天然气地球科学 ›› 2021, Vol. 32 ›› Issue (1): 125–135.doi: 10.11764/j.issn.1672-1926.2020.06.003

• 非常规天然气 • 上一篇    下一篇

甲烷吸附前后高煤级煤孔隙结构粒径效应

李腾1,2(),吴财芳3,4   

  1. 1.西安石油大学石油工程学院,陕西 西安 710065
    2.西安石油大学陕西省油气田特种增产技术重点实验室,陕西 西安 710065
    3.中国矿业大学资源与地球科学学院,江苏 徐州 221116
    4.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116
  • 收稿日期:2020-04-29 修回日期:2020-06-10 出版日期:2021-01-10 发布日期:2021-02-04
  • 作者简介:李腾(1989-),男,河南洛阳人,讲师,博士,主要从事非常规油气储层评价研究.E-mail: liteng2052@163.com.
  • 基金资助:
    国家科技重大专项“多煤层煤层气甜点选区选段技术”(2016ZX05044-001);陕西省自然科学基础研究计划(2019JQ-527);陕西省教育厅科研计划项目(20JS116)

The grain size effect on pore structure characteristics of high-rank coal before and after the methane adsorption

Teng LI1,2(),Cai-fang WU3,4   

  1. 1.College of Petroleum Engineering,Xi’an Shiyou University,Xi’an 710065,China
    2.Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs,Xi’an Shiyou University,Xi’an 710065,China
    3.School of Mineral Resources and Geosciences,China University of Mining & Technology,Xuzhou 221116,China
    4.Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,Ministry of Education,Xuzhou 221116,China
  • Received:2020-04-29 Revised:2020-06-10 Online:2021-01-10 Published:2021-02-04
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05044-001);The Natural Science Basic Research Plan of Shaanxi Province of China(2019JQ-527);The Scientific Research Program Funded by Shaanxi Provincial Education Department(20JS116)

摘要:

针对3种不同粒径的高煤级煤开展了甲烷高压等温吸附测试,并对不同粒径煤样甲烷吸附前后的孔隙结构特征进行了对比研究。结果表明,不同粒径煤样的等温吸附曲线没有显著的差异,随着煤岩粒径的减小,煤岩的吸附速率和最大过剩吸附量呈逐渐增加的趋势。甲烷吸附前后,不同粒径煤样的孔隙结构发生了不同的变化。甲烷等温吸附前,随着煤岩粒径的减小,低温液氮吸附滞后环开度呈逐渐减小的趋势,等效吸附率曲率则先减小后增大;甲烷吸附后,DY?5煤样的低温液氮吸附滞后环开度减小,而DY?6煤样和DY?7煤样的低温液氮吸附滞后环开度有所增加,说明甲烷吸附对小粒径煤样中孔和大孔的影响较为显著。甲烷的吸附作用对各阶段孔隙均有影响。大粒径煤样在甲烷吸附作用影响下,孔隙连通性得以改善,而小粒径煤样在甲烷吸附作用后孔隙分布更加的集中。

关键词: 高煤级煤, 甲烷吸附, 粒径效应, 孔隙结构

Abstract:

Methane isothermal adsorption experiments were carried out on the high rank coal samples with three different particle sizes, and dynamic change of the pore structure was measured with the low temperature N2 adsorption and the low temperature CO2 adsorption before and after the methane adsorption. The results show that the adsorption isothermal curves of the various grain sizes coal samples present no significant differences, the adsorption rate and maximum excess adsorption capacity increase with the decreasing particle sizes. Before the methane isothermal adsorption, the d(qde-qad)' decreases with the decreasing grain sizes, while that for the equivalent desorption rate curvatures decrease first and then increase. After the methane adsorption, the d(qde-qad)' for DY-5 coal sample decreases, while that for the DY-6 and DY-7 coal samples feature the contrary characteristics, indicating that the methane adsorption has a significant influence on the meso- and macropore structure for the small grain size coal samples. In fact, the methane adsorption could change the pore structures in the coal at all stages. For the coal samples with larger grain size, the pore connectivity is enhanced, while that for the coal samples with smaller grain sizes, the distribution of the pores would be more concentrate after the methane adsorption.

