天然气地球科学 ›› 2020, Vol. 31 ›› Issue (12): 1826–1836.doi: 10.11764/j.issn.1672-1926.2020.06.008

• 非常规天然气 • 上一篇    

温度对中高阶烟煤甲烷吸附—常压/带压解吸过程中煤体变形影响实验

张宝鑫1,2(),邓泽2,傅雪海1(),郝明1,周荣福1,李玉寿1,王振至1   

  1. 1.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116
    2.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2020-02-28 修回日期:2020-06-28 出版日期:2020-12-10 发布日期:2020-12-11
  • 通讯作者: 傅雪海 E-mail:bxzhang@cumt.edu.cn;fuxuehai@cumt.edu.cn
  • 作者简介:张宝鑫(1995-),男,吉林白山人,博士研究生,主要从事非常规天然气储层研究. E-mail: bxzhang@cumt.edu.cn.
  • 基金资助:
    国家自然科学基金(41772158)

Characteristics of medium-high rank bituminous coal deformation during methane adsorption- desorption with atmospheric pressure/with successively decreasing outlet pressure at different temperatures

Bao-xin ZHANG1,2(),Ze DENG2,Xue-hai FU1(),Ming HAO1,Rong-fu ZHOU1,Yu-shou LI1,Zhen-zhi WANG1   

  1. 1.Key Laboratory of Coalbed Methane Resources and Formation Process,Ministry of Education,China University of Mining and Technology,Xuzhou 221116,China
    2.PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • Received:2020-02-28 Revised:2020-06-28 Online:2020-12-10 Published:2020-12-11
  • Contact: Xue-hai FU E-mail:bxzhang@cumt.edu.cn;fuxuehai@cumt.edu.cn
  • Supported by:
    The National Natural Science Fund of China(41772158)

摘要:

为探究不同温度条件下中高阶烟煤在吸附、常压/带压解吸甲烷过程中的变形特征,以取自山西省的5件中高阶烟煤为研究对象,采用自行设计的吸附/解吸变形测量仪进行了甲烷吸附—常压解吸(出口压力为大气压)及吸附—带压解吸(出口压力逐次降低)过程模拟,动态监测了不同温度条件下甲烷吸附—解吸过程中的煤体变形特征。结果表明:甲烷吸附—解吸过程中产生的煤体变形的增量随时间的增长逐渐减小,由于煤样的非均质性使得不同方向的煤体变形量存在差别,垂直层理方向变形量大于平行层理方向,变形量与吸附/解吸量呈现正相关关系。部分甲烷被煤样吸附后在大气压条件下无法重新解吸,使得煤样在吸附—解吸循环后存在一定残余变形。煤样吸附量、吸附膨胀变形量及残余变形量随温度升高整体上呈现为减小的趋势,但解吸率与温度呈现为正相关趋势,且常压解吸过程解吸率随温度变化更为明显,说明了温度升高使得煤样吸附能力减小,煤体变形量随之减小,另一方面温度升高促进了甲烷解吸并抑制了甲烷吸附,使得煤样解吸率提高,残余变形量随之减小。

关键词: 煤层气, 煤体变形, 常压/带压解吸, 温度, 实验

Abstract:

To explore the deformation characteristics of medium-high rank bituminous coal during the process of methane adsorption-desorption at different temperatures, five coal samples from Shanxi Province were selected for this study. The processes of adsorption- under atmospheric pressure desorption and adsorption-pressure desorption(successive reduction of outlet pressure)of methane were simulated by custom-designed instruments. The deformation characteristics of this suite of coals during adsorption and desorption at different temperatures were dynamically monitored. The results show that the amount of coal deformation in the process of adsorption and desorption decreases gradually with the increase of time. Due to the heterogeneity of coal samples,the deformation in different directions is slightly different. The deformation perpendicular to the bedding direction is greater than that of parallel to the bedding direction. A positive correlation was found between the strain and the volume of adsorption/desorption. After methane is adsorbed by coal samples, not all adsorbed methane can be desorbed again under atmospheric pressure, resulting in some residual deformation of coal after an adsorption desorption cycle. The adsorption volume, swelling induced by adsorption and residual deformation of coal samples all show a decreasing trend with increasing temperature. However, the desorption rate and temperature show a positive correlation trend, and the desorption rate changes more obviously with the temperature in the atmospheric desorption process. It indicates that the adsorption capacity of coal decreases with the increase of temperature, which in turn results in the decrease of coal deformation. On the other hand, the increase of temperature promoted methane desorption and inhibited methane adsorption, resulting in the increase of coal desorption rate and the decrease of residual deformation.

Key words: Coalbed methane, Coal deformation, Desorption with constant/successively decreasing outlet pressure, Temperature, Experiment

中图分类号: 

  • TE135

表1

样品基础参数测试结果"

样品编号煤田镜质体反射率/%水分 /%灰分 /%挥发份 /%固定碳 /%
TB霍西0.770.577.5139.0752.85
LYZ霍西0.970.664.0127.3168.02
ZZG霍西1.280.5016.0026.3057.20
WZ沁水1.731.125.2416.0077.64
XL沁水2.041.0213.3616.7768.85

图1

实验仪器示意[25]"

图2

不同温度条件下甲烷吸附—常压解吸过程变形量—时间关系曲线"

表2

不同温度条件下甲烷吸附—常压解吸累计变形量和残余变形量实验结果"

样品

编号

温度 /℃吸附过程 应变量/με解吸过程 应变量/με残余 变形量/με
环向轴向环向轴向环向轴向
TB301 3041 1351 20690498231
40967921830810137111
508557077766337974
LYZ301 050518914116136402
4084562574647799148
507634107003646346
ZZG30988547735225253202
408874158233276488
508253837793144669
WZ302 3841 8392 2271 75415785
402 2171 6852 0781 62813957
502 1181 5722 0231 5139559
XL302 1131 9552 0281 84285113
401 9351 8131 8731 7426271
501 8681 7031 8231 6384565

表3

不同温度条件下吸附—常压解吸过程中累计吸附/解吸量及解吸率结果"

样品编号温度 /℃吸附量 /(cm3/g)解吸量 /(cm3/g)解吸率 /%
TB307.625.8076.1
406.375.3383.7
505.774.9084.9
LYZ305.404.0074.1
404.643.8182.1
504.233.5684.1
ZZG303.492.5071.7
403.322.4975.0
503.092.4278.3
WZ3012.1510.3084.8
408.527.3486.2
507.456.5187.4
XL3014.9211.8079.1
4011.299.4283.4
509.738.2684.8

图3

甲烷吸附—常压解吸过程变形量与吸附/解吸量、解吸率的关系"

图4

煤样吸附变形量与煤岩煤质关系"

图5

不同温度条件下甲烷吸附—带压解吸过程中变形量—时间关系曲线"

表4

不同温度条件下甲烷吸附—带压解吸过程累计吸附/解吸量及解吸率"

样品编号温度 /℃吸附量 /(cm3/g)解吸量 /(cm3/g)解吸率 /%
TB307.666.1079.6
406.105.1384.1
505.244.4384.6
LYZ305.434.5082.9
404.713.9583.8
504.163.5585.3
ZZG303.533.0084.9
403.192.7084.8
503.293.0291.8
WZ3012.1210.5086.6
408.317.2086.7
507.186.3187.9
XL3014.9413.0087.0
4011.019.6387.4
509.938.7387.8

图6

甲烷吸附—带压解吸过程变形量与吸附/解吸量、解吸率的关系"

图7

变形量与吸附量拟合"

