天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1428–1436.doi: 10.11764/j.issn.1672-1926.2020.06.006

• 天然气地质学 • 上一篇    下一篇

渤海湾盆地渤中坳陷沙一段与沙三段古湖泊水体分层新证据

刘伟1(),王振奇1(),叶琳1,刘丽芳2,黄胜兵2   

  1. 1.长江大学地球科学学院,湖北 武汉 430100
    2.中国海洋石油公司研究院,北京 100029
  • 收稿日期:2020-04-03 修回日期:2020-06-05 出版日期:2020-10-10 发布日期:2020-07-02
  • 通讯作者: 王振奇 E-mail:heyheyrose@163.com;Wangzhenqichangda@163.com
  • 作者简介:刘伟(1986-),男,湖北洪湖人,博士研究生,主要从事湖相烃源岩形成机理研究.E-mail: heyheyrose@163.com.
  • 基金资助:
    中国海洋石油公司研究院横向项目(CCL2017RCPS0099ECN)

New evidence of water stratification in the paleolakes of the first and third members of Shahejie Formation in Bozhong Depression, Bohai Bay Basin

Wei LIU1(),Zhen-qi WANG1(),Lin YE1,Li-fang LIU2,Sheng-bing HUANG2   

  1. 1.School of Geosciences,Yangtze University,Wuhan 430100,China
    2.China National Offshore Oil Corporation Research Institute,Beijing 100029,China
  • Received:2020-04-03 Revised:2020-06-05 Online:2020-10-10 Published:2020-07-02
  • Contact: Zhen-qi WANG E-mail:heyheyrose@163.com;Wangzhenqichangda@163.com
  • Supported by:
    The Cooperative Project of Research Institute of CNOOC (Grant No. CCL2017RCPS0099ECN).

摘要:

前人对渤海湾盆地渤中坳陷湖相烃源岩有机质保存条件,尤其是对水体分层的研究,主要提出的是生物标志物证据,缺乏无机地球化学方面的证据。基于U、V元素在沉积水体中的富集原理,以及草莓状黄铁矿的形成机理,尝试探讨渤中坳陷沙一段与沙三段古湖泊水体分层的证据。结果显示,沙一段与沙三段V/(V+Ni)值分别介于0.20~0.93与0.62~0.78之间,指示古湖泊水体为缺氧环境。沙一段与沙三段U/Th值介于0.14~0.43之间,但是沙一段与沙三段U元素与TOC值具有明显正相关性,说明U元素富集于缺氧水体中。同时,沙一段与沙三段V元素与TOC值也具有明显正相关性,进一步说明沙一段与沙三段烃源岩沉积期,古湖泊边部水体均为缺氧环境,但非停滞缺氧环境。对沙一段与沙三段草莓状黄铁矿的平均粒径统计显示,沙一段与沙三段草莓状黄铁矿平均粒径仅略大于停滞缺氧环境的粒径上限5.0 μm,说明沙一段与沙三段沉积期,古湖泊边部浅水区水体存在一个氧化还原界面,该界面位于湖底沉积物向下几厘米深处。据此可推断,向古湖泊沉积中心方向,水体逐渐加深,水体中的氧化还原界面必然会逐渐上升至水体中部,此界面即为沙一段与沙三段水体的分层界面。

关键词: 水体分层, 微量元素, 草莓状黄铁矿, 渤中坳陷

Abstract:

Previous studies on the preservation conditions of lacustrine source rocks in Bozhong Depression of Bohai Bay Basin, especially on the stratification of water column, mainly proposed the evidence of biomarkers, lacking the evidence of inorganic geochemistry. Based on the enrichment principle of U and V elements in the sedimentary water and the formation mechanism of strawberry pyrite, this study attempts to explore the evidence of the stratification of water column in the first and third members of Shahejie Formation (Es1 and Es3) in Bozhong Depression. The results show that the V/(V+Ni) of Es1 and Es3 are between 0.20-0.93 and 0.62-0.78, respectively, indicating that the ancient lake water column is anoxic. The U/Th of Es1 and Es3 is between 0.14-0.43, but the content of U and TOC are positively correlated, indicating that the U is enriched in anoxic water column. At the same time, the content of V and TOC in Es1 and Es3 are also positively correlated, which further shows that during the sedimentary period of Es1 and Es3, the water column at the edge of the ancient lakes are all in anoxic environment, but not euxinic environment. According to the statistics of the average grain size of framboid pyrite in Es1 and Es3, the average grain size of framboid pyrite is only slightly larger than the upper limit of 5.0 μm in the environment of euxinic. This indicates that there is an oxidation-reduction interface during the sedimentary period of Es1 and Es3 in the shallow water of the edge of the ancient lake, which is located a few centimeters below the bottom of the lake. Therefore, it can be inferred that towards the sedimentation center of the ancient lake, the water column will gradually deepen, and the redox interface in the water body will inevitably rise to the middle of the water column, which is the stratification interface during the sedimentary periods of Es1 and Es3.

