天然气地球科学 ›› 2020, Vol. 31 ›› Issue (12): 1814–1825.doi: 10.11764/j.issn.1672-1926.2020.06.010

• 非常规天然气 • 上一篇    下一篇

黔西上二叠统龙潭组高煤级煤微观孔隙结构特征及其对含气性的影响

符宏斌1(),苑坤2,卢树藩1,陈相霖2,林拓2,杜胜江1(),何犇1,罗香建1   

  1. 1.贵州省地质调查院,贵州 贵阳 550081
    2.中国地质调查局油气资源调查中心,北京 100029
  • 收稿日期:2020-03-04 修回日期:2020-06-06 出版日期:2020-12-10 发布日期:2020-12-11
  • 通讯作者: 杜胜江 E-mail:fuhongbins@163.com;shengjiangdu@163.com
  • 作者简介:符宏斌(1982-),男,陕西宝鸡人,高级工程师,硕士,主要从事页岩气地质调查研究. E-mail:fuhongbins@163.com.
  • 基金资助:
    中国地质调查局项目(编号(DD20190088);中地调油合同[2019]第42号;贵州省油气勘查开发工程研究院项目(208-9912-JBN-L1D7);中国地质调查局项目(中地调合同[2016]74号);贵州省科技计划项目(黔科合[2016]支撑2807)

Microscopic pore structure characteristics and its effect on gas-bearing property of high-rank coal in Upper Permian Longtan Formation in western Guizhou

Hong-bin FU1(),Kun YUAN2,Shu-fan LU1,Xiang-lin CHEN2,Tuo LIN2,Sheng-jiang DU1(),Ben HE1,Xiang-jian LUO1   

  1. 1.Guizhou Geological Survey,Guiyang 550081,China
    2.Oil & Gas Survey,China Geological Survey,Beijing 100029,China
  • Received:2020-03-04 Revised:2020-06-06 Online:2020-12-10 Published:2020-12-11
  • Contact: Sheng-jiang DU E-mail:fuhongbins@163.com;shengjiangdu@163.com
  • Supported by:
    The Project of China Geological Survey(Grant No.[2019]42);The Project of Guizhou Institute of Petroleum Exploration and Development Engineering(208-9912-JBN-L1D7);The Project of China Geological Survey(Grant No.[2016]74);Guizhou Science and Technology Planning Project (Grant No.[2016]2807)

摘要:

为探讨高煤级煤的微观孔隙结构特征及其对含气性的影响,选取黔西地区黔普地1井龙潭组5件高煤级煤样品,分别采用高压压汞、低温N2吸附和CO2吸附对各煤样的纳米级孔隙进行定量表征,基于BJH和DFT方程分别计算孔隙的孔径、孔体积和比表面积,分析煤的微孔(孔径<2 nm)、介孔(孔径2~50 nm)和宏孔(孔径>50 nm)的孔径分布特征,并统计各级孔径对孔体积和比表面积的贡献率。在低温N2吸附实验的基础上,运用FHH模型分析了高煤级煤孔隙结构分形性质及其控制因素。采用线性拟合的方法,讨论了高煤级煤的持续演化对微孔和介孔的影响,以及各级孔径的比表面积对含气性的控制作用。结果表明:微孔、介孔和宏孔对孔体积的贡献率分别为49.47%、33.22%及17.31%,对比表面积的贡献率依次为85.44%、14.35%及0.21%;高煤级煤的孔隙形态可分为2类:小于3.7 nm的孔主要以一端开口的孔为主,大于3.7 nm的孔则主要为两端开口的孔和细颈瓶孔;孔隙分形维数随着地层压力的增加而增大,且以3.7 nm为界,大孔隙比小孔隙具有更加复杂的空间结构;微孔和介孔随镜质体反射率呈现规律性的变化,微孔的大量形成与煤大分子空间结构演化导致的介孔体积缩小有关;微孔对CH4吸附量的控制作用远超过介孔和宏孔,小于2 nm的微孔为煤层气的吸附提供了主要的空间。

关键词: 高煤级煤, 孔隙结构, 孔体积, 比表面积, 分形维数, 含气性

Abstract:

