天然气地球科学 ›› 2020, Vol. 31 ›› Issue (9): 1326–1333.doi: 10.11764/j.issn.1672-1926.2020.05.021

• 天然气开发 • 上一篇    下一篇

致密砂岩气藏井网加密优化

胡勇1(),梅青燕2,王继平3,陈颖莉2,徐轩1,焦春艳1,郭长敏1   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油西南油气田分公司,四川 成都 610051
    3.中国石油长庆油田分公司,陕西 西安 710018
  • 收稿日期:2020-03-26 修回日期:2020-05-29 出版日期:2020-09-10 发布日期:2020-09-04
  • 作者简介:胡勇(1978-),男,重庆黔江人,高级工程师,博士,主要从事天然气开发实验与基础理论应用研究.E-mail: huy69@petrochina.com.cn.
  • 基金资助:
    国家自然科学基金青年基金“致密砂岩微纳米孔喉系统对储层含气性及气水运移的控制机理”(51704326)

Optimization of well pattern infilling in tight sandstone gas reservoir

Yong HU1(),Qing-yan MEI2,Ji-ping WANG3,Ying-li CHEN2,Xuan XU1,Chun-yan JIAO1,Chang-min GUO1   

  1. 1.PetroChina Research Institute of Exploration & Development,Beijing 100083,China
    2.PetroChina Southwest Oil & Gafield Company,Chengdu 610051,China
    3.PetroChina Changqing Oil Field Company,Xi’an 710018,China
  • Received:2020-03-26 Revised:2020-05-29 Online:2020-09-10 Published:2020-09-04

摘要:

采用物理模拟实验与数学评价方法相结合,系统研究了井控范围从500 m逐步加密至100 m(相当于井距从1 000 m加密至200 m)过程中不同渗透率砂岩储层在不同含水饱和度条件时的储量采出程度,揭示了井网加密对提高储量采出程度作用,以采出程度提高5%~10%和大于10%为依据,建立井网加密可行性判识图表,为气藏井网部署和加密方案优化提供了参考依据。实验岩心常规空气渗透率分别为1.63×10-3 μm2、0.58×10-3 μm2、0.175×10-3 μm2、0.063×10-3 μm2,含水饱和度介于30.3%~71.1%之间。研究结果表明:渗透率为1.63×10-3 μm2的储层,采出程度总体均较高,除了在含水饱和度高达69.9%时的采出程度与井控范围有关外,其余含水饱和度条件下,采出程度与井控范围关系不大,可以采用大井距开发;渗透率为0.58×10-3 μm2的储层,采出程度与含水饱和度和井控范围关系密切,随含水饱和度降低、井控范围加密而增加;渗透率为0.175×10-3 μm2的储层,采出程度受含水饱和度的影响十分显著,只有在含水饱和度≤52.3%时,井网加密优化可提高储量采出程度,当含水饱和度>52.3%时,储量采出程度均较低,一般≤10%,即使井控范围加密至100 m,也难以得到提高;渗透率为0.063×10-3 μm2的储层,总体上采出程度非常低,即使含水饱和度仅有31.6%,井控范围加密至100 m,其采出程度最高也只有2.3%,因此,该类储层依靠井网加密难以得到有效动用。

关键词: 致密砂岩气藏, 井网加密, 储量动用, 物理模拟, 开发优化

Abstract:

The reserve producing degree of sandstone reservoirs with different permeability under different water saturation conditions has been systematically studied by combining physical simulation experiment with mathe-matical evaluation method during well control range from 500 m to 100 m (the equivalent of well spacing from 1 000 m to 200 m). This paper reveals the effect of well pattern infilling on increasing reserve producing degree,and the chart for identifying the feasibility of well pattern infilling has been established based on the increase of the recovery degree by 5%-10% and more than 10%,which provides a reference for the well pattern disposetion and infilling scheme optimization of gas reservoirs. The core with conventional air permeability of 1.63×10-3 μm2,0.58×10-3 μm2,0.175×10-3 μm2 and 0.063×10-3 μm2 and the water saturation between 30.3% and 71.1% has been used in the experiments. The results show that the reservoir with permeability of 1.63×10-3 μm2 has a high degree of production. Except when the water saturation is as high as 69.9%, the production degree is related to the well control range, the production degree has little relation with well control range, and it can be developed with large well spacing. For reservoirs with permeability of 0.58×10-3 μm2, the degree of production is closely related to water saturation and well control range,and it increases with the decrease of water saturation and the densification of well control range. For reservoirs with permeability of 0.175×10-3 μm2,only when the water saturation is less than or equal to 52.3%, well pattern infilling optimization can improve the degree of reserve production, and when the water saturation is more than 52.3%,the degree of reserve production is low, usually less than or equal to 10%. Even if the well control range is encrypted to 100m,it is difficult to improve. For the reservoir with a permeability of 0.063×10-3 μm2, it has a very low degree of production as a whole,even if the water saturation is only 31.6% and the well control range is infilled to 100m,the highest degree of production is only 2.3%,therefore it is difficult to improve by well pattern infilling for this kind of reservoir.