1 郭平. 瓦斯压力对煤体吸附—解吸变形特征影响试验研究[J]. 煤矿安全,2019,50(9):13-16.
GUO P,Experimental study on influence of gas pressure on coal adsorption/desorption deformation characteristics[J].Safety in Coal Mines,2019,50(9):13-16.
2 张遵国,齐庆杰,曹树刚,等. 煤层吸附He,CH4和CO2过程中的变形特性[J]. 煤炭学报,2018,43(9):2484-2490.
ZHANG Z G,QI Q J,CAO S G,et al. Characteristics of coal deformation during its adsorption of He,CH4 and CO2[J].Journal of China Coal Society,2018,43(9):2484-2490.
3 梁冰,贾立锋,孙维吉,等.横观各向同性煤等温吸附变形试验研究[J]. 中国矿业大学学报,2018,47(1):60-66.
LIANG B,JIA L F,SUN W J. Experimental study of isothermal adsorption deformation of transversely isotropic coal[J]. Journal of China University of Mining & Technology,2018,47(1):60-66.
4 祝捷,张敏,传李京,等. 煤吸附/解吸瓦斯变形特征及孔隙性影响实验研究[J]. 岩石力学与工程学报,2016,35(S1):2620-2626.
ZHU J,ZHANG M,CHUAN L J,et al. Experimental study on coal strain induced by methane sorption/desorption and effect of pore features [J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):2620-2626.
5 REUCROFT P J, SETHURAMAN A R. Effect of pressure on carbon dioxide induced coal swelling [J]. Energy & Fuels,1987,1(1):72-75.
6 MOFFAT D H, WEALE K E. Sorption by coal of methane at high pressures[J]. Fuel,1955,34:449-462.
7 李祥春, 张良,赵建飞,等. 瓦斯气体吸附解吸过程煤变形响应特征[J]. 矿业科学学报, 2018,3(1):46-54.
LI X C,ZHANG L,ZHAO J F. Coal deformation characteristics in gas adsorption and desorption [J]. Journal of Mining Science and Technology,2018,3(1):46-54.
8 ESPINOZA D N,PEREIRA J M,VANDAMME M,et al. Desorption-induced shear failure of coal bed seams during gas depletion[J]. International Journal of Coal Geology,2015,137:142-151.
9 彭定弦. 煤体变形与瓦斯解吸/吸附关系的研究实验[J]. 煤炭技术,2016,35(9):173-175.
PENG D X. Deformation and relationship between gas adsorption and desorption experiment[J]. Coal Technology,2016,35(9):173-175.
10 HEMA J,SIRIWARDANE R,GONDLE D. Shrinkage and swelling of coal induced by desorption and sorption of fluids: Theoretical model and interpretation of a field project[J]. International Journal of Coal Geology,2009,77:188-202.
11 PAN J N,HOU Q L,JU Y W,et al. Coalbed methane sorption related to coal deformation structures at different temperatures and pressures[J]. Fuel,2012,102:760-765.
12 ZHOU Y B,LI Z H,YANG Y L,et al. Effect of adsorption-induced matrix deformation on coalbed methane transport analyzed using fractal theory[J]. Journal of Natural Gas Science and Engineering,2015,26:840-846.
13 LIU S M,HARPALANI S,PILLALAMARRY M. Laboratory measurement and modeling of coal permeability with continued methane production:Part 2-Modeling results[J]. Fuel,2012,94:117-124.
14 MENG Y,LI Z P. Experimental comparisons of gas adsorption, sorption induced strain, diffusivity and permeability for low and high rank coals[J]. Fuel,2018,234:914-923.
15 张遵国. 煤吸附/解吸变形特征及其影响因素研究[D]. 重庆:重庆大学,2015:1-33.
ZHANG Z G. Study on Characteristics of Adsorption/Desorption Induced Defomation and its Influencing Factors[D].Chong-qing:Chongqing University,2015:1-33.
16 梁冰,于洪雯,孙维吉,等.煤低压吸附瓦斯变形试验[J]. 煤炭学报,2013,38(3):373-377.
LIANG B,YU H W,SUN W J,et al. An experimental study on deformation of coal adsorption of law pressure gas[J]. Journal of China Coal Society,2013,38(3):373-377.
17 李祥春,郭勇义,吴世跃. 煤吸附膨胀变形与孔隙率、渗透率关系的分析[J].太原理工大学学报,2005,36(3):264-266.
LI X C,GUO Y Y,WU S Y. Analysis of the relation of porosity, permeability and swelling deformation of coal[J]. Journal of Taiyuan University of Technology,2005,36(3):264-266.