In order to study the micro-pore structure characteristics of high-rank coal and its influence on gas content, five high-rank coal samples were selected from Longtan Formation of Well Qianpudi 1 in western Guizhou Province. Nano-pore of coal samples were quantitatively characterized by high pressure mercury injection, low temperature N2 and CO2 adsorption, respectively. The pore size, pore volume and specific surface area of coal were calculated based on the BJH and DFT equations. The pore size distribution characteristics of micropore (pore size <2 nm), mesopore (pore size 2-50 nm) and macropore (pore size >50 nm) of coal were analyzed. Then the contribution rate of various pore size to pore volume and specific surface area were calculated. On the basis of N2 adsorption experiment at low temperature, the fractal properties of pore structure of high-rank coal and its controlling factors were examined by FHH model. The influence of continuous evolution of high rank coal to micropore and mesopore, and the effect of specific surface of different pore sizes on gas content were discussed by linear fitting method. The results show that the contribution rates of micropore, mesoporous and macropore to pore volume are 49.47%, 33.22% and 17.31% respectively, and the contribution rates of specific surface are 85.44%, 14.35% and 0.21% successively. The pore morphology of higher rank coal can be divided into two types: Pore with diameter less than 3.7nm is mainly composed of one end opening, while that with diameter larger than 3.7 nm mainly consists of two ends opening and thin neck bottle. The fractal dimension of pore increases with the increase of formation pressure, and is bounded by 3.7 nm. The spatial structure of macropore is more complex than that of small one. Micropores and mesopores vary regulary with vitrinite reflectance. The formation of large number of micropores is related to the reduction of mesoporous volume due to the evolution of the spatial structure of coal macromolecules. The controlling effect of micropore on CH4 adsorption is far greater than that of mesoporous and macroporous. Micropore with diameter less than 2 nm provides main adsorption space for coal-bed methane.

Key words: High-rank coal, Pore structure, Pore volume, Specific surface area, Fractal dimension, Gas-bearing property

中图分类号: 

  • TE122.1

图1

基于压汞法的煤孔径分布"

图2

基于压汞法煤的孔径分布频率"

图3

基于N2吸附法的孔径与孔体积变化率"

图4

基于N2吸附法的孔径与比表面积变化率"

图5

基于CO2吸附法的孔径与孔体积增量"

图6

基于CO2吸附法的孔径与比表面积增量"

图7

孔体积全孔径分布直方图"

图8

比表面积全孔径分布直方图"

表1

高煤级煤样品孔体积统计"

样品 编号孔体积/(cm3/g)孔体积比例/%
微孔介孔宏孔总孔 体积微孔介孔宏孔
1223.60.035 90.0030.009 70.048 673.946.0919.96
1248.10.004 60.012 50.005 60.022 720.2155.0724.72
1291.80.008 40.002 80.004 60.015 853.3417.6828.98
13310.045 60.014 20.0060.065 869.2921.579.14
1345.20.009 50.020 50.001 20.031 230.5565.673.78
平均值0.020 80.010 60.005 40.036 849.4733.2217.31

表2

高煤级煤样品比表面积统计"

样品 编号比表面积/(m2/g)比表面积比例/%
微孔介孔宏孔总比表 面积微孔介孔宏孔
1223.687.352 50.5260.112 287.990 799.270.60.13
1248.113.7125.284 70.069 519.066 271.9227.720.36
1291.825.8141.1030.096 927.013 995.564.080.36
1331109.0867.7150.123 1116.924 193.36.60.11
1345.226.01512.6820.028 838.725 867.1832.750.07
平均值52.395 95.462 10.086 157.944 185.4414.350.21

图9

高煤级煤N2等温吸附—脱附曲线"

图10

高煤级煤N2吸附LnV与Ln[Ln(P0/P)]关系曲线"

表3

基于FHH模型的孔隙分形维数"

样品 编号P/P0<0.45P/P0>0.45
K1D1R2K2D2R2
1223.6-0.941 72.058 30.963 1-0.450 72.549 30.992 0
1248.1-0.800 82.199 20.998 9-0.396 22.603 80.990 2
1291.8-0.621 52.378 50.998 8-0.226 92.773 10.976 3
1331-0.560 42.439 60.999 6-0.262 12.737 90.996 2
1345.2-0.455 92.544 10.998 5-0.245 22.754 80.999 5

