天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1375–1388.doi: 10.11764/j.issn.1672-1926.2020.06.007

• 天然气地质学 • 上一篇    下一篇

塔里木盆地西南坳陷下白垩统沉积相与储集层差异演化特征

曾庆鲁1,2(),张荣虎1,2,张亮3,刘春1,2,陈才3,夏九峰1,2   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油杭州地质研究院,浙江 杭州 310023
    3.中国石油塔里木油田分公司勘探开发研究院,新疆 库尔勒 841000
  • 收稿日期:2020-05-19 修回日期:2020-06-16 出版日期:2020-10-10 发布日期:2020-09-30
  • 作者简介:曾庆鲁(1985-),男,山东郓城人,高级工程师,硕士,主要从事碎屑岩沉积储层研究. E-mail:zengql_hz@petrochina.com.cn.
  • 基金资助:
    国家重点研发计划“盐下超深层碎屑岩规模储层成因与油气成藏机理”(2019YFC0605501);中国石油重大科技专项“大型陆相盆地砂体类型及控藏机制”(2019B-0304)

Sedimentary facies and reservoir evolution divergence of Early Cretaceous sandstones in Southwest Depression of Tarim Basin

Qing-lu ZENG1,2(),Rong-hu ZHANG1,2,Liang ZHANG3,Chun LIU1,2,Cai CHEN3,Jiu-feng XIA1,2   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China
    3.Exploration and Development Research Institute,PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2020-05-19 Revised:2020-06-16 Online:2020-10-10 Published:2020-09-30
  • Supported by:
    The National Key Research and Development Program (Grant No.2019YFC0605501);The Major Science and Technology Project of CNPC (Grant No.2019B-0304).

摘要:

下白垩统是塔里木盆地西南坳陷主要的勘探层系之一,油气资源丰富但勘探程度较低,新近部署的多口探井均遭遇失利。为指导油气勘探部署,利用露头、钻井、地震和实验分析等资料,对下白垩统残余分布、沉积体系类型及储集层差异演化特征进行了研究。结果表明:①下白垩统沿南天山和昆仑山山前存在喀什北缘、乌泊尔构造带、棋北构造带和柯东构造带4个集中分布区,从山前向盆地内部减薄尖灭,改变了以往呈连续带状分布的认识。②古地貌控制下发育辫状河三角洲和扇三角洲2种沉积体系;其中,辫状河三角洲以前缘亚相为主,厚层水道砂体叠置连片分布,而扇三角洲由平原和前缘亚相构成,具有厚层短轴粗粒特征。③受原始沉积组分和后期成岩改造影响,下白垩统发育次生孔隙型和原生孔隙型2类储层,储集物性表现为中低孔中低渗—特低孔特低渗差异分布,喀什北缘和柯东构造带有利储层相对发育。

关键词: 地层分布, 沉积体系, 储层差异, 下白垩统, 西南坳陷, 塔里木盆地

Abstract:

The Lower Cretaceous is one of the main exploration strata in Southwest Depression of Tarim Basin. It is rich in oil and gas resources but has a low degree of exploration. A number of the newly deployed exploratory wells suffered losses. In order to guide the next step of exploration and deployment, using the data of outcrop, drilling, seismic and experimental analysis, the residual distribution, sedimentary system types and reservoir evolution difference of the Lower Cretaceous were studied. The results show as follows. Firstly, unlike the previous understanding of continuous belt-shaped distribution, there are four concentrated distribution areas of the Lower Cretaceous along the front of southern Tianshan Mountains and western Kunlun Mountains, which are Kashi Northern Margin, Wupper Structural Belt, Qibei Structural Belt and Kedong Structural Belt. The Lower Cretaceous is thinned and extinct from the mountain front to the interior of the basin. Secondly, under the control of ancient geomorphology, two sedimentary system types of braided delta and fan delta were developed. Among them, braided delta is dominated by delta front subfacies, and thick channel sand bodies are superimposed and contiguously distributed, while fan delta is composed of delta plain and delta front subfacies with the characteristics of thick and short-axis distribution and coarse grains. Thirdly, affected by original sedimentary components and late diagenetic transformation, the Lower Cretaceous developed two reservoir types of secondary pore type and primary pore type, and the reservoir physical properties are shown as the differential distribution of medium-low porosity and medium-low permeability to extra-low porosity and extra-low permeability. The favorable reservoirs are relatively distributed in Kashi Northern Margin and Kedong Structural Belts.

