天然气地球科学 ›› 2020, Vol. 31 ›› Issue (12): 1700–1716.doi: 10.11764/j.issn.1672-1926.2020.05.018

• 天然气地质学 • 上一篇    下一篇

深层与露头碳酸盐岩岩溶洞穴对比及类比——以塔里木盆地哈拉哈塘油田奥陶系良里塔格组古岩溶洞穴与美国德克萨斯州Longhorn近现代岩溶洞穴为例

宁超众1(),胡素云1(),李勇1,姚子修1,潘文庆2,袁文芳2,王孝明2   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油塔里木油田公司,新疆 库尔勒 841000
  • 收稿日期:2020-04-01 修回日期:2020-05-28 出版日期:2020-12-10 发布日期:2020-12-11
  • 通讯作者: 胡素云 E-mail:nniinngg@126.com;husy@petrochina.com.cn
  • 作者简介:宁超众(1988-),男,山东济南人,工程师,博士,主要从事油田开发地质研究.E-mail:nniinngg@126.com.
  • 基金资助:
    中国石油集团重大科技专项“伊拉克低渗孔隙型生屑灰岩油藏储层表征及高效开发技术研究”(2019D-4410)

Comparison and analog of the deep-buried and outcrop carbonate karst cave systems: Case study of the Lianglitage Formation karst cave system, Halahatang Oilfield, Tarim Basin, China and the Longhorn modern karst cave system, Texas, USA

Chao-zhong NING1(),Su-yun HU1(),Yong LI1,Zi-xiu YAO1,Wen-qing PAN2,Wen-fang YUAN2,Xiao-ming WANG2   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.PetroChina Tarim Oilfield Company,Korla 841000,China
  • Received:2020-04-01 Revised:2020-05-28 Online:2020-12-10 Published:2020-12-11
  • Contact: Su-yun HU E-mail:nniinngg@126.com;husy@petrochina.com.cn
  • Supported by:
    The Major Science and Technology Projects of CNPC(2019D-4410)

摘要:

塔里木盆地哈拉哈塘油田奥陶系良里塔格组发育特征性的喀斯特地貌和地下古岩溶洞穴系统。通过地震、钻井、测井、岩心、薄片及生产资料的综合运用表征了该古岩溶洞穴系统特征及控制因素,并将其与美国德克萨斯州Marble Falls地区第四系Longhorn近现代典型的表生岩溶洞穴进行了对比。结果表明,哈拉哈塘油田奥陶系良里塔格组古洞穴完全垮塌并形成上覆地层凹陷;古洞穴充填物受陆源碎屑影响并被强烈压实,有效孔隙少,储层物性较差;古洞穴系统平面上呈网状,但古洞穴主干具有直线形态;古洞穴多期发育;控制古洞穴发育的因素有地表暴露、断裂及裂缝等。古岩溶洞穴和近现代岩溶洞穴存在共性和个性:两者在垮塌和压实特征方面存在不同,但在充填特征、洞穴形态、形成期次和控制因素方面均类似,说明两者可类比,即良里塔格组内部的古洞穴系统属于典型的表生岩溶系统。古今岩溶洞穴的对比和类比在研究塔里木盆地奥陶系良里塔格古岩溶洞穴特征、发育形态及期次、控制因素等方面具有参考价值。

关键词: 良里塔格组, 岩溶, 洞穴, 垮塌, 古岩溶, 近现代岩溶

Abstract:

The Ordovician Lianglitage Formation in Halahatang area, Tarim Basin, China, developed featured paleokarst topography and the subsurface paleokarst-cave systems. This study comprehensively utilized seismic data, core and thin section data, logging data and production data to characterize the features and controlling factors of the paleokarst-cave system in the Lianglitage Formation in the Halahatang area. This paleo-cave system was then compared with the Longhorn typical epigenic karst cave system in Marble Falls, Texas, USA. The results show that the paleokarst caves in the Halahatang Ordovician Liangliatage Formaiton experienced complete collapse and formed sags in the overlying strata. The infill of the paleo-cave system was influenced by the terrestrial debris and was strongly compact, leading to no effective pores. The paleo-cave system shows reticular style on plan view on the whole but its trunks are rectilinear. The paleo-cave system experienced multi-period development. Subaerial exposure, faults and fractures were the main controlling factors. The paleokarst-cave system and the modern karst cave system have commonalities as well as individualities. They are different in collapse and compaction features, but are similar in sediment filling, cave pattern, forming periods, collapse and controlling factors, which further demonstrates that they can be analogous. Therefore, the paleokarst-cave system inside of the Lianglitage Formation was typically epigenic. Comparison and analog of paleokarst and modern karst caves provide valuable reference for the research of paleo-caves regarding the features, development patterns and periods as well as the controlling factors in the Ordovician Lianglitage Formation, Tarim Basin.

Key words: Lianglitage Formation, Karst, Cave, Collapse, Paleokarst, Modern karst

中图分类号: 

  • TE122.2

图1

近地表大气淡水岩溶模式[4]"

图2

单一潜流带通道洞穴垮塌充填模式(修改自LOUCKS[4],1999)"

图3

哈拉哈塘油田研究区位置"

图4

塔北哈拉哈塘志留纪末期奥陶系南北向地层结构剖面(图3中AA’剖面,修改自斯春松等[31],2012)"

图5

良里塔格组岩溶期末古地貌及河流体系平面特征"

图6

哈拉哈塘过B1井南北向地震剖面(按桑塔木组顶部趋势面拉平,图3中AB剖面)"

图7

B6井良里塔格组综合柱状图"

图8

岩溶期末哈拉哈塘奥陶系良里塔格组顶面三维地貌(局部)"

图9

Marble Falls地区Ellenburger及基底层序剖面"

图10

露头区地质平面图(修改自MATTHEWS[32], 1963)"

图11

露头区下古生界地堑断块构造横切面(修改自MATTHEWS[32], 1963)"

图12

A1井岩心及典型岩性放大图岩心分为上段和下段,之间不连续。上段上部为垮塌段,下部为扰动/未扰动段;下段上部为垮塌段,下部为未扰动段。①和③分别为上下垮塌段典型的垮塌角砾岩,其角砾棱角分明,岩性混杂;②和④分别为上下段未扰动的瘤状灰岩,瘤状物岩性一致,边界不清晰,并呈现一定的定向性"

图13

A1 井垮塌岩溶体系岩心、镜下及测井解释(a)良里塔格组上段垮塌角砾岩,角砾为灰白色,基质为灰黑色,6 727 m,对应(g)中 2 处;(b)良里塔格组下段垮塌角砾岩,角砾与基质均为红色,6 755.5 m,对应(g)中 4 处;(c)角砾岩,角砾为颗粒灰岩和泥灰岩,单偏光,6 729.2 m;(d)角砾岩基质,基质由石英碎屑、碳酸盐岩碎屑和泥质组成,正交光,6 729.2 m;(e)上垮塌段顶部裂缝,成像测井,6 715.9~6 718.6 m;(f)砂泥互层,成像测井,6 740.0~6 742.75 m;(g)A1测井综合解释图"

图14

良里塔格组垮塌岩溶体系地震平面和剖面特征(a)良里塔格组均方根振幅和方差体融合平面图(窗长40 m);(b)雕刻的垮塌体系三维显示;(c)清绘洞穴体系平面图;(d)、(e)地震剖面图,分别对应图(a)中AA’和BB’位置,红色箭头位置指示了图(a)的剖面位置,注意左右两图中的“串珠”为同一串珠,但左图并未穿过“串珠”中心"

图15

A1井生产曲线"

图16

哈拉哈塘良里塔格组垮塌岩溶体系中生产井产量累计曲线"

表1

垮塌岩溶体系生产井生产特征"