图11

孔体积与最大镜质体反射率的关系"

图12

比表面积与最大镜质体反射率的关系"

图13

CH4最大吸附量与比表面积的关系"

图14

现场解吸含气量与比表面积的关系"

1 CLOSE J C. Natural fractures in coal: Chapter 5[J]. AAPG Datapages, 1993,180: 119-132.
2 傅雪海,秦勇,薛秀谦.分形理论在煤储层物性研究中的应用[J]. 煤,2000,9(4): 1-3.
FU X H, QIN Y, XUE X Q. Application of fractal theory on physical properties in coal reservoirs[J].Coal,2000,9(4):1-3.
3 降文萍,张群,姜在炳,等.构造煤孔隙结构对煤层气产气特征的影响[J].天然气地球科学,2016,27(1): 173-179.
JIANG W P, ZHANG Q, JIANG Z B, et al. Effect on CBM drainage characteristics of pore structure of tectonic coal[J]. Natural Gas Geoscience, 2016,27(1): 173-179.
4 胡广青,姜波,吴胡.中梁山矿区煤的孔隙特征及其对吸附性的影响[J].中国煤炭地质,2011,23(5): 8-12.
HU G Q, JIANG B, WU H. Pore characteristics of coal and its impact on adsorptivity in Zhongliangshan mining area[J].Coal Geology of China,2011,23(5):8-12.
5 姜玮,吴财芳,赵凯,等.多煤层区煤储层孔隙特征及煤层气可采性研究[J].煤炭科学技术,2015,43(8): 135-139.
JIANG W, WU C F, ZHAO K, et al. Study on pore characteristics of coal reservoir and CBM recoverability in multiple coal seam blocks[J]. Coal Science and Technology,2015,43(8): 135-139.
6 秦勇,姜波.中国高煤级煤的电子顺磁共振特征:兼论煤中大分子基本结构单元的“拼叠作用”及其机理[J].中国矿业大学学报,1997,26(2): 10-14.
QIN Y, JIANG B. Electron paramagnetic resonance studies of high-rank coals in China: A reference to making up and its mechanism of macromolecular basic structural units in coals[J]. Journal of China University of Mining & Technology,1997,26 (2): 10-14.
7 CLARKSON C R, BUSTIN R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 2. Adsorption rate modeling[J]. Fuel,1999,78(11): 1345-1362.
8 MAZZOTTI M, PINI R, STORTI G. Enhanced coalbed methane recovery[J]. Journal of Supercritical Fluids, 2009,47(3): 619-627.
9 赵毅鑫,彭磊.煤纳米孔径与分形特征的同步辐射小角散射[J].科学通报,2017,62(21): 2416-2427.
ZHAO Y X, PENG L. Investigation on the size and fractal dimension of nano-pore in coals by synchrotron small angle X-ray scattering[J]. Chinese Science Bulletin, 2017,62(21):2416-2427.
10 降文萍,张庆玲,崔永君.不同变质程度煤吸附二氧化碳的机理研究[J].中国煤层气,2010,7(4): 19-22.
JIANG W P, ZHANG Q L,CUI Y J. Mechanism study on the influence of CO2 on CH4 adsorption on different rank coals[J]. China Coalbed Methane,2010,7(4): 19-22.
11 TANG X, JIANG Z, LI Z, et al. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the southeastern Sichuan Basin, China[J].Journal of Natural Gas Science & Engineering,2015,23: 464-473.
12 刘大锰,李振涛,蔡益栋.煤储层孔—裂隙非均质性及其地质影响因素研究进展[J]. 煤炭科学技术,2015,43(2): 10-15.
LIU D M ,LI Z T, CAI Y D. Study progress on pore-crack heterogeneity and geological influence factors of coal reservoir[J]. Coal Science and Technology, 2015,43(2): 10-15.
13 崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J]. 地球科学进展,2012,27(12): 1319-1325.
CUI J W,ZOU C N,ZHU R K, et al. New advances in shale porosity research[J].Advances in Earth Science,2012,27(12): 1319-1325.
14 OKOLO G N, EVERSON R C, NEOMAGUS H W J P, et al. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel,2015,141(141): 293-304.
15 姜振学,唐相路,李卓,等.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J].地学前缘,2016,23(2): 126-134.
JIANG Z X, TANG X L, LI Z, et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016,23(2): 126-134.