Key words: Stratification interface, Trace element, Framboid pyrite, Bozhong Depression

中图分类号: 

  • TE121.1

图1

渤中坳陷区域位置[4]"

图2

渤中坳陷地层表[4]"

表1

研究区烃源岩总有机碳与微量元素数据"

序号井号深度/m层位岩性U/10-6Th/10-6U/ThV/10-6Ni/10-6V/(V+Ni)TOC/%
1C-102 642.50沙一段泥岩3.6515.150.24101.8130.760.774.44
2C-102 655.00沙一段泥岩5.8313.650.43187.4839.070.837.31
3C-13 505.00沙一段泥岩2.1710.730.2089.4943.620.711.35
4C-13 533.50沙一段泥岩2.1511.850.1831.8339.860.201.58
5C-23 620.00沙一段泥岩1.418.710.1682.5134.550.621.87
6C-23 627.50沙一段泥岩1.4810.160.1592.3236.900.692.17
7C-34 797.50沙一段泥岩2.207.780.2872.05128.520.682.57
8C-34 822.50沙一段泥岩3.0312.950.2376.7450.260.683.18
9C-34 855.00沙一段泥岩2.7314.800.1890.6941.490.681.71
10C-53 620.00沙一段泥岩2.6113.670.1993.9645.480.701.13
11C-63 015.00沙一段泥岩2.1112.820.1686.4437.220.660.99
12C-73 362.50沙一段泥岩2.0010.870.1886.3331.920.731.63
13C-73 372.50沙一段泥岩1.8410.920.1783.2833.490.711.82
14C-82 230.00沙一段泥岩3.1512.130.2675.4334.070.691.70
15C-82 247.50沙一段泥岩3.9310.150.39119.2530.830.794.82
16C-92 412.50沙一段泥岩2.5311.990.2181.2134.150.700.63
17C-92 442.50沙一段泥岩2.1511.080.1969.2229.080.700.48
18C-92 505.00沙一段泥岩2.0810.850.1963.1127.780.690.59
19C-92 525.00沙一段泥岩2.8513.430.2163.7733.480.661.17
20C-13 653.50沙三中亚段泥岩2.398.560.2887.3143.270.670.97
21C-13 739.00沙三中亚段泥岩2.629.170.2980.9949.310.621.09
22C-13 787.00沙三中亚段泥岩1.7710.360.1783.2841.520.672.19
23C-14 070.50沙三中亚段泥岩1.7211.600.1583.0636.580.691.49
24C-23 777.50沙三中亚段泥岩1.539.920.1568.1332.580.686.11
25C-53 792.50沙三中亚段泥岩2.6614.260.1984.1542.020.672.08
26C-53 802.50沙三中亚段泥岩2.8814.980.1990.8047.370.661.85
27C-53 820.00沙三中亚段泥岩2.0511.260.1899.5242.100.701.95
28C-53 855.00沙三中亚段泥岩3.9818.040.2286.9843.640.673.44
29C-53 867.50沙三中亚段泥岩2.329.980.2386.4444.760.663.64
30C-53 910.00沙三中亚段泥岩2.348.990.2687.9643.250.672.73
31C-53 927.50沙三中亚段泥岩2.449.640.2587.8544.550.662.78