Key words: Tight sandstone gas reservoir, Well pattern infilling, Reserves production, Physical simulation, Development optimizationFoundation item:The Youth Program of National Natural Science Foundation of China(Grant No. 51704326)

中图分类号: 

  • TE357

图1

实验仪器设备及流程"

表1

岩心基础参数和实验条件"

孔隙度 /%

渗透率/

(10-3 μm2)

Sw/%

直径×长度

/(cm×cm)

初始孔隙压力 /MPa实验配产 /(L/min)
12.71.6369.92.5×52.0200.50
40.120
30.320
10.60.5871.02.5×51.5200.05
56.620
46.320
32.120
6.90.17570.02.5×24.8200.05
52.320
41.820
30.420
5.90.06371.12.5×52.2200.05
53.620
31.620

图2

产气量变化特征曲线"

图3

废弃产量条件下的压力剖面"

图4

地层压力与动用距离数学拟合函数关系"

图5

动用距离与压力分布特征"

图6

不同井控范围的储量采出程度"

图7

井控范围400 m加密至200 m采出程度提高幅度"

表2

各类储层井网加密优化适用条件及判识"

序号φ/%K/(10-3 μm2)Sw/%采出程度/%适用条件判识
200 m400 m井控范围400 m加密至200 m提高幅度提高5%提高10%
112.7451.6369.965.657.08.6×
212.7451.6340.193.993.20.7××
312.7451.6330.396.596.10.4××
410.60.5871.019.09.59.5×
510.60.5856.641.929.212.7
610.60.5846.351.040.410.5
710.60.5832.172.467.25.2×
86.90.17570.00.40.20.2××
96.90.17552.38.22.65.6×
106.90.17541.834.521.812.7
116.90.17530.448.138.39.7×
125.90.06371.10.10.10.1××
135.90.06353.60.50.30.3××
145.90.06331.61.10.60.6××
1 STEPHEN A H. Tight gas sands[J].SPE J,2006(1):86-93.
2 李熙喆,万玉金,陆家亮,等. 复杂气藏开发技术[M].北京:石油工业出版社,2010:28-30.
LI X Z, WAN Y J, LU J L, et al. Complex Gas Reservoir Development Technology[M]. Beijing: Petroleum Industry Press, 2010:28-30.
3 庄惠农.气藏动态描述和试井[M]. 北京: 石油工业出版社, 2009.
ZHUANG H N. Dynamic Description and Well Test of Gas Reservoir[M]. Beijing:Petroleum Industry Press, 2009.
4 马新华,贾爱林,谭健,等.中国致密砂岩气开发工程技术与实践[J] .石油勘探与开发,2012,39(5):572-579
MA X H,JIA A L, TAN J, et al. Tight sand gas development technologies and practices in China[J].Petroleum Exploration and Development, 2012, 39(5): 572-579
5 李熙喆, 卢德唐, 罗瑞兰, 等. 复杂多孔介质主流通道定量判识标准[J]. 石油勘探与开发, 2019, 46(5): 943-949.
LI X Z, LU D T, LUO R L, et al. Quantitative criteria for identifying main flow channels in complex porous media[J]. Petroleum Exploration and Development,2019,46(5): 943-949.
6 雷群,李熙喆,万玉金,等. 中国低渗透砂岩气藏开发现状及发展方向[J]. 天然气工业, 2009, 29(6): 1-3, 133.
LEI Q, LI X Z, WAN Y J, et al. The status quo and development trend of exploiting low permeability gas sandstone reservoirs in China[J]. Natural Gas Industry, 2009, 29(6): 1-3, 133.
7 赵文智,卞从胜,徐兆辉.苏里格气田与川中须家河组气田成藏共性与差异[J].石油勘探与开发,2013,40(4):400-408.
ZHAO W Z, BIAN C S, XU Z H. Similarities and differences between natural gas accumulations in Sulige Gas Field in Ordos Basin and Xujiahe Gas Field in central Sichuan Basin[J]. Petroleum Exploration and Development,2013,40(4):400-408.
8 胡勇,李熙喆,万玉金,等. 致密砂岩气渗流特征物理模拟[J]. 石油勘探与开发, 2013, 40(5): 580-584.
HU Y, LI X Z, WAN Y J, et al. Physical simulation on gas percolation in tight sandstone[J]. Petroleum Exploration and Development, 2013, 40(5): 580-584.
9 何东博,贾爱林,冀光,等.苏里格大型致密砂岩气田开发井型井网技术[J]. 石油勘探与开发, 2013,40(1):79-89.
HE D B, JIA A L, JI G,et al. Well type and pattern optimization technology for large scale tight sand gas, Sulige Gas Field[J].Petroleum Exploration and Development,2013,40(1): 79-89.
10 李熙喆, 郭振华, 胡勇, 等. 中国超深层构造型大气田高效开发策略[J]. 石油勘探与开发, 2018, 45(1): 111-118.