16 杨潇,姜振学,宋岩,等.渝东南牛蹄塘组与龙马溪组高演化海相页岩全孔径孔隙结构特征对比研究[J].高校地质学报,2016,22(2): 368-377.
YANG X,JIANG Z X,SONG Y,et al. A comparative study on whole-aperture pore structure characteristics between Niutitang and Longmaxi Formation of high-maturity marine shales in southeastern Chongqing[J].Geological Journal of China Universities,2016,22(2):368-377.
17 朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性—定量综合表征:以上扬子海相龙马溪组为例[J].地学前缘,2016,23(1): 154-163.
ZHU Y M,WANG Y,CHEN S B, et al. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs: A case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers,2016,23(1):154-163.
18 侯锦秀,王宝俊,张玉贵,等.不同煤级煤的微孔介孔演化特征及其成因[J].煤田地质与勘探, 2017,45(5): 75-81.
HOU J X, WANG B J, ZHANG Y G, et al. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J].Coal Geology & Exploration,2017,45(5): 75-81.
19 DRUMMOND C, ISRAELACHVILI J. Surface forces and wettability[J].Journal of Petroleum Science & Engineering,2002,33(1): 123-133.
20 杜胜江,陈厚国,罗香建,等.贵州普安地区龙潭组煤系“三气”储层孔隙特征对比:以黔普地1井为例[J].矿物学报,2018,39(5):531-540.
DU S J,CHNE H G,LUO X J,et al. Comparison study of pore properties of the unconventional gas reservoir of the Longtan Formation in the Pu′an area of Guizhou Province: A case study of Well Qianpudi 1[J]. Acta Mineralogica Sinica,2018,39(5): 531-540.
21 傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(S1): 51-55.
FU X H, QIN Y, ZHANG W H, et al. Fractal and natural classification of coal pores based on coalbed methane migration[J]. Chinese Science Bulletin, 2005,50(S1): 51-55.
22 张玉贵,焦银秋,雷东记,等.煤体纳米级孔隙低温氮吸附特征及分形性研究[J]. 河南理工大学学报:自然科学版,2016,35(2): 141-148.
ZHANG Y G, JIAO Y Q, LEI D J, et al. Study on adsorption characteristics and fractal properties of nano-scale pores at low temperature in coal[J]. Journal of Henan Polytechnic University: Natural Science,2016,35(2):141-148.
23 CAO T, SONG Z, WANG S, et al. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin[J],China Marine & Petroleum Geology,2015,61:140-150.
24 曹涛涛,宋之光,罗厚勇,等. 煤、油页岩和页岩微观孔隙差异及其储集机理[J].天然气地球科学,2015,26(11): 2208-2218.
CAO T T, SONG Z G, LUO H Y, et al. The differences of microscopic pore structure characteristics of coal, oil shale and shales and their storage mechanisms[J]. Natural Gas Geoscience, 2015,26(11): 2208-2218.
25 THOMMES M, KANEKO K, NEIMARK A V,et al.Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J].Pure & Applied Chemistry,2016,38(1): 25-25.
26 刘辉,吴少华,姜秀民,等.快速热解褐煤焦的低温氮吸附等温线形态分析[J].煤炭学报,2005,30(4): 101-104.
LIU H, WU S H, JIANG X M, et al. The configuration analysis of the adsorption isotherm of nitrogen in low temperature with the lignite char produced under fast pyrolysis[J]. Journal of China Coal Society, 2005,30(4): 101-104.
27 张锟,侯昌海,赵迪斐,等.煤与页岩低温氮吸附孔隙结构特征与分形特征对比——以阳泉地区山西组15#煤与页岩为例[J]. 科学技术与工程,2016,16(29): 68-75.
ZHANG K, HOU C H, ZHAO D F, et al. Comparison of pore structure characteristics fractal characteristics between coal and shale through nitrogen adsorption experiment with the example of Shanxi Formation 15# coal and shale in Yangquan area[J]. Science Technology and Engineering, 2016,16(29): 68-75.