18 WAN Y Z,LIU Y W,OUYANG W P,et al. Desorption area and pressure-drop region of wells in a homogeneous coalbed[J]. Journal of Natural Gas Science and Engineering,2016,28:1-14.
19 张国华,韩永辉,侯凤才,等. 含瓦斯煤带压解吸规律的实验研究[J]. 黑龙江科技学院学报,2011,21(1):31-35.
ZHANG G H,HAN Y H,HOU F C,et al. Experimental study on gas pressure desorption law governing coal containing gas[J]. Journal of Heilongjiang University of Science and Technology,2011,21(1):31-35.
20 张苗. 深部煤系气储层物性随温压增加的差异性变化规律[D]. 徐州:中国矿业大学,2019:14-24.
ZHANG M. The Variation Law of Deep Coal Measure Gas Reservoirs Physical Properties with the Increase of Temperature and Pressure[D]. Xuzhou: China University of Mining and Technology,2019:14-24.
21 山西省煤炭地质公司技术中心. 山西省霍州煤电集团有限责任公司团柏煤矿生产矿井地质报告[R]. 太原:山西省煤炭地质公司,2008.
Technical Center of Shanxi Coal Feology Company. Geological Report on Production Mine of Tuanbai Coal Mine, Huozhou Coal and Electricity Group Corporation Linited, Shanxi Province[R]. Taiyuan:Shanxi Coal Geology Company,2008.
22 刘正. 山西省煤层气资源量及可采潜力[J]. 中国煤炭地质,2014,26(9):17-23.
LIU Z. CBM resources and exploitable potential in Shanxi Province[J]. Coal Geology of China,2014,26(9):17-23.
23 LI J,TANG S H,ZHANG S H,et al. Characterization of unconventional reservoirs and continuous accumulations of natural gas in the Carboniferous-Permian strata, mid-eastern Qinshui Basin,China[J]. Journal of Natural Gas Science and Engineering,2017,49:298-316.
24 严敏,龙航,白杨,等. 温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J]. 矿业安全与环保,2019,46(3):6-10.
YAN M,LONG H,BAI Y,et al. Experimental study on the effect of temperature effect on coal seam gas adsorption and desorption[J]. Mining Safety and Environmental Protection,2019,46(3):6-10.
25 ZHANG B X,FU X H,DENG Z,et al. A comparative study on the deformation of unconfined coal during the processes of methane desorption with successively decreasing outlet pressure and with constant outlet pressure[J]. Journal of Petroleum Science and Engineering,2020,195.
26 许诗婧,袁肖肖. 高煤阶储层煤层气解吸滞后现象定量表征及其对开发的影响[J]. 煤矿安全,2019,50(6):16-19,23.
XU S J,YUAN X X. Quantitative characterization of coalbed methane desorption hysteresis in high rank reservoir and its influence on development[J]. Safety in Coal Mines,2019,50(6):16-19,23.
27 亓宪寅,杨典森,陈卫忠. 煤层气解吸滞后定量分析模型[J]. 煤炭学报,2016,41(S2):475-481.
QI X Y,YANG D S,CHEN W Z. Research of a bidisperse diffusion model based on adsorption hysteresis[J].Journal of China Coal Society,2016,41(S2):475-481.
28 赵金,张遂安,曹立虎. 页岩气与煤层气吸附特征对比实验研究[J]. 天然气地球科学,2013,24(1):176-181.
ZHAO J,ZHANG S A,CAO L H. Comparison of experimental adsorption between shale gas and coalbed gas[J]. Natural Gas Geoscience,2013,24(1):176-181.
29 王鹏刚. 不同温度下煤层气吸附/解吸特征的实验研究[D]. 西安:西安科技大学,2010:1-55.
WANG P G. Experimental Study Onadsorption and Desorption Characteristic of CBM at Different Temperatures[D]. Xi'an:Xi'an University of Science and Technology,2010:1-55.
30 岳高伟,王兆丰,康博. 基于吸附热理论的煤—甲烷高低温等温吸附线预测[J]. 天然气地球科学,2015,26(1):148-153.
YUE G W,WANG Z F,KANG B. Prediction for isothermal adsorption curve of coal/ CH4 based on adsorption heat theory [J]. Natural Gas Geoscience,2015,26(1):148-153.
31 毋亚文. 不同变质变形煤吸附解吸特征研究[D]. 焦作:河南理工大学,2018:1-53.
WU Y W. Study on Adsorption and Desorption Characteristics of Different Metamorphic Deformed Coal[D]. Jiaozuo:Henan Polytechnic University,2018:1-53.
32 MENG Y,LI Z P,Triaxial experiments on adsorption deformation and permeability of different sorbing gases in anthracite coal[J]. Journal of Natural Gas Science and Engineering,2017,46:59-70.
33 苏现波,张丽萍,林晓英. 煤阶对煤的吸附能力的影响[J]. 天然气工业,2005,25(1):19-21,205-206.
SU X B,ZHANG L P,LIN X Y. Influence of coal rank on coal adsorption capacity[J].Natural Gas Industry,2005,25(1):19-21,205-206.
34 田永东,李宁. 煤对甲烷吸附能力的影响因素[J]. 西安科技大学学报,2007,27(2):247-250.
TIAN Y D,LI N. Affecting factors of the coal adsorbting methane capability[J]. Journal of Xi'an University of Science and Technology,2007,27(2):247-250.
35 陈向军,刘军,王林,等. 不同变质程度煤的孔径分布及其对吸附常数的影响[J]. 煤炭学报,2013,38(2):294-300.
CHEN X J,LIU J,WANG L,et al.Influence of pore size distribution of different metamorphic grade of coal on adsorption constant[J].Journal of China Coal Society,2013,38(2):294-300.
36 张凯,汤达祯,陶树,等. 不同变质程度煤吸附能力影响因素研究[J]. 煤炭科学技术,2017,45(5):192-197.
ZHANG K,TANG D Z,TAO S,et al. Study on influence factors of adsorption capacity of different metamorphic degree coals[J].Coal Science and Technology,2017,45(5): 192-197.
37 岑朝正,蒋永芳,蒋朝军. 不同含水率下煤岩弹性模量变化实验分析[J]. 价值工程,2015,34(24):154-155.
CEN C Z,JIANG Y F,JIANG C J. Experiment and analysis about the change of elasticity modulus of coal with different water contained [J]. Value Engineering,2015,34(24):154-155.
38 李俊乾,刘大锰,卢双舫,等. 中高煤阶煤岩弹性模量及其影响因素试验研究[J]. 煤炭科学技术,2016,44(1):102-108.
LI J Q,LIU D M,LU S F,et al. Experimental study on elastic modulus of medium-high rank coals and its influencing factors [J]. Coal Science and Technology,2016,44(1):102-108.
39 李来成,傅雪海,罗斌. 大块煤样逐次降压解吸实验研究[J]. 中国煤炭地质,2015,27(9):18-21.
LI L C,FU X H,LUO B. Experimental study on large coal sample desorption under successive depressurization [J]. Coal Geology of China,2015,27(9):18-21.
40 葛燕燕,秦勇,傅雪海,等. 不同粒径煤样常压与带压解吸对比实验研究[J]. 中国矿业大学学报,2015,44(4):673-678.
GE Y Y,QIN Y,FU X H,et al. Comparative experimental study of atmospheric pressure desorption and methane pressure desorption among coal samples of different particle sizes[J]. Journal of China University of Mining & Technology,2015,44(4):673-678.
[1] 陈璐, 胡志明, 熊伟, 端祥刚, 常进. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293.
[2] 王刚, 杨曙光, 李瑞明, 伏海蛟. 国内外低煤阶煤层气地质差异性与聚气模式探讨[J]. 天然气地球科学, 2020, 31(8): 1082-1091.
[3] 石迎爽, 梁冰, 薛璐, 孙维吉, 王青春, 程志恒. 煤层气多层合采井生产特征分析[J]. 天然气地球科学, 2020, 31(8): 1161-1167.
[4] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[5] 于萍, 张瑜, 闫建萍, 邵德勇, 张六六, 罗欢, 乔博, 张同伟. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7): 1016-1027.
[6] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[7] 张利明, 王小强, 侯大力, 肖克, 姜晨光, 邹晓梅. 塔里木盆地近临界油气藏相态特征[J]. 天然气地球科学, 2020, 31(3): 370-374.
[8] 陈雪萍, 张鹏, 吴青柏. “自保护”态CO2水合物分解动力及影响因素[J]. 天然气地球科学, 2020, 31(2): 184-193.
[9] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[10] 杨娟, 王作栋, 薄海波, 张婷, 吉生军, 王静莹. 下马岭组油页岩热模拟实验抽提物中三芴系列化合物演化特征[J]. 天然气地球科学, 2019, 30(7): 1063-1071.
[11] 康广星, 徐学敏, 汪双清, 杨佳佳, 孙玮琳, 沈斌, 秦婧, 芦苒, 张小涛, 郭望. 古生界干酪根热演化模拟实验[J]. 天然气地球科学, 2019, 30(4): 593-602.
[12] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[13] 刘壮,郭建春,马辉运,周长林,苟波,任冀川. 提升高温气井酸压有效缝长方法[J]. 天然气地球科学, 2019, 30(12): 1694-1700.
[14] 韩小琴,房涛,曹军,高怀琳,张冰,张立宽,王若谷,周伟. 鄂尔多斯盆地延安气田山西组致密砂岩储层天然气充注模拟实验及含气性变化规律[J]. 天然气地球科学, 2019, 30(12): 1721-1731.
[15] 杨师宇,魏韧,袁学浩,郑司建,姚艳斌. 新疆乌鲁木齐河东矿区煤层含气特征及主控因素[J]. 天然气地球科学, 2019, 30(11): 1667-1676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!