32C-63 365.00沙三中亚段泥岩3.6118.340.20117.6151.590.705.11
33C-82 287.50沙三中亚段泥岩3.8613.520.2985.2429.490.743.14
34C-82 302.50沙三中亚段泥岩2.8011.610.2478.2627.010.742.00
35C-92 682.50沙三中亚段泥岩2.7112.390.2271.8330.890.701.40
36C-92 707.50沙三中亚段泥岩3.4312.320.2877.3927.960.732.53
37C-92 742.50沙三中亚段泥岩3.6713.870.2696.5728.610.774.51
38C-92 777.50沙三中亚段泥岩3.5114.380.2488.2929.660.752.12
39C-92 795.00沙三中亚段泥岩3.4414.400.2482.6230.480.732.19
40C-92 820.00沙三中亚段泥岩3.7513.980.2792.3231.740.742.82
41C-92 867.50沙三中亚段泥岩3.3313.270.2579.6830.150.732.24
42C-92 917.50沙三中亚段泥岩3.8114.400.2688.8432.750.733.84
43C-102 895.00沙三中亚段泥岩2.8313.930.20101.7028.360.782.10
44C-102 942.50沙三中亚段泥岩2.6312.700.2187.7526.340.771.24
45C-102 995.00沙三中亚段泥岩2.9614.130.2199.6330.690.762.10
46C-103 030.00沙三中亚段泥岩3.6016.100.22112.0535.430.762.56
47C-103 092.50沙三中亚段泥岩2.7314.130.19101.2630.570.772.36
48C-23 837.50沙三下亚段泥岩1.8711.470.1688.2939.970.691.15
49C-73 425.00沙三下亚段泥岩3.1816.120.20109.9852.400.683.77
50C-73 452.50沙三下亚段泥岩3.3716.120.21131.8950.810.724.15
51C-73 477.50沙三下亚段泥岩3.9017.610.22118.7051.570.704.86
52C-73 487.50沙三下亚段泥岩4.0418.120.22127.3149.000.725.55
53C-73 512.50沙三下亚段泥岩4.2619.610.22118.1650.280.705.44
54C-73 547.50沙三下亚段泥岩2.9317.040.17118.7047.570.713.80
55C-73 572.50沙三下亚段泥岩2.9917.770.17122.6361.410.677.39
56C-73 600.00沙三下亚段泥岩4.5819.980.23115.7648.500.705.90
57C-73 622.50沙三下亚段泥岩3.9820.420.19123.9351.810.714.82
58C-73 645.00沙三下亚段泥岩2.4216.190.15108.3547.690.691.11
59C-73 660.00沙三下亚段泥岩2.1515.550.14101.2646.350.691.18
60C-73 702.50沙三下亚段泥岩2.4816.260.15112.0545.150.711.30
61C-73 720.00沙三下亚段泥岩2.1915.130.14114.7846.730.711.01
62C-82 387.50沙三下亚段泥岩2.8113.430.2186.4428.380.751.55
63C-103 237.50沙三下亚段泥岩2.7314.570.1997.2331.470.760.96
64C-103 312.50沙三下亚段泥岩3.0914.100.2297.4527.430.780.92
65C-103 387.50沙三下亚段泥岩2.9913.350.22100.0628.620.782.35