28 彭女佳,何生,郝芳,等.川东南彭水地区五峰组—龙马溪组页岩孔隙结构及差异性[J]. 地球科学: 中国地质大学学报,2017,42(7): 1134-1146.
PENG N J, HE S, HAO F, et al. The pore structure and difference between Wufeng and Longmaxi shales in Pengshui area,southeastern Sichuan[J]. Earth Science,2017,42(7):1134-1146.
29 蔺亚兵,贾雪梅,马东民.基于液氮吸附法对煤的孔隙特征研究与应用[J].煤炭科学技术,2016,44(3): 135-140.
LIN Y B, JIA X M, MA D M. Study and application of coal pore features based on liquid nitrogen adsorption method[J]. Coal Science and Technology, 2016,44(3): 135-140.
30 陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3): 438-444.
CHEN S B, ZHU Y M, WANG H Y, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Jou-rnal of China Coal Society, 2012,37(3): 438-444.
31 熊健,刘向君,梁利喜.四川盆地富有机质页岩孔隙分形特征[J].断块油气田,2017,24(2): 184-189.
XIONG J, LIU X J, LIANG L X. Fractal characteristics of organic rich shale pore in Sichuan Basin, China[J].Fault-Block Oil & Gas Field,2017,24(2):184-189.
32 PFEIFER P. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces[J]. Journal of Chemical Physics,1984,80(9): 4573-4573.
33 郗兆栋,唐书恒,张松航,等.腐泥煤的孔隙结构及分形特征[J].煤炭科学技术,2016,44(11): 103-109.
XI Z D, TANG S H, ZHANG S H, et al. Pore structure and fractal features of sapropelite[J]. Coal Science and Technology, 2016,44(11): 103-109.
34 AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir,1989,5(6): 1431-1433.
35 于炳松.页岩气储层孔隙分类与表征[J].地学前缘,2013,20(4): 211-220.
YU B S. Classification and characterization of gas shale pore system[J].Earth Science Frontiers,2013,20(4): 211-220.
36 杨宇,孙晗森,彭小东,等.煤层气储层孔隙结构分形特征定量研究[J].特种油气藏,2013,20(1): 31-33.
YANG Y, SUN H S, PENG X D, et al. Quantitative study on fractal characteristics of the structure of CBM reservoir[J].Special Oil and Gas Reservoirs,2013,20(1):31-33.
37 高为,易同生,金军,等.黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J].煤炭学报,2017,42(5): 1258-1265.
GAO W,YI T S, JIN J, et al. Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability[J].Journal of China Coal Society,2017,42(5):1258-1265.
38 张晓辉,要惠芳,李伟,等.韩城矿区构造煤纳米级孔隙结构的分形特征[J].煤田地质与勘探,2014,42(5): 4-8.
ZHANG X H, YAO H F, LI W, et al. Fractal characteristics of nano-pore structure in tectonically deformed coals in Hancheng mining area[J]. Coal Geology & Exploration,2014,42(5):4-8.
39 WANG Z, CHENG Y, ZHANG K, et al. Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption: An experimental study[J]. Fuel,2018,232: 495-505.
40 姚素平,焦堃,张科,等.煤纳米孔隙结构的原子力显微镜研究[J].科学通报,2011,56(22): 1820-1827.
YAO S P, JIAO K, ZHANG K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011,56(22): 1820-1827.
41 桑树勋,朱炎铭,张时音,等. 煤吸附气体的固气作用机理(I)——煤孔隙结构与固气作用[J]. 天然气工业,2005,25(1):13-15.
SANG S X, ZHU Y M, ZHANG S Y, et al. Solid-gas interaction mechanism of coal-adsorbed gas(I):Coal pore structure and solid-gas interaction[J].Natural Gas Industry,2005,25(1):13-15.
42 汪雷,汤达祯,许浩,等.基于液氮吸附实验探讨煤变质作用对煤微孔的影响[J].煤炭科学技术,2014,42(S1): 256-260.
WANG L, TANG D Z, XU H, et al. Influence of metamorphism on micropores in coal seams based on nitrogen adsorption experiment[J]. Coal Science and Technology,2014,42(S1): 256-260.