Key words: High-rank coal, Methane isothermal adsorption, Grain sizes effect, Pore structure

中图分类号: 

  • TE122

图1

研究区构造纲要(a)及岩性柱状图(b)"

表1

不同粒径煤样工业分析"

样品号粒度/目Ro,max/%工业分析/%
MadAdVdafFCad
DY-540~603.131.848.418.0282.69
DY-660~801.908.648.2482.24
DY-780~1001.829.158.2581.84

图2

空白测试中ρHe与M1b线性负相关散点图"

图3

不同粒径煤样浮力测试ρHe与M1线性负相关散点图"

图4

不同粒径煤样等温吸附曲线"

图5

不同粒径煤样甲烷吸附前后低温液氮吸附—脱附曲线"

图6

不同粒径煤样甲烷吸附前后低温液氮吸附滞后环开度"

图7

不同粒径煤样甲烷吸附前后低温二氧化碳吸附曲线"

图8

不同粒径煤样甲烷吸附前后等效吸附率斜率曲线"

图9

不同粒径煤样甲烷吸附前后中孔、大孔孔容、孔比表面积柱状对比"

图10

煤样扫描电镜"

图11

不同粒径煤样甲烷吸附前后微孔孔容、孔比表面积柱状对比"

表2

煤样Dq谱多重分形特征"

样品吸附前后吸附类型D-10D0D1D2D10D-10D10D0D10D-10D0
DY-5吸附前液氮吸附1.5210.950.90510.840.680.160.52

二氧化碳

吸附

1.4010.830.660.440.960.560.40
吸附后液氮吸附1.1810.980.960.900.270.100.18

二氧化碳

吸附

1.2210.880.750.580.650.420.22
DY-6吸附前液氮吸附1.3510.960.920.860.490.140.35

二氧化碳

吸附

1.2310.850.690.500.730.500.23
吸附后液氮吸附1.0810.940.880.680.400.320.08

二氧化碳

吸附

1.2310.870.730.520.700.480.23
DY-7吸附前液氮吸附1.4210.990.980.940.480.060.42

二氧化碳

吸附

1.2310.850.710.530.710.470.23
吸附后液氮吸附1.3110.960.920.840.480.160.31

二氧化碳

吸附

1.2310.850.710.480.750.520.23

图12

不同粒径煤样甲烷吸附前后D1、D2变化曲线"