图3

TOC与U元素的相关性"

图4

TOC与V元素的相关性"

图5

黄铁矿扫描电镜检测结果(a)C-9井,2 765~2 790 m,沙三中亚段,粒径5.7 μm;(b)C-10井,2 635~2 650 m,沙一段;(c)C-8井,2 325~2 345 m,沙三中亚段,粒径7.5 μm"

表2

研究区草莓状黄铁矿平均粒径统计"

序号井号深度/m层位

黄铁矿

颗粒数

平均粒径/μm氧化还原环境
1C-34 797.50沙一段965.4缺氧
2C-34 822.50沙一段855.1缺氧
3C-34 855.00沙一段895.6缺氧
4C-82 230.00沙一段1046.4低氧
5C-92 412.50沙一段1065.1缺氧
6C-82 335.00沙三中亚段737.5低氧
7C-92 777.50沙三中亚段985.7缺氧
8C-92 807.50沙三中亚段895.2缺氧
9C-82 387.50沙三下亚段905.6缺氧

图6

湖泊水体氧化还原界面示意"

1 HAO F, ZHOU X H, ZHU Y M, et al. Mechanisms of petroleum accumulation in the Bozhong Sub-basin, Bohai Bay Basin, China. Part 1: Origin and occurrence of crude oils[J]. Marine and Petroleum Geology, 2009, 26(8):1528-1542.
2 吴克强, 姜雪, 孙和风. 近海富生油凹陷湖相烃源岩发育模式:以黄河口凹陷古近系为例[J]. 地质科技情报, 2015, 34(2):63-70.
WU K Q, JIANG X, SUN H F. Model of lacustrine source rocks in offshore oil kitchen sags: A case study of Paleogene in Huanghekou Sag[J]. Geological Science and Technology Information, 2015, 34(2):63-70.
3 HAO F, ZHOU X H, ZHU Y M, et al. Lacustrine source rock deposition in response to co-evolution of envirionments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(1-3): 323-339.
4 LIU W, YE L, WANG Z Q, et al. Formation mechanism of organic-rich source rocks in Bozhong Sub-basin, Bohai Bay Basin,China[J]. Arabian Journal of Geosciences, 2019, 12(16):1-12.
5 腾格尔, 刘文汇, 徐永昌, 等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2):193-200.
TENG G E, LIU W H, XU Y C, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances in Earth Science, 2005, 20(2):193-200.
6 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405-414.
XIONG X H, XIAO J F. Geochemical indicators of sedimentary environments-a summary[J].Earth and Environment,2011, 39(3): 405-414.
7 WANG G L, LI S, WANG T G, et al. Applications of molecular fossils in lacustrine stratigraphy[J]. Chinese Journal of Geochemistry, 2010, 29(1):15-20.
8 YIN J, WANG Q, HAO F, et al. Palaeoenvironmental reconstruction of lacustrine source rocks in the lower 1st Member of the Shahejie Formation in the Raoyang Sag and the Baxian Sag, Bohai Bay Basin, eastern China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 495:87-104.
9 郑海峰, 宋换新, 杨振瑞, 等. 湖北神农架地区南华系大塘坡组元素地球化学特征[J]. 地球科学与环境学报, 2019, 41(3):316-326.
ZHENG H F, SONG H X, YANG Z R, et al. Element geochemical characteristics of Datangpo Formation of Nanhua System in Shennongjia area of Hubei, China[J]. Journal of Earth Science and Environment, 2019, 41(3):316-326.
10 XIAO Y F, WU K, TIAN L, et al. Framboidal pyrite evidence for persistent low oxygen levels in shallow-marine facies of the Nanpanjiang Basin during the Permian-Triassic transition[J].Palaeogeography Palaeoclimatology Palaeoecology, 2018, 511: 243-255.
11 BREIT G N, WANTY R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J].Chemical Geology,1991,91(2):83-97.
12 TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2):12-32.
13 SHUFANG W, DAZHONG D, YUMAN W, et al. Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale: A case study of the Lower Silurian Longmaxi Formation,Southern Sichuan Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,28:691-699.
14 HATCH J R, LEVENTHAL J S, MEYERS P A, et al. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1-3):65-82.
15 JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.
16 BOONNARONG A, AKKHAPUN W, QINGLAI F, et al. Paleoproductivity and paleoredox condition of the Huai Hin Lat Formation in northeastern Thailand[J]. Journal of Earth Science, 2016, 27(3): 350-364.
17 GUOLIANG X, YULIN S, SHUGEN L, et al. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate[J]. Marine & Petroleum Geology, 2018, 92:20-36.
18 ZHENG Y, ANDERSON R F, GEEN A V, et al. Remobilization of authigenic uranium in marine sediments by bioturbation[J]. Geochimica et Cosmochimica Acta, 2002, 66(10):1759-1772.