井号放空完钻层位生产层位累计产油/t达到累产50%时间/d
A1吐木休克组良里塔格组401.612
A2吐木休克组良里塔格组2 809.340
A3吐木休克组良里塔格组95.22
A4吐木休克组良里塔格组0(干层)
A5良里塔格组良里塔格组4 966.741
A6良里塔格组良里塔格组0(水层)
A7吐木休克组良里塔格组607.8346
A8良里塔格组良里塔格组4 811.834

表2

古洞穴孔隙类型随深度变化数据"

实例数深度/m洞穴型孔隙晶洞型孔隙角砾间孔隙裂纹角砾孔隙溶蚀扩大缝孔隙基质孔隙
现代洞穴<300XXX(主要孔隙类型)X(在围岩中)X(以大型角砾间孔隙为主)X(在洞顶及洞壁中)XX
4300~425XX(钻遇250个洞穴,放空可达6.4 m)?XX?X
1580~2 830X(大型洞穴)X????
26975~1 340X???XX
141 060~1 370XX(大于0.6 m的放空超过100个,其中一个达38 m)?X???
61 100~1 280XX(几百个放空,放空可达 7.5 m)?X?X??
21 310X?X?X?
271 950XX(可达2 m)X?X??
92 600X(存在5 m的放空)???XX
32 720~2 740X(米级放空)?XXXXX(较大)?
103 100~3 150XXXXXXX
293 170~3 260XXXXX
113 170X?XXXXX
123 740~3 795XXXX
313 740~3 795X?XX?
324 000~4 175XXX?X
334 025~4 390X(罕见)XXXX
344 175~4 725XXXX?
354 880~5 335?X(较少)XXXX
135 790~5 825(一个3 m的放空)?????

图17

哈拉哈塘良里塔格组均方根振幅和方差融合体平面"

图18

岩溶洞穴体系与可能的先存断裂关系平面"

图19

洞穴内部及洞穴平面形态(a)巨型垮塌体,由落水洞垮塌形成,角砾为灰岩,填隙物主要由泥质碎块组成;(b)洞穴垮塌形成的大型角砾堆积体;(c)垮塌形成的上覆地层凹陷;(d)洪水沉积的陆源砾石;(e)洞穴内灰泥质沉积物,顶部溶蚀残余的燧石掉入灰泥中,对灰泥质纹层进行了扰动;(f)由泥质和砾石构成的洞穴沉积,沉积物为洪水期水流带来的陆源碎屑物质;(g)洞内化学沉积(石钟乳),主要成分为方解石;(h)典型潜流带水平管状通道,通道截面为扁椭圆形,高约2 m,宽约十几米;(i)厅堂洞“印第安人会议室”,处于多期潜流带通道交汇处,上部的通道在下部的通道形成之后形成,注意视野中最近通道上部的初始洞顶缝;(j)复杂洞穴,2期潜流带通道叠置的特征明显;(k)落水洞洞口"

图20

Longhorn岩溶洞穴系统沿地堑轴部地质剖面"

表3

哈拉哈塘与Longhorn岩溶洞穴特征对比"

对比项哈拉哈塘岩溶洞穴Longhorn岩溶洞穴
垮塌完全垮塌。见垮塌角砾,洞顶缝及上覆地层凹陷部分垮塌。见垮塌角砾、洞顶缝及上覆地层凹陷
充填完全充填。岩心上见垮塌角砾及陆源杂基胶结致密;成像测井可识别砾砂泥互层沉积物部分充填。洞穴内见大型垮塌角砾堆积物;见洪水带来的陆源碎屑沉积物;见化学沉积物
压实强烈压实。角砾之间呈线接触及凹凸接触;钻井无放空;井产能极低无压实。垮塌角砾之间具有较大孔隙,部分洞穴保留大型空间
洞穴形态由垮塌段长度推测原始洞穴高度远小于13 m;平面上明显分为主干和分支;主干较为平直;分支小且数量多,位于主干之间形成网状。潜流带通道具典型的水平管状形态:通道截面呈扁椭圆状,高度不过2 m,宽度不过十几米;厅堂洞处于多个通道交汇部位,可达15.3 m宽,56.4 m长,10.7 m高;另外可见竖井、改造的潜流带、落水洞、多期潜流带叠加等复杂洞穴形态;平面上洞穴主干延伸具有直线形态,出现分支和交汇现象
规模沿流向可追踪距离达十几千米,平面覆盖范围达三十多平方千米开放部分仅为1 000多米,可能仅为整个洞穴系统极小一部分
发育期次至少2期,可能多期至少4期
控制因素暴露、断裂及裂缝等暴露、断裂及裂缝等

图21

表生岩溶和热液岩溶洞穴演化模式(a)表生岩溶洞穴形成后,洞穴空间较大,后期洞穴不断发生充填、垮塌,并造成上覆地层凹陷,洞穴空间大量减少,后期海侵对凹陷填平补齐,随着上覆地层沉积,压实作用不断增强,储集空间不断减少,该类型垮塌体对应(c)图中岩溶垮塌体系强振幅;(b)断裂形成后,具有溶蚀性的热流体沿断裂向上运移,在断裂上部裂缝发育部位溶蚀碳酸盐岩地层形成洞穴,上覆压力增加或构造运动使洞穴发生垮塌,洞穴空间转化为上覆大型角砾之间空间,该垮塌体对应(c)图中串珠强振幅;(c)图17(a)中BB’剖面"

1 袁道先. 岩溶学词典[M].北京:地质出版社, 1988: 15-16.
YUAN D X. Glossary of Karstology[J]. Beijing:Geological Publishing House, 1988: 15-16.
2 CHOQUETTE P W, JAMES N P.Introduction to paleokarst[M]//CHOQUETTE P W, JAMES N P.Paleokarst. New York: Springer-Verlag, 1988: 1-24.
3 ESTEBAN M. Subaerial Exposure Environment[M]. Tulsa: AAPG Memoir, 1983: 708.
4 LOUCKS R G. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999, 83(11): 1795-1834.
5 PALMER A N. Geochemical Models for the Origin of Macroscopic Solution Porosity in Carbonate Rocks[M]//BUDD D A, SALLER A H, HARRIS P M.Unconformities and Porosity in Carbonate Strata. Tulsa, Oklahoma,U.S.A:American Association of Petroleum Geologists, Memoir 63, 1995: 77-102.
6 FRUMKIN A, ZAIDNER Y, NàAMAN I, et al. Sagging and collapse sinkholes over hypogenic hydrothermal karst in a carbonate terrain[J]. Geomorphology, 2015, 229: 45-57.
7 MORSE J W, MACKENZIE F T. Geochemistry of Sedimentary Carbonates[M]. New York: Elsevier, 1990.
8 SIMMS M J. Karst and paleokarst[J]. Encyclopedia of Geology, 2005:678-687.
9 PALMER A N. Origin and morphology of limestone caves[J]. Geological Society of America Bulletin, 1991, 103(1): 1-21.
10 FORD D C, WILLIAMS P W. Karst Hydrogeology and Geomorphology[M]. London: Unwin Hyman, 1989.
11 LOUCKS R G. Modern analogs for paleocave-sediment fills and their importance in identifying paleocave reservoirs[J]. Gulf Coast Association of Geological Societies Transactions, 2001, L1: 195-206.
12 MOORE C H, WADE W J. Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework[M]. OXFord : Academic Press, Elsevier, 2013.
13 LOUCKS R G. A review of coalesced, collapsed-paleocave systems and associated suprastratal deformation[J]. Acta Carsologica, 2007, 36(1): 121-132.
14 LOUCKS R G. Understanding the Development of Breccias and Fractures in Ordovician Carbonate Reservoirs[M]∥HUNT T J, LUFHOLM P H.The Permian Basin: Back to Basics. West Texas Geological Society Fall Symposium: West Texas Geological Society, 2003: 231-252.
15 MCDONNELL A, LOUCKS R G, DOOLEY T. Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pull-apart fault systems, or hydrothermal alteration?[J]. AAPG Bulletin, 2007, 91(9): 1295-1318.
16 MCMECHAN G A, LOUCKS R G, MESCHER P, et al. Characterization of a coalesced, collapsed paleocave reservoir analog using GPR and well-core data[J]. Geophysics, 2002, 67(4): 1148-1158.