1 康志勤, 李翔, 李伟, 等. 煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J]. 煤炭学报, 2018, 43(5): 1400-1407.
KANG Z Q, LI X, LI W, et al. Experimental investigation of methane adsorption/desorption behavior in coals with different coal-body structure and its revelation[J]. Journal of China Coal Society, 2018, 43(5): 1400-1407.
2 降文萍, 张群, 崔永君. 煤吸附气体的量子化学特性及其应用[J]. 天然气地球科学, 2014, 25(3): 1672-1926.
JIANG W P, ZHANG Q, CUI Y J. Quantum chemistry characteristics of coal adsorbing gas and their applications[J]. Natural Gas Geoscience, 2014, 25(3): 1672-1926.
3 程波, 向真才, 郭恒, 等. 煤岩材料对瓦斯吸附性能的研究进展[J]. 材料导报, 2018, 32(5): 1513-1518.
CHENG B, XIANG Z C, GUO H, et al. A review on gas adsorption performance of coal (rock) material[J]. Materials Review, 2018, 32(5): 1513-1518.
4 刘操, 张玉贵, 贾天让, 等. 气源岩吸附试验的机理及吸附特征新认识[J]. 煤炭学报, 2019, 44(11): 3441-3452.
LIU C, ZHANG Y G, JIA T R, et al. New interpretation of adsorption test mechanism and adsorption law for gas source rock[J].Journal of China Coal Society,2019,44(11):3441-3452.
5 朱学申, 吕玉民, 王存武, 等. 沁南柿庄地区高煤阶煤储层吸附性及其影响因素[J]. 煤炭技术, 2020, 39(3): 121-124.
ZHU X S, LV Y M, WANG C W, et al. Adosorbability of high rank coal reservoir and its influencing factors in Shizhuang area, south of Qinshui Basin[J]. Coal Technology, 2020, 39(3): 121-124.
6 马东民, 李沛, 张辉, 等. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
MA D M, LI P, ZHANG H, et al. Comparison on characteristics of adsorption/desorption of vitrain and durain in long-flame coal[J].Natural Gas Geoscience,2017,28(6):852-862.
7 CAI Y, LIU D, PAN Z, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J].Fuel, 2013, 103: 258-268.
8 WEI Q, LI X, ZHANG J, et al. Full-size pore structure characterization of deep-buried coals and its impact on methane adsorption capacity: A case study of the Shihezi Formation coals from the Panji deep area in Huainan Coalfield, Southern North China[J].Journal of Petroleum Science and Engineering, 2019, 173: 975-989.
9 王玲玲, 王兆丰, 霍肖肖, 等. 高温高压下煤孔隙结构的变化对瓦斯吸附特性的影响[J]. 中国安全生产科学技术, 2018, 14(12): 97-101.
WANG L L, WANG Z F, HUO X X, et al. Influence of pore structure change on gas adsorption characteristics of coal under high temperature and high pressure[J]. Journal of Safety Science and Technology, 2018, 14(12): 97-101.
10 CHEN Y, WEI L, MASTALERZ M, et al. The effect of analytical particle size on gas adsorption porosimetry of shale[J]. International Journal of Coal Geology, 2015, 138: 103-112.
11 LUTYNSKI M, GONZALEZ M A. Characteristics of carbon dioxide sorption in coal and gas shale: The effect of particle size[J].Journal of Natural Gas Science and Engineering, 2016, 28: 558-565.
12 康毅力, 陈益滨, 李相臣, 等. 页岩粒径对甲烷吸附性能的影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
KANG Y L, CHEN Y B, LI X C, et al. Effect of particle size on methane sorption capacity of shales[J]. Natural Gas Geoscience, 2017, 28(2): 272-279.
13 袁梅, 王玉丽, 李闯, 等. 粒径—温度耦合作用下煤中瓦斯解吸规律试验研究[J]. 煤矿安全, 2019, 50(12): 32-35.
YUAN M, WANG Y L, LI C, et al. Experimental study on coupling effect of particle size and temperature on gas desorption in coal[J]. Safety in Coal Mines, 2019, 50(12): 32-35.
14 陈向军, 李立杨, 杜云飞, 等. 粒径和吸附平衡压力对无烟煤残存瓦斯含量的影响[J]. 煤矿安全, 2018, 49(9): 1-5.
CHEN X J, LI L Y, DU Y F, et al. Influence of coal particle size and adsorption equilibrium pressure on residual gas content of anthracite[J]. Safety in Coal Mines, 2018, 49(9): 1-5.
15 冯艳艳, 黄宏斌, 杨文. 粒径分布对煤的孔隙结构及其CH4和CO2吸附性能的影响[J].煤炭技术,2018,37(3):163-165.
FENG Y Y, HUANG H B, YANG W. Effects of particle size on coal pore structure and CH4 and CO2 adsorption characteristics[J]. Coal Technology, 2018, 37(3): 163-165.
16 刘彦伟, 潘保龙, 张加琪, 等. 不同粒度软煤与硬煤吸附性能差异性研究[J]. 煤矿安全, 2017, 48(6): 52-56,59.
LIU Y W, PAN B L, ZHANG J Q, et al. Study on difference of gas adsorption between soft and hard coal with different grain sizes[J]. Safety in Coal Mines, 2017, 48(6): 52-56,59.
17 张晓东, 桑树勋, 秦勇, 等. 不同粒度的煤样等温吸附研究[J]. 中国矿业大学学报, 2005, 34(4): 427-432.
ZHANG X D, SANG S X, QIN Y, et al. Isotherm adsorption of coal samples with different grain size[J]. Journal of China University of Mining & Technology,2005,34(4): 427-432.
18 ZHANG L, AZIZ N, REN T, et al. Influence of coal particle size on coal adsorption and desorption characteristics[J]. Archives of Mining Sciences, 2014, 59(3): 807-820.
19 LIU J, JIANG X, HUANG X, et al. Morphological characterization of super fine pulverized coal particle. Part 4. Nitrogen adsorption and small angle X-ray scattering study[J]. Energy & Fuels, 2010, 24(5): 3072-3085.
20 MASTALERZ M, HAMPTON L, DROBNIAK A, et al. Significance of analytical particle size in low-pressure N2 and CO2 adsorption of coal and shale[J]. International Journal of Coal Geology, 2017, 178: 122-131.
21 HOU S, WANG X, WANG X, et al. Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption[J].International Journal of Coal Geology,2017,183:1-13.
22 ZOU J, REZAEE R. Effect of particle size on high-pressure methane adsorption of coal[J].Petroleum Research,2016,1(1): 53-58.
23 CHEN Y, QIN Y, WEI C, et al. Porosity changes in progressively pulverized anthracite subsamples: Implications for the study of closed pore distribution in coals[J]. Fuel, 2018, 225: 612-622.
24 GUO H, YUAN L, CHENG Y, et al. Experimental investigation on coal pore and fracture characteristics based on fractal theory[J]. Powder Technology, 2019, 346: 341-349.
25 CLARKSON C R, BUSTIN R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions[J]. Fuel, 1999, 78(11): 1333-1344.
26 LI T, WU C. Research on the abnormal isothermal adsorption of shale[J]. Energy & Fuels, 2015, 29(2): 634-640.
27 LI T, WU C. Continual refined isothermal adsorption of pure illite in shale with gravimetric method[J]. Journal of Petroleum Science and Engineering, 2019, 172: 190-198.
28 张政, 秦勇, WANG G X, 等. 基于等温吸附实验的煤层气解吸阶段数值描述[J]. 中国科学: 地球科学, 2013, 43(8): 1352-1358.
ZHANG Z, QIN Y, WANG G X, et al. Numerical description of coalbed methane desorption stages based on isothermal adsorption experiment[J].Science China:Earth Sciences, 2013, 43(8): 1352-1358.
29 LI X, KANG Y, HAGHIGHI M. Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP)[J]. Measurement, 2018, 116: 122-128.
30 李伟. CO2-ECBM中煤储层结构对CH4和CO2吸附/解吸影响的研究[D]. 太原: 太原理工大学, 2018: 51-60.
LI W. Influences of Coal Reservoir Structure on Adsorption/Desorption of CH4 and CO2 Associated with CO2-ECBM[D]. Taiyuan: Taiyuan University of Technology, 2018: 51-60.
31 周动, 冯增朝, 王辰, 等. 煤吸附甲烷结构变形的多尺度特征[J]. 煤炭学报, 2019, 44(7): 2159-2166.
ZHOU D, FENG Z C, WANG C, et al. Multi-scale characteristics of coal structure deformation during methane adsorption[J].Journal of China Coal Society,2019,44(7):2159-2166.
32 魏彬, 赵宇, 张玉贵. 煤岩吸附—解吸变形各向异性特征试验分析[J]. 石油地球物理勘探, 2019, 54(1): 112-117.
WEI B, ZHAO Y, ZHANG Y G. Experimental study on anisotropic characteristics of coal deformation caused by gas adsorption and desorption[J].Oil Geophysical Prospecting, 2019, 54(1): 112-117.
33 姚宇平. 吸附瓦斯对煤的变形及强度的影响[J]. 煤矿安全, 1988, (12): 37-41.
YAO Y P. Effect of adsorbed gas on deformation and strength of coal[J]. Safety in Coal Mines, 1988, (12): 37-41.
34 何学秋, 王恩元, 林海燕. 孔隙气体对煤体变形及蚀损作用机理[J]. 中国矿业大学学报, 1996, 25(1): 6-11.
HE X Q, WANG E Y, LIN H Y. Coal deformation and fracture mechanism under pore gas action[J]. Journal of China University of Mining & Technology, 1996, 25(1): 6-11.
[1] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[2] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[3] 梅青燕, 邹成, 杨山, 杨胜来, 赵益, 郑伟. 孔隙结构特征和非均质性对碳酸盐岩气藏开发的影响[J]. 天然气地球科学, 2020, 31(12): 1757-1765.
[4] 符宏斌, 苑坤, 卢树藩, 陈相霖, 林拓, 杜胜江, 何犇, 罗香建. 黔西上二叠统龙潭组高煤级煤微观孔隙结构特征及其对含气性的影响[J]. 天然气地球科学, 2020, 31(12): 1814-1825.
[5] 杨青, 李剑, 田文广, 孙斌, 祝捷, 杨宇航. 海拉尔盆地褐煤全孔径结构特征及影响因素[J]. 天然气地球科学, 2020, 31(11): 1603-1614.
[6] 陈斐然, 魏祥峰, 刘珠江, 敖明冲, 燕继红. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1593-1602.
[7] 鲍园, 安超, 琚宜文, 尹中山, 熊建龙, 王文愽. 川南煤田古叙矿区DC⁃5井上二叠统龙潭组煤层甲烷吸附性及其主控因素[J]. 天然气地球科学, 2020, 31(1): 93-99.
[8] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[9] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[10] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[11] 孙兵华, 张廷山, . 鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J]. 天然气地球科学, 2019, 30(2): 274-284.
[12] 王伟,朱玉双,余彩丽,赵乐,陈大友. 鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因[J]. 天然气地球科学, 2019, 30(10): 1439-1450.
[13] 李文镖, 卢双舫, 李俊乾, 张鹏飞, 陈晨, 王思远. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学, 2019, 30(1): 27-38.
[14] 张世铭, 王建功, 张小军, 张婷静, 曹志强, 杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119.
[15] 刘喜杰,马遵敬,韩冬,王海燕,马立涛,葛东升. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张丽娟,韩杰,孙玉善,程明. 塔中4油田石炭系含砾砂岩亚段沉积储层研究[J]. 天然气地球科学, 2007, 18(1): 50 -56 .
[2] 阳安成;李德茂;赵儒;. 区带含油气地质概率分析[J]. 天然气地球科学, 1999, 10(5): 23 -27 .
[3] 王少昌;付琐堂;李熙哲;付金华;孙粉锦;姜正龙;. 鄂尔多斯盆地西缘古生代槽台过渡带裂谷系弧形构造带的形成与发展及对油气聚集富集规律的影响[J]. 天然气地球科学, 2005, 16(4): 421 -427 .
[4] 万明浩; 王一新; . 瞬变电磁测深(建场测深)法的最新进展与应用前景[J]. 天然气地球科学, 1991, 2(3): 142 -143,136 .
[5] 贾义蓉,王天奇,窦玉坛,房乃珍,李娟. Pelagian盆地C区块灰岩储层的地震识别[J]. 天然气地球科学, 2013, 24(1): 150 -155 .
[6] 杨瑞召,赵争光,马彦龙,霍超,李洋. 利用谱蓝化和有色反演分辨薄煤层[J]. 天然气地球科学, 2013, 24(1): 156 -161 .
[7] 郭彤楼,刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643 -651 .
[8] 鲁雪松,柳少波,李伟,卢玉红,李勇,张宝收. 低勘探程度致密砂岩气区地质和资源潜力评价——以库车东部侏罗系致密砂岩气为例[J]. 天然气地球科学, 2014, 25(2): 178 -184 .
[9] 许志刚,韩文明,孙玉梅. 东非共轭型大陆边缘油气成藏差异性分析[J]. 天然气地球科学, 2014, 25(5): 732 -738 .
[10] 胡勇,李熙喆,卢祥国,焦春艳,王庆生,朱秋林. 高含水致密砂岩气藏储层与水作用机理[J]. 天然气地球科学, 2014, 25(7): 1072 -1076 .