19 FRANCOIS R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, Columbia British, Canada[J]. Marine Geology, 1988, 83(1-4):285-308.
20 KLINKHAMMER G P, PALMER M R. Uranium in the oceans: Where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7):1799-1806.
21 ZHENG Y, ANDERSON R F, GEEN A V, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(24):4165-4178.
22 MCMANUS J, BERELSON W M, KLINKHAMMER G P, et al. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1):95-108.
23 ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4):289-318.
24 金强, 朱光有, 王娟. 咸化湖盆优质烃源岩的形成与分布[J]. 中国石油大学学报:自然科学版, 2008, 32(4):25-29.
JIN Q, ZHU G Y, WANG J. Deposition and distribution of high-potential source rocks in saline lacustrine environments[J]. Journal of China University of Petroleum: Edition of Natural Science, 2008, 32(4):25-29.
25 姜雪, 邹华耀, 庄新兵, 等. 辽东湾地区烃源岩特征及其主控因素[J].中国石油大学学报:自然科学版,2010,34(2):37-43,48.
JIANG X, ZOU H Y, ZHUANG X B, et al. Characteristics of hydrocarbon source rocks in Liaodong Bay area and its main controlling factors[J].Journal of China University of Petrole-um:Edition of Natural Science, 2010, 34(2):37-43,48.
26 廖卫. 二叠纪—三叠纪之交华南浅水台地环境的古氧相特征:来自微生物岩中草莓状黄铁矿和黄铁矿化化石的证据[D]. 武汉:中国地质大学(武汉), 2011.
LIAO W. Paleo-oxygenation Facies in Shallow-marine Carbonate Platform Across the Permian-Triassic Boundary in South China: Evidences from Pyrite Framboids and Pyritized Fossils in the Microbialite[D]. Wuhan:China University of Geosciences (Wuhan), 2011.
27 SUAN G, SCHOLLHORN I, SCHLOGL J, et al. Euxinic conditions and high sulfur burial near the European shelf margin (Pieniny Klippen Belt, Slovakia) during the Toarcian oceanic anoxic event[J]. Global and Planetary Change, 2018, 170:246-259.
28 MERINERO R, CÁRDENES V. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth[J]. Mineralogy and Petrology, 2017, 112(4):577-589.
29 WILKIN R T, BARNES H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339.
30 CUTTER G A, VELINSKY D J. Temporal variations of sedimentary sulfur in a delaware salt marsh[J]. Marine Chemistry, 1988, 23(3-4):311-327.
31 MURAMOTO J A, HONJO S, FRY B, et al. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(2):S1151-S1187.
32 BOND D P G, WIGNALL P B. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Bulletin of the Geological Society of America, 2010, 122(7-8):1265-1279.
[1] 刘田, 冯明友, 王兴志, 陈波, 张良华, 刘小洪, 王珏博. 渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学, 2019, 30(5): 740-750.
[2] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[3] 杜洋, 樊太亮, 高志前. 塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示——以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例[J]. 天然气地球科学, 2016, 27(8): 1509-1523.
[4] 吴圣,汤达祯,严启团,许浩,王淑英,韩中喜. 天然气中微量元素捕集检测技术初探及应用[J]. 天然气地球科学, 2015, 26(11): 2166-2171.
[5] 张瑜,杨华,王多云,付金华,姚泾利,辛补社. 鄂尔多斯盆地南部铜川组碎屑岩地球化学特征及其对物源的制约[J]. 天然气地球科学, 2014, 25(8): 1233-1241.
[6] 张长江, 刘光祥, 曾华盛, 张关龙. 川西地区二叠系烃源岩发育环境及控制因素[J]. 天然气地球科学, 2012, 23(4): 626-635.
[7] 李广之, 陈银节, 尹红军, 宣海波. 近地表土壤中可溶态阳离子的石油地质意义[J]. 天然气地球科学, 2011, 22(2): 201-205.
[8] 李凤杰, 刘殿鹤, 刘琪. 四川宣汉地区吴家坪组硅质岩地球化学特征及其成因探讨[J]. 天然气地球科学, 2010, 21(1): 62-67.
[9] 程昌茹;郑琳;李长洪;卢青静;张庆;金合文 . 千米桥古潜山岩溶岩及其地球化学特征[J]. 天然气地球科学, 2008, 19(06): 816-820.
[10] 卢红选,孟自芳,李 斌,李相博,郑 民 . 微量元素Mo对褐煤有机质热解成烃的影响[J]. 天然气地球科学, 2007, 18(1): 104-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[2] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[3] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[4] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .
[5] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[6] 李亮,万晓龙,李志伟,张永强,张振红. 油气成藏模拟实验在白于山油藏开发中的应用[J]. 天然气地球科学, 2006, 17(2): 219 -222 .
[7] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[8] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[9] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[10] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .