940.210.0630.280.0410.250.0540.160.0200.1100.0164.67
SN2-1-1基质6 376.18O3qe18.1344.763.5512.562.280.462.600.321.790.341.070.151.020.1589.20
SN2-1-2方解石脉4.7219.312.179.372.001.032.040.241.080.180.430.0400.2100.02542.84
SN2-9-1基质6 454.4O2yj1.702.100.311.260.270.0660.350.0540.360.0850.260.0350.2310.0347.09
SN2-9-2方解石脉1.733.370.421.700.390.100.500.0830.580.130.430.0640.4070.0589.97
SN2-25-1基质6 554.56O1-2ys1.152.300.270.980.190.0500.200.0250.150.030.090.0110.0700.0105.51
SN2-25-2方解石脉3.558.621.064.130.760.260.820.0940.470.090.240.0270.1550.02020.29
SN2-34-1基质6 870.950.591.130.130.470.080.0200.100.0110.070.010.040.0060.0340.0052.69
SN2-34-2方解石脉2.755.460.592.140.360.110.420.0470.230.040.110.0120.0680.00912.34
SN2-35-1基质6 872.60.961.670.180.630.100.0280.130.0140.080.010.040.0060.0330.0063.89
SN2-35-2方解石脉3.968.060.842.890.460.130.500.0420.160.030.070.0070.0480.00517.19
GL3-5-1基质6 062.32O2yj0.741.110.120.450.080.0250.0860.0100.050.010.030.0040.0280.0042.74
GL3-5-2方解石脉1.311.570.160.550.090.0520.110.0130.060.010.030.0040.0230.0033.98
GL3-7-1基质6 065.90.881.610.190.660.120.0260.130.0160.090.020.050.0080.0480.0073.85
GL3-7-2方解石脉2.384.160.461.620.300.0900.330.0370.200.040.090.0100.0600.0089.78
GL3-8-1基质6 066.21.031.900.210.770.150.0390.150.0190.110.020.070.0090.0640.0104.54
GL3-8-2方解石脉2.143.050.301.040.180.0740.210.0230.120.020.060.0070.0460.0077.27

图3

研究区奥陶系灰岩基质的稀土配分特征"

图4

构造缝方解石脉与灰岩基质的稀土配分特征对比(a)恰尔巴克组;(b)鹰山组;(c)顺南1井一间房组;(d)顺南2井一间房组;(e)古隆2井一间房组;(f)古隆3井一间房组"

图5

方解石脉流体包裹体类型(a) 干沥青包裹体(黄色箭头)与三相烃类包裹体(红色箭头)、透明无色气液两相烃包裹体(绿色箭头)、气液两相盐水包裹体共生, 2-4/40,顺南1井,透射光;(b)干沥青包裹体(黄色箭头)与三相烃类包裹体(红色箭头)、透明无色气液两相烃包裹体(绿色箭头)、气液两相盐水包裹体共生, 2-4/40,顺南1井,荧光;(c)富CH4的气包裹体(蓝色箭头),2-4/40,顺南1井,透射光;(d)三相烃包裹体(红色箭头)、气液两相烃包裹体(绿色箭头)与气液两相盐水包裹体共生(白色箭头),2-4/40,顺南1井,透射光;(e)三相烃包裹体(红色箭头)、气液两相烃包裹体(绿色箭头)与气液两相盐水包裹体共生,2-4/40,顺南1井,荧光;(f)含甲烷的气液两相盐水包裹体(蓝色箭头)与气液两相盐水包裹体(白色箭头),2-13/40,顺南1井,透射光;(g) 液相油水包裹体(红色箭头为发荧光的液态油,白色箭头为无荧光的液态水,油水界面清晰可见),2-13/40,顺南1井,透射光;(h)液相油水包裹体(红色箭头为发荧光的液态油),2-13/40,顺南1井,荧光;(i)富气包裹体(蓝色箭头),1-41/45,古隆2井,透射光"