LI X Z, GUO Z H, HU Y, et al. Efficient development strategies for large ultra-deep structural gas fields in China[J]. Petroleum Exploration and Development,2018,45(1):111-118.
11 李熙喆, 郭振华, 胡勇, 等. 中国超深层大气田高质量开发的挑战、对策与建议[J]. 天然气工业, 2020, 40(2): 75-82.
LI X Z, GUO Z H, HU Y, et al. High-quality development of ultra-deep large gas fields in China: Challenges, strategies and proposals[J]. Natural Gas Industry, 2020, 40(2): 75-82.
12 胡勇,李熙喆,李跃刚,等. 低渗致密砂岩气藏提高采收率实验研究[J]. 天然气地球科学, 2015, 26(11): 2142-2148.
HU Y,LI X Z,LI Y G, et al. Enhanced gas recovery of the low permeability and tight sandstone gas reservoir[J]. Natural Gas Geoscience, 2015, 26(11): 2142-2148.
13 李熙喆,刘晓华,苏云河,等.中国大型气田井均动态储量与初始无阻流量定量关系的建立与应用[J].石油勘探与开发,2018,45(6):1020-1025.
LI X Z, LIU X H, SU Y H, et al. Correlation between per-well average dynamic reserves and initial absolute open flow potential (AOFP) for large gas fields in China and its application[J]. Petroleum Exploration and Development, 2018, 45(6): 1020-1025.
14 胡勇.气体渗流启动压力实验测试及应用[J]. 天然气工业, 2010, 30(11): 48-50, 119.
HU Y. Experimental test analysis of the threshold pressure in tight sandstone gas flow: A case study of the Sulige Gas Field[J].Natural Gas Industry, 2010, 30(11): 48-50, 119.
15 郭智,贾爱林,冀光,等.致密砂岩气田储量分类及井网加密调整方法———以苏里格气田为例[J].石油学报,2017,38(11):1299-1309.
GUO Z, JIA A L, JI G, et al. Reserve classification and well pattern infilling method of tight sandstone gasfield:A case study of Sulige Gasfield[J]. Acta Petrolei Sinica, 2017, 38(11): 1299-1309.
16 徐轩,胡勇,万玉金,等. 高含水低渗致密砂岩气藏储量动用动态物理模拟[J]. 天然气地球科学, 2015, 26(12): 2352-2359.
XU X ,HU Y ,WAN Y J, et al. Physical simulation of reserve producing state in water-bearing tight sandstone gas reservoir[J].Natural Gas Geoscience,2015,26(12): 2352-2359.
[1] 李奇, 高树生, 刘华勋, 叶礼友, 吴泓辉, 朱文卿, 张杰, 杨懿, 杨茂红. 致密砂岩气藏井网加密与采收率评价[J]. 天然气地球科学, 2020, 31(6): 865-876.
[2] 付斌, 李进步, 张晨, 史红然. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020, 31(1): 143-150.
[3] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[4] 高阳, 王志章, 易士威, 佘源琦, 林世国, 李明鹏, 张春林, . 鄂尔多斯盆地天环地区盒8段致密砂岩岩石矿物特征及其对储层质量的影响[J]. 天然气地球科学, 2019, 30(3): 344-352.
[5] 朱文卿,高树生,沈杰,叶礼友,刘华勋. 致密砂岩气藏气水层识别新方法——以苏76井区为例[J]. 天然气地球科学, 2019, 30(11): 1629-1638.
[6] 张杰,李熙喆,高树生,叶礼友,刘华勋,朱文卿,方飞飞. 致密砂岩气藏产水机理及其对渗流能力的影响[J]. 天然气地球科学, 2019, 30(10): 1519-1530.
[7] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[8] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[9] 王颖, 邓守伟, 范晶, 邹晓品, 杨静. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464.
[10] 张吉,侯科锋,李浮萍,田敏,张志刚. 基于储层地质知识库约束的致密砂岩气藏储量评价——以鄂尔多斯盆地苏里格气田苏14区块为例[J]. 天然气地球科学, 2017, 28(9): 1322-1329.
[11] 吴闯,尹宏伟,于常青,皮金云,吴珍云,汪伟,张佳星. 青海省木里地区天然气水合物构造成藏机制——来自物理模拟实验的启示[J]. 天然气地球科学, 2017, 28(5): 771-784.
[12] 黄禹忠,刁素,尹琅,栗铁峰,刘琦. 致密砂岩气藏水平井细分段适应性分析[J]. 天然气地球科学, 2017, 28(3): 460-465.
[13] 付海峰, 刘云志, 梁天成, 翁定为, 卢拥军, 修乃岭. 四川省宜宾地区龙马溪组页岩水力裂缝形态实验研究[J]. 天然气地球科学, 2016, 27(12): 2231-2236.
[14] 朱永进,尹太举,沈安江,刘玲利,刘忠保. 鄂尔多斯盆地上古生界浅水砂体沉积模拟实验研究[J]. 天然气地球科学, 2015, 26(5): 833-844.
[15] 洪峰,姜林,郝加庆,樊阳,郑永平. 油气储集层非均质性成因及含油气性分析[J]. 天然气地球科学, 2015, 26(4): 608-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!