Key words: Stratigraphic distribution, Sedimentary system, Reservoir divergence, Lower Cretaceous Southwest Depression, Tarim Basin

中图分类号: 

  • TE121

图1

塔西南坳陷区域位置、构造单元划分及地层柱状图"

图2

塔西南坳陷下白垩统残余厚度等值线"

表1

塔西南坳陷下白垩统分区展布特征"

地层分区残余面积/km2主体厚度/m延伸距离/km平面展布特征岩性
喀什北缘3 300200~80030~50东西向厚度稳定,由北向南逐渐减薄褐红色厚层砂岩夹薄—厚层泥岩
乌泊尔构造带1 800400~1 20020~40存在2个厚度中心,向东北方向减薄尖灭褐色厚—巨厚层砂砾岩
棋北构造带3 100200~1 0000~60北部形成厚度集中的残余地层前锋带,边界断层以北无残余褐红色厚层砂岩和中厚层泥岩
柯东构造带4 500200~600>60东西向厚度稳定,由南由北逐渐减薄褐红色厚层砂岩和泥岩

图3

塔西南坳陷山前冲断带典型地震解释剖面(剖面位置见图2)"

表2

塔西南坳陷下白垩统优势微相砂体识别依据"

沉积体系微相砂体岩性典型沉积构造粒度特征纵向结构
辫状河三角洲前缘水下分流河道中砂岩、细砂岩交错层理、冲刷面正韵律,分选差到中等多期砂体相互叠置
前缘河口坝细砂岩、粉砂岩交错层理、平行层理反韵律,分选中等厚度小,常单独发育
扇三角洲平原水下分流河道砾岩、含砾砂岩砂质透镜体,大型交错层理正韵律,分选差逆旋回,多期砂体相互叠置
前缘水下分流河道中砂岩、含砾砂岩交错层理、变形层理、粒序层理正韵律,分选差单层厚度大,多期砂体相互叠置

图4

辫状河三角洲和扇三角洲沉积体系典型特征"

图5

塔西南坳陷下白垩统沉积体系平面分布特征"

图6

塔西南坳陷下白垩统克孜勒苏群砂岩岩矿成分三角图"

表3

塔西南坳陷下白垩统克孜勒苏群砂岩岩石学特征"

构造单元样品数量成分含量/%粒度分选磨圆

接触

类型

石英长石岩屑杂基胶结物
喀什北缘281

(45.0~74.0)

/61.2

(5.0~30.0)

/13.2

(12.0~39.0)

/25.6

(1.0~12.0)

/5.5

(0~17.0)

/5.2

中粒、细粒中等—好次棱角状—次圆点—线
柯东构造带96

(48.0~72.0)

/55.9

(10.0~27.0)

/20.5

(12.0~33.0)

/23.6

(0~12.0)

/7.6

(0~16.0)

/3.5

细粒、中细粒中等—好次棱角状—次圆点—线、线
棋北构造带54

(38.0~72.0)

/57.1

(5.0~28.0)

/16.8

(13.0~46.0)

/26.1

(0~11.0)

/6.8

(0~15.0)

/4.3

中粒、细粒中等—好次棱角状—次圆点—线、线
乌泊尔构造带101

(10.0~70.0)

/44.6

(8.0~35.0)

/17.2

(11.0~78.0)

/38.2

(3.0~16.0)

/9.7

(0~26.0)

/7.8

不等粒、中粒差—中等次棱角状—次圆点—线

图7

塔西南坳陷下白垩统储层孔隙度和渗透率分布特征及孔隙类型"

图8

储集空间微观特征(a)粒间溶孔和粒内溶孔,库孜贡苏剖面,露头样品,铸体薄片;(b)粒间溶孔和钾长石内部顺解理溶蚀呈缝状溶孔,库孜贡苏剖面,露头样品,激光共聚焦显微镜;(c)岩屑蜂窝状和米粒状粒内溶孔,库孜贡苏剖面,露头样品,电子探针;(d)钾长石粒内溶孔,库孜贡苏剖面,露头样品,扫描电镜;(e)绿泥石晶间孔,库孜贡苏剖面,露头样品,扫描电镜;(f)原生粒间孔,柯东1井,4 409.16 m,铸体薄片;(g)原生粒间孔,柯东1井,4 409.16 m,电子探针;(h)原生粒间孔和粒内溶孔,齐美干剖面,露头样品,铸体薄片;(i)原生粒间孔和粒间溶孔,且木干剖面,露头样品,铸体照片"

图9

储层孔隙度演化差异对比"

图10

塔西南坳陷下白垩统储层厚度分布预测"

1 伍致中,刘东海.塔里木盆地西南坳陷的形成演化[J].新疆石油地质,1996,17(3):211-218.
WU Z Z, LIU D H. Formation and evolution of southwest depression in Tarim Basin[J]. Xinjiang Petroleum Geology, 1996,17(3):211-218.
2 金之钧,吕修祥.塔西南前陆盆地油气资源与勘探对策[J].石油与天然气地质,2000,21(2):110-117.
JIN Z J, LV X X. Hydrocarbon resources and exploration strategy of foreland basins in southwest Tarim Basin[J]. Oil & Gas Geology, 2000,21(2):110-117.
3 张玮,漆家福,李勇.塔里木盆地西南缘构造样式及其主导因素[J].地质科学,2011,46(3):723-732.
ZHANG W, QI J F, LI Y. Structure styles in south-western margin of Tarim Basin and their dominate factors[J]. Chinese Journal of Geology, 2011,46(3):723-732.
4 邢厚松,李君,孙海云,等.塔里木盆地塔西南与库车山前带油气成藏差异性研究及勘探建议[J].天然气地球科学,2012, 23(1):36-45.
XING H S, LI J, SUN H Y, et al. Differences of hydrocarbon reservoir forming between southwestern Tarim Basin and Kuche mountain front[J]. Natural Gas Geoscience, 2012,23(1):36-45.
5 马华东,杨子江.塔里木盆地西南新生代盆地演化特征[J].新疆地质,2003,21(1):92-95.
MA H D. YANG Z J. Evolution of the Cenozoic in southwestern Tarim Basin[J].Xinjiang Geology, 2003,21(1):92-95.
6 孙龙德.塔里木盆地库车坳陷与塔西南坳陷早白垩世沉积相与油气勘探[J].古地理学报,2004,6(2):252-260.
SUN L D. Sedimentary facies and exploration of petroleum of the Early Cretaceous in Kuqa Depression and southwest depression in Tarim Basin[J].Journal of Palaeogeography, 2004,6(2):252-260.
7 张惠良,沈扬,张荣虎,等.塔里木盆地西南部昆仑山前下白垩统沉积相特征及石油地质意义[J].古地理学报, 2005,7(2):157-168.
ZHANG H L, SHEN Y, ZHANG R H, et al. Characteristics of sedimentary facies and petroleum geological significance of the Lower Cretaceous in front of Kunlun Mountains in southwestern Tarim Basin[J]. Journal of Palaeogeography, 2005,7(2):157-168.
8 郭群英,李越,张亮,等.塔里木盆地西南地区白垩系沉积相特征[J].古地理学报, 2014,16(2):169-178.
GUO Q Y, LI Y, ZHANG L, et al. Sedimentary facies characteristics of the Cretaceous in southwestern Tarim Basin[J]. Journal of Palaeogeography, 2014,16(2):169-178.
9 张英志,林畅松,高志勇,等.塔西南坳陷早白垩世物源体系和沉积古地理分析[J].现代地质,2014,28(4):791-798.
ZHANG Y Z, LIN C S, GAO Z Y, et al. Deposition paleogeography and provenance analysis of Early Cretaceous southwest depression of Tarim Basin[J]. Geoscience, 2014,28(4):791-798.
10 任宇泽,林畅松,高志勇,等.塔里木盆地西南坳陷白垩系层序地层与沉积演化[J].天然气地球科学,2017,28(9):1298-1311.
REN Y Z, LIN C S, GAO Z Y, et al. Sequence stratigraphy and sedimentary filling evolution of the Cretaceous in southwest depression, Tarim Basin[J]. Natural Gas Geoscience, 2017,28(9):1298-1311.
11 石石,常志强,徐艳梅,等.塔西南阿克莫木气田白垩系克孜勒苏群砂岩储层特征及其控制因素[J].石油与天然气地质, 2012,33(4):506-510.
SHI S, CHANG Z Q, XU Y M, et al. Characteristics and their controlling factors of Cretaceous Kezilesu Group sandstone reservoirs in Akmomu Gas Field, northwestern Tarim Basin[J]. Oil & Gas Geology, 2012,33(4): 506-510.
12 何登发,李德生,何金有,等.塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J].石油学报,2013,34(2):201-218.
HE D F, LI D S,HE J Y, et al. Comparison in petroleum geology between Kuqa depression and southwest depression in Tarim Basin and its exploration significance[J]. Acta Petrolei Sinica, 2013,34(2):201-218.
13 廖林,程晓敢,王步清,等.塔里木盆地西南缘中生代沉积古环境恢复[J].地质学报,2010,84(8):1195-1207.
LIAO L, CHENG X G, WANG B Q, et al. Reconstruction of Mesozoic sedimentary paleoenvironment in the southwestern Tarim Basin, northwestern China[J]. Acta Geologica Sinica, 2010,84(8):1195-1207.
14 曲国胜, 陈杰, 陈新安, 等. 西昆仑—帕米尔造山带及其北缘前陆盆地板内变形构造[J]. 地质论评, 1998,44(4):419-429.
QU G S, CHEN J, CHEN X A, et al. Intraplate deformation in the front of the West Kunlun-Pamir arcuate orogenic belt and the southwest Tarim Foreland Basin[J]. Geological Review, 1998,44(4):419-429.
15 秦都.塔里木盆地西南地区侏罗纪原型盆地类型及特征[J].石油与天然气地质,2005,26(6):831-839.
QIN D. Types and characteristics of Jurassic prototype basins in southwestern Tarim basin[J]. Oil & Gas Geology, 2005,26(6):831-839.
16 崔军文,郭宪璞,丁孝忠,等.西昆仑—塔里木盆地盆—山结合带的中、新生代变形构造及其动力学[J].地学前缘, 2006,13(4):103-118.
CUI J W, GUO X P, DING X Z, et al. Mesozoic-Cenozoic deformation structures and their dynamics in the basin range junction belt of the west Kunlun-Tarim Basin[J].Earth Science Frontiers, 2006,13(4):103-118.
17 方爱民,马建英,王世刚,等.西昆仑—塔西南坳陷晚古生代以来的沉积构造演化[J].岩石学报,2009,25(12):3396-3406.
FANG A M, MA J Y, WANG S G, et al. Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogen since Late Paleozoic[J]. Acta Petrologica Sinica, 2009,25(12):3396-3406.
18 薛良清, GALLOWAY W E. 扇三角洲、辫状河三角洲与三角洲体系的分类[J].地质学报,1991,(2):141-153.
XUE L Q, GALLOWAY W E. Fan-delta, braid delta and the classification of delta systems[J]. Acta Geologica Sinica, 1991,(2):141-153.
19 厚刚福,孙雄伟,李昌,等.塔里木盆地西南部叶城凹陷下白垩统克孜勒苏群扇三角洲沉积特征及模式[J].中国地质, 2012,39(4):947-953.
HOU G F, SUN X W, LI C, et al. Depositional features of the fan delta from Lower Cretaceous Kezilesu Group in Yecheng sag,southwestern Tarim Basin[J].Geology in China,2012, 39(4):947-953.
20 操应长,金杰华,王艳忠,等.东营凹陷北带古近系沙四段砂砾岩体沉积特征及沉积模式[J].沉积与特提斯地质, 2014,34(4):13-23.
CAO Y C, JIN J H, WANG Y Z, et al. Sedimentary characteristics and model for the sandstones and conglomerates in the 4th member of the Palaeogene Shahejie Formation, north Dongying depression,Shandong[J]. Sedimentary Geology and Tethyan Geology, 2014,34(4):13-23.
21 寿建峰,朱国华,张惠良.构造侧向挤压与砂岩成岩压实作用——以塔里木盆地为例[J].沉积学报,2003,21(1):90-95.
SHOU J F, ZHU G H, ZHANG H L. Lateral structure compression and its influence on sandstone diagenesis: A case study from Tarim Basin[J].Acta Sedimentologica Sinica,2003,21(1):90-95.
22 曾庆鲁,莫涛,赵继龙,等.7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义——以库车坳陷下白垩统巴什基奇克组为例[J].天然气工业, 2020,40(1):38-47.
ZENG Q L, MO T, ZHAO J L, et al. Characteristics, genetic mechanism and oil&gas exploration significance of high-quality sandstone reservoirs deeper than 7000 m: A case study of the Bashenjiqike Formation of Lower Cretaceous in the Kuqa Depression[J]. Natural Gas Industry, 2020, 40(1):38-47.
23 韩文学,陶士振,胡国艺,等.塔西南坳陷山前带天然气地球化学特征和成因[J].中国矿业大学学报,2017,46(1):121-130.
HAN W X, TAO S Z, HU G Y, et al. Geochemical characteristics of natural gas and its genesis in piedmont zone of southwest Tarim Basin[J]. Journal of China University of Mining & Technology, 2017,46(1):121-130.
24 曾庆鲁,张荣虎,王力宝,等.库车坳陷白垩系深层致密砂岩储层溶蚀作用实验模拟研究[J].沉积学报,2018,36(5):946-956.
ZENG Q L, ZHANG R H, WANG L B, et al. Experimental simulation for dissolution of Cretaceous tight sand rocks as deep reservoirs in Kuqa Depression[J]. Acta Sedimentologica Sinica, 2018,36(5):946-956.
25 崔明明,李进步,王宗秀,等.辫状河三角洲前缘致密砂岩储层特征及优质储层控制因素——以苏里格气田西南部石盒子组8段为例[J].石油学报, 2019, 40(3):279-294.
CUI M M, LI J B, WANG Z X, et al. Characteristics of tight sand reservoir and controlling factors of high-quality reservoir at braided delta front: A case study from Member 8 of Shihezi Formation in southwestern Sulige Gas Field[J]. Acta Petrolei Sinica, 2019,40(3):279-294.
26 BEARD D C, WEYL P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin, 1973,57(2):349-369.
27 吴小斌,侯加根,孙卫.特低渗砂岩储层微观结构及孔隙演化定量分析[J].中南大学学报:自然科学版,2011,42(11):3438-3446.
WU X B, HOU J G, SUN W. Microstructure characteristics and quantitative analysis on porosity evolution of ultra-low sandstone reservoir[J]. Journal of Central South University:Science and Technology, 2011,42(11):3438-3446.
28 谭先锋,黄建红,李洁,等.深部埋藏条件下砂岩中碳酸盐胶结物的成因与储层改造——以济阳坳陷始新统孔店组为例[J].地质论评, 2015,61(5):1107-1120.
TAN X F, HUANG J H, LI J, et al. Origin of carbonate cements and the transformation of the reservoir in sandstone under the deep buried condition: A case study on Eocene Kongdian Formation in Jiyang Depression, Bohai Bay Basin[J]. Geological Review, 2015,61(5):1107-1120.
[1] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[2] 李慧莉, 尤东华, 韩俊, 钱一雄, 沙旭光, 席斌斌. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125.
[3] 曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
[4] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[5] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[6] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[7] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[8] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[9] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[10] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[11] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[12] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[13] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[14] 王珊, 曹颖辉, 张亚金, 杜德道, 齐井顺, 白莹, 闫磊, 杨敏, 张君龙. 塔里木盆地古城地区上寒武统碳酸盐岩储层发育特征及主控因素[J]. 天然气地球科学, 2020, 31(10): 1389-1403.
[15] 王晓雪, 熊益学, 陈永权, 刘鑫, 黄金华, 胡方杰, 房璐, 王新新, 罗海宁. 塔里木盆地塔中东部潜山区上寒武统白云岩储集层特征与主控因素[J]. 天然气地球科学, 2020, 31(10): 1404-1414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 杨占龙陈启林,. 岩性圈闭与陆相盆地岩性油气藏勘探[J]. 天然气地球科学, 2006, 17(5): 616 -621 .
[3] 何家雄;陈刚;. 莺歌海盆地CO_2分布、富集特征及初步预[J]. 天然气地球科学, 1997, 8(3): 9 -17 .
[4] 洪 峰,宋 岩,柳少波,赵孟军,秦胜飞,傅国友 . 中国中西部前陆盆地生储盖组合及成藏基本要素匹配分析[J]. 天然气地球科学, 2007, 18(1): 27 -31 .
[5] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .
[6] 王连生;刘立;郭占谦;马志红;迟东辉;. 大庆油田伴生气中硫化氢成因的探讨[J]. 天然气地球科学, 2006, 17(1): 51 -54 .
[7] 刘全有,刘文汇,孟仟祥. 热模拟实验中煤岩及显微组分饱和烃甾烷系列化合物有机地球化学特征[J]. 天然气地球科学, 2007, 18(2): 249 -253 .
[8] 滑双君;王书香;李会慎;翟桂云;肖枚;. 大港探区煤系烃源岩沉积有机相划分[J]. 天然气地球科学, 2003, 14(4): 260 -263 .
[9] 杨智;何生;王锦喜;刘琼;. 断层泥比率(SGR)及其在断层侧向封闭性评价中的应用[J]. 天然气地球科学, 2005, 16(3): 347 -351 .
[10] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390 -393 .