图6

典型烃包裹体的拉曼光谱特征(a)富CH4包裹体;(b)含CH4甲烷的两相盐水包裹体气相组分;(c)包裹体沥青组分"

表4

方解石脉赋存的(含烃)盐水包裹体的测温结果"

井名样品编号

深度

/m

均一温度/℃
最小值最大值平均值
顺南1SN1-16 531.3108.4169141.8(n=23)
SN1-36 532.34115.6172.2137(n=20)
古隆2GL2-15 757.73144.8167.6155.6(n=14)
GL2-25 761.73126175.3147(n=24)
GL2-35 783.6129.8164.6145.3(n=31)
GL2-45 786.95127156.8146.1(n=27)
古隆3GL3-56 062.32137.5165.2148.6(n=15)
GL3-66 064.6140.1180.9155.7(n=22)
GL3-76 065.9137.8153.5146.8(n=10)
GL3-86 066.2113156134.5(n=20)

图7

方解石脉(含烃)盐水包裹体均一温度分布直方图"

图8

方解石脉与围岩的碳、氧同位素组成分布特征"

图9

方解石脉与围岩的锶同位素组成分布特征"

1 邬光辉,李建军,卢玉红.塔中Ⅰ号断裂带奥陶系灰岩裂缝特征探讨[J]. 石油学报, 1999,20(4):19-23.
WU G H, LI J J, LU Y H. The fracture characteristics of Ordovician limestone in Tazhong No.1 fault belt[J]. Acta Petrolei Sinica, 1999,20(4):19-23.
2 张丽娟, 邬光辉, 何曙, 等. 碳酸盐岩断层破碎带构造成岩作用——以塔中Ⅰ号断裂带为例[J]. 岩石学报, 2016, 32(3): 922-934.
ZHANG L J, WU G H, HE S, et al. Structural diagenesis in carbonate fault damage zone: A case study of the No.1 fault zone in the Tarim Basin[J]. Acta Petrologica Sinica, 2016, 32(3): 922-934.
3 SUCHY V, HEIJLEN W, SYKOROVA I, et al. Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): Evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif[J]. Sedimentary Geology, 2000, 131:201-219.
4 BARKER S L L, BENNETT V C, COX S F, et al. Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid-rock reaction and geochronology[J]. Chemical Geology, 2009, 268: 58-66.
5 NURIEL P, WEINBERGER R, ROSENBAUM G, et al. Timing and mechanism of late-Pleistocene calcite vein formation across the Dead Sea Fault Zone, northern Israel[J]. Journal of Structural Geology, 2012, 36: 43-54.
6 刘恩涛, ZHAO J X, 潘松圻, 等. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法[J]. 地球科学, 2019, 44(3): 698-712.
LIU E T, ZHAO J X, PAN S Q, et al. A new technology of basin fluid geochronology: in-situ U-Pb Dating of Calcite[J]. Earth Science, 2019, 44(3): 698-712.
7 LEFÈVRE M, GUGLIELMI Y, HENRY P, et al. Calcite veins as an indicator of fracture dilatancy and connectivity during strike-slip faulting in Toarcian shale (Tournemire tunnel, Southern France)[J]. Journal of Structural Geology, 2016, 83: 73-84.
8 GAO G, ELMORE R D, LAND L S. Geochemical constraints on the origin of calcite veins and associated limestone alteration, Ordovician Viola Group, Arbuckle Mountains, Oklahoma U.S.A.[J].Chemical Geology, 1992, 98: 257-269.
9 MORAD S, AL-AASM I S, SIRAT M, et al. Vein calcite in cretaceous carbonate reservoirs of Abu Dhabi: Record of origin of fluids and diagenetic conditions[J]. Journal of Geochemical Exploration, 2010, 106:156-170.
10 MASKENSKAYA O M, DRAKE H, ÅSTRÖM M E. Geochemistry of calcite veins: Records of fluid mixing and fluid-rock interaction[J]. Procedia Earth and Planetary Scicence, 2013, 7: 566-569.
11 STURROCK C P, CATLOS E J, MILLER N R, et al. Fluids along the north Anatolian fault, Niksar Basin, north central Turkey: Insight from stable isotopic and geochemical analysis of calcite veins[J]. Journal of Structural Geology, 2017, 101: 58-79.
12 CAO J, JIN Z, HU W, et al. Improved understanding of petroleum migration history in the Hongche fault zone, northwestern Junggar Basin (northwest China): Constrained by vein-calcite fluid inclusions and trace elements[J]. Marine and Petroleum Geology, 2010, 27:61-68.
13 LI R, DONG S, LEHRMANN D. et al. Tectonically driven organic fluid migration in the Dabashan Foreland Belt: Evidenced by geochemistry and geothermometry of vein-filling fibrous calcite with organic inclusions[J]. Journal of Asian Earth Sciences, 2013, 75: 202-212.
14 NOMURA S F, SAWAKUCHI A O, BELLO R M S, et al. Paleotemeratures and paleofluids recorded in fluid inclusions from calcite veins from the northern flank of the Ponta Grossa dyke swarm: Implications for hydrocarbon generation and migration in the Paraná Basin[J]. Marine and Petroleum Geology, 2014, 52: 107-124.
15 SUCHÝ V, DOBEŠ P, SÝKOROVÁ I, et al. Oil-bearing inclusions in vein quartz and calcite and bitumens in veins: Testament to multiple phases of hydrocarbon migration in the Barrandian Basin (Lower Palaeozoic), Czech Republic[J]. Marine and Petroleum Geology, 2010, 27: 285-297.
16 张鼐,赵宗举,肖中尧,等.塔中Ⅰ号坡折带奥陶系裂缝方解石烃包裹体特征及成藏[J]. 天然气地球科学, 2010,21(3): 389-396.
ZHANG N, ZHAO Z J, XIAO Z Y, et al. Characteristics of hydrocarbon fluid in the Ordovician vein calcite of Tazhong No.1 slope-break zone[J]. Natural Gas Geoscience,2010, 21(3): 389-396.
17 张鼐,王招明,杨海军,等.塔中Ⅰ号坡折带奥陶系流体包裹体期次及地质意义[J]. 新疆石油地质, 2010,31(1):22-25.
ZHANG N, WANG Z M, YANG H J, et al. The stages and significance of Ordovician fluid inclusions in Tazhong No.1 slope break[J]. Xinjiang Petroleum Geology,2010,31(1):22-25.
18 秦启荣,刘胜,张宗命.塔中Ⅰ号断裂带O2+3石灰岩裂缝期次研究[J]. 天然气工业, 2002,22(6):117-118.
QIN Q R, LIU S, ZHANG Z M. The fracture phase study of O2+3 limestone in Tazhong 1# fracture zone[J]. Natural Gas Industry,2002,22(6):117-118.
19 秦启荣,刘胜,苏培东.塔中Ⅰ号断裂带O2+3灰岩储层裂缝特征[J]. 石油与天然气地质, 2002,23(2):183-185.
QIN Q R, LIU S, SU P D. Characteristics of O2+3 limestone reservoir rift in Tazhong 1# fracture zone[J]. Oil & Gas Geology,2002,23(2):183-185.
20 云露,曹自成.塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014,35(6):788-797.
YUN L, CAO Z C. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014,35(6):788-797.
21 王铁冠,宋到福,李美俊,等.塔里木盆地顺南—古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014,35(6):753-762.
WANG T G, SONG D F, LI M J, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014,35(6):753-762.
22 曹颖辉, 王珊, 张亚金, 等. 塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J]. 石油勘探与开发, 2019, 46(6): 1099-1114.
CAO Y H, WANG S, ZHANG Y J, et al. Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng area, Tarim Basin, China[J]. Petroleum Exploration and Development, 2019, 46(6): 1099-1114.
23 沙旭光, 马庆佑, 吕海涛, 等. 塔里木盆地古城墟隆起奥陶系油气成藏特征及主控因素[J]. 海相油气地质, 2014, 19(2): 15-22.
SHA X G, MA Q Y, LU H T, et al. Hydrocarbon accumulation and main controlling factors of Ordovician reservoir in Guchengxu uplift, Tarim Basin[J]. Marin Origin Petroleum Geology, 2014, 19(2): 15-22.
24 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.
QI L X. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51.
25 朱秀香, 陈绪云, 曹自成. 塔里木盆地顺托果勒低隆起顺托1井区油气成藏模式[J]. 石油实验地质, 2017, 39(1): 41-49.
ZHU X X, CHEN X Y, CAO Z C. Hydrocarbon accumulation mode of Shuntuo 1 well block in the Shuntuoguole lower uplift,Tarim Basin[J].Petroleum Geology & Experiment,2017, 39(1): 41-49.
26 何治亮, 云露, 尤东华, 等. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测[J]. 地学前缘, 2019, 26(1):1-9.
HE Z L, YUN L, YOU D H, et al. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions. Tarim Basin[J]. Earth Science Frontiers, 2019, 26(1):1-9.
27 黄太柱. 塔里木盆地塔中北坡构造解析与油气勘探方向[J]. 石油实验地质, 2014,36(3):257-267.
HUANG T Z. Structural interpretation and petroleum exploration targets in northern slope of middle Tarim Basin[J]. Petroleum Geology and Experiment, 2014,36(3):257-267.
28 杨圣彬,刘军,李慧莉,等.塔中北围斜区北东向走滑断裂特征及其控油作用[J]. 石油与天然气地质, 2013,34(6):797-802.
YANG S B, LIU J, LI H L, et al. Characteristics of the NE-trending strike-slip fault system and its control on oil accumulation in north peri-cline area of the Tazhong paleouplift[J]. Oil & Gas Geology, 2013,34(6): 797-802.
29 陈永权, 关宝珠, 熊益学, 等. 复式盖层、走滑断裂带控储控藏作用——以塔里木盆地满西—古城地区下奥陶统白云岩勘探为例[J]. 天然气地球科学, 2015, 26(7): 1268-1276.
CHEN Y Q, GUAN B Z, XIONG Y X, et al. Compound cap rocks and slide faults controlling mechanism on reservoir and reserves: An example on Lower Ordovician dolostones exploration in Manxi-Gucheng area, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1268-1276.
30 宁飞, 金之钧, 张仲培, 等. 塔中北坡走滑断裂成因机理与油气成藏[J]. 石油与天然气地质, 2018, 39(1): 98-106.
NING F, JIN Z J, ZHANG Z P, et al. Mechanism of strike-slip faulting and hydrocarbon accumulation in northern slope of Tazhong area[J]. Oil & Gas Geology, 2018, 39(1): 98-106.
31 邵红梅, 冯子辉, 王成, 等. 塔里木盆地古城地区下古生界白云岩储层类型及成因[J]. 大庆石油地质与开发, 2014, 33(5): 111-116.
SHAO H M, FENG Z H, WANG C, et al. Types and geneses of the dolomite reservoirs in Lower Paleozoic of Gucheng area of Tarim Basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2014, 33(5): 111-116.
32 尤东华, 韩俊, 胡文瑄, 等. 塔里木盆地顺南501井鹰山组白云岩储层特征与成因[J]. 沉积学报, 2018, 36(6): 1206-1217.
YOU D H, HAN J, HU W X, et al. Characteristics and genesis of dolomite reservoirs in the Yingshan Formation of Well SN501 in the Tarim Basin[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1206-1217.
33 尚凯, 吕海涛, 曹自成, 等. 塔里木盆地顺托果勒低隆起一间房组分布及地质意义[J]. 石油实验地质, 2018, 40(3): 353-361.
SHANG K, LÜ H T, CAO Z C, et al. Distribution and significance of Middle Ordovician Yijianfang Formation in Shuntuoguole lower uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2018, 40(3): 353-361.
34 蔡习尧, 钱一雄, 陈强路, 等. 塔里木盆地古隆1井奥陶系恰尔巴克组与一间房组的发现及意义[J]. 石油实验地质, 2011, 33(4): 348-352.
CAI X Y, QIAN Y X, CHEN Q L, et al. Discovery and significance of Qrebake and Yijianfang Formation of Ordovician in Well GL1, Tarim Basin[J]. Petroleum Geology & Experiment, 2011, 33(4): 348-352.
35 张智礼, 李慧莉, 熊平, 等. 塔中北坡中奥陶统一间房组碳同位素地层学研究[J]. 中国地质, 2016, 43(2): 638-649.
ZHANG Z L, LI H L, XIONG P, et al. A study of carbon isotope stratigraphy of the middle Ordovician Yijianfang Formation on the north slope of Tazhong area[J]. Geology in China, 2016, 43(2): 638-649.
36 邬光辉, 李启明, 张宝收, 等. 塔中Ⅰ号断裂坡折带构造特征及勘探领域[J]. 石油学报, 2005, 26(1): 27-30, 37.
WU G H, LI Q M, ZHANG B S, et al. Structural characteristic and exploration fields of No.1 faulted slope break in Tazhong area[J]. Acta Petrolei Sinica, 2005, 26(1): 27-30, 37.
37 兰晓东,吕修祥,朱炎铭,等.走滑断裂与盖层复合成藏模式——以塔中东部中古51井区鹰山组为例[J]. 石油与天然气地质, 2014,35(1):107-115.
LAN X D, LU X X, ZHU Y M, et al. Hydrocarbon accumulation pattern jointly controlled by strike-slip fault and cap rocks: A case from Yingshan Formation in ZG-51 wellblock of eastern Tazhong area, Tarim Basin[J]. Oil & Gas Geology, 2014,35(1):107-115.
38 吕修祥,周新源,杨海军,等.塔中北斜坡碳酸盐岩岩溶储层油气差异富集特征[J]. 中国岩溶, 2012,31(4):441-452.
LU X X, ZHOU X Y, YANG H J, et al. Different enrichment of oil and gas in carbonate karst reservoir on northern slope of Tazhong uplift, Tarim Basin[J]. Carsologica Sinica, 2012,31(4):441-452.
39 尤东华, 韩俊, 胡文瑄, 等. 超深层灰岩孔隙—微孔隙特征与成因——以塔里木盆地顺南7井和顺托1井一间房组灰岩为例[J]. 石油与天然气地质, 2017, 38(4): 693-702.
YOU D H, HAN J, HU W X, et al. Characteristics and genesis of pores and micro-pores in ultra-deep limestones: A case study of Yijianfang Formation limestones from Shunnan-7 and Shuntuo-1 Wells in Tarim Basin[J].Oil & Gas Geology,2017, 38(4): 693-702.
40 YOU D H, HAN J, HU W X, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration & Exploitation, 2018, 36(4): 820-849.
41 傅恒, 韩建辉, 孟万斌, 等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J]. 天然气工业, 2017, 37(3): 25-36.
FU H, HAN J H, MENG W B, et al. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin[J]. Nature Gas Industry, 2017, 37(3): 25-36.
42 马中远, 黄苇, 李婧婧, 等. 塔中北坡SH9井区柯坪塔格组下段原油地球化学特征[J]. 石油实验地质, 2013, 35(5): 559-563.
MA Z Y, HUANG W, LI J J, et al. Geochemical characteristics of crude oil from lower Kalpintag Formation in SH9 well area, northern slope of middle Tarim Basin[J]. Petroleum Geology & Experiment, 2013, 35(5): 559-563.
43 WANG L C, HU W X, WANG X L, et al. Seawater normalized REE patterns of dolomites in Geshan and Panlongdong sections, China: Implications for tracing dolomitization and diagenetic fluids[J]. Marine and Petroleum Geology, 2014,56: 63-73.
44 胡文瑄,陈琪,王小林,等.白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J]. 石油与天然气地质, 2010,31(6):810-818.
HU W X, CHEN Q, WANG X L, et al. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs[J]. Oil & Gas Geology,2010,31(6):810-818.
45 王小林,金之钧,胡文瑄,等.塔里木盆地下古生界白云石微区REE配分特征及其成因研究[J].中国科学:地球科学, 2009,39(6):721-733.
WANG X L, JIN Z J, HU W X, et al. Using in situ REE analysis to study the origin and diagenesis of dolomite of Lower Paleozoic, Tarim Basin[J]. Science China: Earth Science, 2009,39(6):721-733.
46 张智礼,李慧莉,谭广辉,等.塔里木中央隆起区奥陶纪碳同位素特征及其地层意义[J]. 地层学杂志, 2014,38(2):181-189.
ZHANG Z L, LI H L, TAN G H, et al. Carbon isotope chemostratigraphy of the Ordovician system in central uplift of the Tarim Basin[J].Journal of Stratigraphy, 2014,38(2):181-189.
47 王安甲,初广震,黄文辉,等.塔里木盆地奥陶系碳酸盐岩碳氧稳定同位素地球化学特征[J]. 成都理工大学学报:自然科学版, 2008,35(6):700-704.
WANG A J, CHU G Z, HUANG W H, et al. Geochemical characteristics of carbon, oxygen stable isotopes in the lower-middle Ordovician carbonate rock in Tazhong and Bachu, Tarim Basin,China[J].Journal of Chengdu University of Tech-nology:Science & Technology Edition, 2008,35(6):700-704.
48 彭苏萍,何宏,邵龙义,等.塔里木盆地C-O碳酸盐岩碳同位素组成特征[J]. 中国矿业大学学报, 2002,31(4):353-357.
PENG S P, HE H, SHAO L Y, et al. Carbon isotopic compositions of the Cambrian-Ordovician carbonates in Tarim Basin[J]. Journal of China University of Mining & Technology, 2002,31(4):353-357.
49 江茂生,朱井泉,陈代钊,等.塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[J].中国科学:地球科学, 2002,32(1):36-42.
JIANG M S, ZHU J Q, CHEN D Z, et al. Carbon and strontium isotope variation and responses to sea-level fluctuations in the Ordovician of the Tarim Basin[J]. Science China:Earth Science, 2002,32(1):36-42.
50 JACOBSEN S B, KAUFMAN A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 1999, 161: 37-57.
51 KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J].Precambrian Research,1995, 73: 27-49.
52 QING H R, CHRISTOPHER R B, DIETER B, et al. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1998. 62(10): 1721-1733.
53 DENSION R E, KOPNICK R B, BURKER W H, et al. Construction of the Cambrian and Ordovician seawater 87Sr/ 86Sr curve[J]. Chemical Geology, 1998,152(3/4): 325-340.
54 黄思静,石和,张萌,等.锶同位素地层学在奥陶系海相地层定年中的应用——以塔里木盆地塔中12井为例[J]. 沉积学报, 2004,22(1):1-5.
HUANG S J, SHI H, ZHANG M, et al. Application of strontium isotope stratigraphy to dating Ordovician marine sediments[J]. Acta Sedimentologica Sinica, 2004,22(1):1-5.
55 刘存革,李国蓉,朱传玲,等.塔河油田中下奥陶统岩溶缝洞方解石碳、氧、锶同位素地球化学特征[J]. 地球科学:中国地质大学学报, 2008,33(3):377-386.
LIU C G, LI G R, ZHU C L, et al. Geochemistry characteristics of carbon, oxygen and strontium isotopes of calcites filled in karstic fissure-cave in lower-middle Ordovician of Taheo oilfield, Tarim Basin[J]. Earth Science: Journal of China University of Geoscience, 2008,33(3):377-386.
56 NOTHDURFT L D, WEBB G E, KAMBER B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia:Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
57 刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.
LIU D H, XIAO X M, TIAN H, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J].China Science bulletin, 2013, 58(13): 1228-1241.
58 庄新兵, 顾忆, 邵志兵, 等. 塔里木盆地地温场对油气成藏过程的控制作用——以古城墟隆起为例[J]. 石油学报, 2017, 38(5): 502-511.