17 MCMECHAN G A, LOUCKS R G, ZENG X, et al. Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas[J]. Journal of Applied Geophysics, 1998, 39(1): 1-10.
18 俞仁连, 傅恒. 构造运动对塔河油田奥陶系碳酸盐岩的影响[J]. 天然气勘探与开发, 2006, 29(2): 1-6.
YU R L, FU H. Influence of tectonic movement on Ordovician carbonates of Tahe Oilfield[J]. Natural Gas Exploration and Development, 2006, 29(2): 1-6.
19 刘学锋, 彭德堂, 刘绍平, 等. 塔北隆起构造格架及其成因[J]. 江汉石油学院学报, 1996, 18(4): 26-30.
LIU X F, PENG D T, LIU S P, et al. Tectonic framework and origin of the Tabei Uplift[J]. Journal of Jianghan Petroleum Institute, 1996, 18(4): 26-30.
20 朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011,27 (3): 827-844.
ZHU G Y, YANG H J, ZHU Y F, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 827-844.
21 刘嘉庆, 李忠, 黄君凑, 等. 塔里木盆地良里塔格组沉积环境差异及其对碳酸盐储层发育的制约[J]. 中国科学:地球科学, 2012, 42(12): 1802-1816.
LIU J Q,LI Z,HUANG J C,et al.Distinct sedimentary enviro-nments and their influences on carbonate reservoir evolution of the Lianglitage Formation in the Tarim Basin,Northwest China[J].Science China Earth Sciences,2012,42(12):1802-1816.
22 孟祥霞, 王宏斌, 姚清洲, 等. 塔北隆起构造演化特征及对奥陶系碳酸盐岩的控储控藏作用[J]. 天然气地球科学, 2015, 26(S1): 109-120.
MENG X X, WANG H B, YAO Q Z, et al. Tectonic evolution characteristics of Tabei Uplift and its controlling effect on the reservoir and hydrocarbon accumulation of Ordovician carbonate[J]. Natural Gas Geoscience, 2015, 26(S1): 109-120.
23 赵宗举, 吴兴宁, 潘文庆, 等. 塔里木盆地奥陶纪层序岩相古地理[J]. 沉积学报, 2009, 27(5): 939-955.
ZHAO Z J, WU X N, PAN W Q, et al. Sequence lithofacies paleogeography of Ordovician in Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(5): 939-955.
24 毛雪莲, 马青, 刘伟, 等. 哈拉哈塘地区良里塔格组沉积特征分析[J]. 岩性油气藏, 2012, 24(3): 21-26.
MAO X L, MA Q, LIU W, et al. Sedimentary characteristics of the Upper Ordovician Lianglitage Formation in Halahatang area[J]. Lithologic Reservoirs, 2012, 24(3): 21-26.
25 淡永, 梁彬, 张庆玉, 等. 塔北哈拉哈塘地区奥陶系碳酸盐岩浅覆盖区岩溶储层特征与形成机理[J]. 石油物探, 2015, 54(1): 90-98.
DAN Y, LIANG B, ZHANG Q Y, et al. Characteristics and genesis of Ordovician carbonate karst reservoir in the shallow coverage zone of Halahatang area, northern Tarim Basin[J]. Geophysical Prospecting for Petroleum, 2015,54(1):90-98.
26 倪新锋, 张丽娟, 沈安江, 等. 塔里木盆地英买力—哈拉哈塘地区奥陶系碳酸盐岩岩溶型储层特征及成因[J]. 沉积学报, 2011, 29(3): 465-474.
NI X F, ZHANG L J, SHEN A J, et al. Characteristics and genesis of Ordovician carbonate karst reservoir in Yingmaili-Halahatang area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 465-474.