43 侯锦秀,张玉贵,张进春.构造煤原生结构煤微孔特征的多重统计对比及其差异成因机制[J].安全与环境学报,2018,18(1): 139-145.
HOU J X, ZHANG Y G, ZHANG J C. Multiple statistical comparison of the micropore structures between the tectonically deformed and undeformed coal particles and cause analysis of the difference[J]. Journal of Safety and Environment, 2018,18(1):139-145.
44 邵先杰,朱明,武宁,等.煤层气聚集理论研究进展综述[J].科学技术与工程,2017,17(26):156-164.
SHAO X J, ZHU M, WU N, et al. Research progress and review on coal-bed methane accumulation theory[J]. Science Technology and Engineering,2017,17(26):156-164.
45 王可新,潘树仁,傅雪海.低煤级煤的孔、裂隙特征研究[J]. 地质论评,2017,42(S1): 67-68.
WANG K X, PAN S R, FU X H. Study on porosity and fracture characteristics of low-rank coal pore and fissure characteristics of low-rank coal[J]. Geological Review, 2017,42(S1): 67-68.
46 CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin,2012,96(6): 1099-1119.
47 陈亮,樊少武,李海涛,等.煤体孔隙结构特征及其对含气性的影响[J].煤炭科学技术,2017,45(11): 126-132.
CHEN L, FAN S W, LI H T, et al. Pore structure characteristics of coal and its influences to gas bearing[J]. Coal Science and Technology, 2017,45(11): 126-132.
48 MOSHER K, LIU Y, WILCOX J. The Impact of Pore Size on Methane and CO2 Adsorption in Carbon[D]. Palo Alto:Stanford University,2011.
49 MARSH H. Adsorption methods to study microporosity in coals and carbons: A critique[J]. Carbon,1987,25(1): 49-58.
50 降文萍,崔永君,张群,等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报,2007,32(3): 292-295.
JIANG W P, CUI Y J, ZHANG Q, et al. The quantum chemical study on different rank coals surface interacting with methane[J]. Journal of China Coal Society, 2007, 32(3): 292-295.
[1] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[2] 熊益华, 周尚文, 焦鹏飞, 杨明伟, 周军平, 韦伟, 蔡建超. 基于低温CO2吸附的煤和页岩微孔结构分形分析[J]. 天然气地球科学, 2020, 31(7): 1028-1040.
[3] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[4] 梅青燕, 邹成, 杨山, 杨胜来, 赵益, 郑伟. 孔隙结构特征和非均质性对碳酸盐岩气藏开发的影响[J]. 天然气地球科学, 2020, 31(12): 1757-1765.
[5] 杨青, 李剑, 田文广, 孙斌, 祝捷, 杨宇航. 海拉尔盆地褐煤全孔径结构特征及影响因素[J]. 天然气地球科学, 2020, 31(11): 1603-1614.
[6] 陈斐然, 魏祥峰, 刘珠江, 敖明冲, 燕继红. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1593-1602.
[7] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[8] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[9] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[10] 苟启洋, 徐尚, 郝芳, 舒志国, 杨峰, 陆扬博, 张爱华, 王雨轩, 程璇, 青加伟, 高梦天. 基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J]. 天然气地球科学, 2019, 30(7): 1045-1052.
[11] 孙兵华, 张廷山, . 鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J]. 天然气地球科学, 2019, 30(2): 274-284.
[12] 韩小琴,房涛,曹军,高怀琳,张冰,张立宽,王若谷,周伟. 鄂尔多斯盆地延安气田山西组致密砂岩储层天然气充注模拟实验及含气性变化规律[J]. 天然气地球科学, 2019, 30(12): 1721-1731.
[13] 杨师宇,魏韧,袁学浩,郑司建,姚艳斌. 新疆乌鲁木齐河东矿区煤层含气特征及主控因素[J]. 天然气地球科学, 2019, 30(11): 1667-1676.
[14] 王伟,朱玉双,余彩丽,赵乐,陈大友. 鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因[J]. 天然气地球科学, 2019, 30(10): 1439-1450.
[15] 李文镖, 卢双舫, 李俊乾, 张鹏飞, 陈晨, 王思远. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学, 2019, 30(1): 27-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!