ZHUANG X B, GU Y, SHAO Z B, et al. Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin: A case study of Guchengxu Uplift[J]. Acta Petrolei Sinica, 2017, 38(5): 502-511.
59 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53.
MA A L, JIN Z J, ZHU C S. Detection and research signifiance of thiadiamondoids from crude oil in Well Shun-nan 1,Tarim Basin[J].Acta Petrolei Sinica,2018,39(1): 42-53.
60 王坤,胡素云,胡再元,等.塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J].石油学报,2016,37(4): 439-453.
WANG K, HU S Y, HU Z Y, et al. Cambrian hydrothermal action in Gucheng area, Tarim Basin and its influences on reservoir development[J]. Acta Petrolei Sinica, 2016, 37(4):439-453.
61 朱长见, 肖中尧, 张宝民, 等. 塔里木盆地古城4井区上寒武统—奥陶系储集层特征[J]. 石油勘探与开发, 2008, 35(2): 175-181.
ZHU C J, XIAO Z Y, ZHANG B M, et al. Upper Cambrian-Ordovician reservoir characteristics in well Gucheng-4 area, Tarim Basin[J].Petroleum Exploraton and Development,2008, 35(2): 175-181.
[1] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[2] 曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
[3] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[4] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[5] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[6] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[7] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[8] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[9] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[10] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[11] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[12] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[13] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[14] 刘金华, 郭瑞, 马洪涛, 夏步余, 先伟, 蒋阿明, 葛政俊. 塔里木盆地塔河地区东部阿克库勒组阿四段条带状砂体成因再认识[J]. 天然气地球科学, 2019, 30(9): 1253-1262.
[15] 戴金星, 洪峰, 倪云燕, 廖凤蓉. 塔里木盆地英吉苏凹陷煤成气前景良好[J]. 天然气地球科学, 2019, 30(6): 771-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张林, 魏国齐, 李熙喆, 汪泽成, 肖贤明. 四川盆地震旦系—下古生界高过成熟烃源岩演化史分析[J]. 天然气地球科学, 2007, 18(5): 726 -731 .
[2] 郭彤楼,刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643 -651 .
[3] 周庆华,宋宁,王成章,李博,王先德,彭传圣,任玉秀. 湖南花垣页岩气区块地质评价与勘探展望[J]. 天然气地球科学, 2014, 25(1): 130 -140 .
[4] 冷济高,韩建辉,李飞,李鹏,孟兰. 湘西北地区花垣页岩气区块勘探潜力[J]. 天然气地球科学, 2014, 25(4): 624 -631 .
[5] 林拓,张金川,包书景,杨升宇,李博,何伟. 湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征——以常页1井为例[J]. 天然气地球科学, 2015, 26(2): 312 -319 .
[6] 孟强,王晓锋,王香增,张丽霞,姜呈馥,李孝甫,史宝光. 页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J]. 天然气地球科学, 2015, 26(2): 333 -340 .
[7] 陈尚斌,秦勇,王阳,张寒,左兆喜. 中上扬子区海相页岩气储层孔隙结构非均质性特征[J]. 天然气地球科学, 2015, 26(8): 1455 -1463 .
[8] 程凌云,雍自权,王天依,兰宁,于俊友,邓宾. 强改造区牛蹄塘组页岩气保存条件指数评价[J]. 天然气地球科学, 2015, 26(12): 2408 -2416 .
[9] 梁峰,朱炎铭,漆麟,王红岩,拜文华,马超,张琴,会英,武瑾. 湖南常德地区牛蹄塘组富有机质页岩成藏条件及含气性控制因素[J]. 天然气地球科学, 2016, 27(1): 180 -188 .
[10] 张冲,张超谟,张占松,秦瑞宝,余杰. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352 -358 .