27 ZENG H L, LOUCKS R, JANSON X, et al. Three-dimensional seismic geomorphology and analysis of the Ordovician paleokarst drainage system in the central Tabei Uplift, northern Tarim Basin, western China[J]. AAPG Bulletin, 2011, 95(12): 2061-2083.
28 ZENG H L, WANG G, JANSON X, et al. Characterizing seismic bright spots in deeply buried, Ordovician Paleokarst strata, Central Tabei uplift, Tarim Basin, western China[J]. Geophysics, 2011, 76(4): 127-137.
29 孙崇浩, 朱光有, 郑多明, 等. 塔里木盆地哈拉哈塘地区超深碳酸盐岩缝洞型储集层特征与控制因素[J]. 矿物岩石地球化学通报, 2016, 35(5): 1028-1036.
SUN C H, ZHU G Y, ZHENG D M, et al. Characteristics and controlling factors of fracture-cavity carbonate reservoirs in the Halahatang area,Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 1028-1036.
30 赵宽志,淡永,郑多明,等.塔北哈拉哈塘地区奥陶系潜山岩溶储层发育特征及控制因素[J].中国岩溶,2015,34(2):171-178.
ZHAO K Z, DAN Y, ZHENG D M, et al. Characteristics of karst reservoirs in the Ordovician buried hills of the Halahatang area, northern Tarim Basin[J]. Carsologica Sinica, 2015, 34(2): 171-178.
31 斯春松, 乔占峰, 沈安江, 等. 塔北南缘奥陶系层序地层对岩溶储层的控制作用[J]. 石油学报, 2012, 33(S2): 135-144.
SI C S, QIAO Z F, SHEN A J, et al. The controlling effect of sequence stratigraphy on karst reservoirs of Ordovician in the south margin of northern Tarim Basin[J]. Acta Petrolei Sinica, 2012, 33(S2): 135-144.
32 MATTHEWS W H I. The Geologic Story of Longhorn Cavern[M]. Austin: The University of Texas at Austin, Bureau of Economic Geology,Guidebook 4, 1963.
33 LOUCKS R G, ZAHM C. Longhorn Cavern Field Trip Guide[M]. Austin: University of Texas at Austin, 2017: 1-12.
34 KERANS C. Karst-controlled reservoir heterogeneity in Ellenburger Group carbonates of west Texas[J]. AAPG Bulletin, 1988, 72(10): 1160-1183.
35 LUCIA F J. Lower Paleozoic Cavern Development,Collapse, and Dolomitization,Franklin Mountains,El Paso,Texas[M]//BUDD D A, SALLER A H, HARRIS P M.Unconformities and Porosity in Carbonate Strata. Tulsa, oklahoma,U.S.A: American Association of Petroleum Geologists, Memoir 63, 1995: 279-300.
36 LOUCKS R G, MESCHER P K, MCMECHAN G A. Three-dimensional architecture of a coalesced, collapsed-paleocave system in the Lower Ordovician Ellenburger Group, central Texas[J]. AAPG Bulletin, 2004, 88(5): 545-564.
37 KASTNING E H. Relict caves as evidence of landscape and aquifer evolution in a deeply dissected carbonate terrain: Southwest Edwards Plateau, Texas, U.S.A.[J]. Journal of Hydrology, 1983, 61(1-3): 89-112.
38 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.
JIAO F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839.
[1] 田兴旺, 彭瀚霖, 王云龙, 杨岱林, 孙奕婷, 张玺华, 文龙, 罗冰, 洪海涛, 王文之, 马奎, 叶茂, 薛玖火. 川中安岳气田震旦系灯影组四段台缘—台内区储层差异及控制因素[J]. 天然气地球科学, 2020, 31(9): 1225-1238.
[2] 石书缘, 王铜山, 刘伟, 姜华, 李秋芬, 刘鑫, 曾乙洋, 邹翔, 胡丽. 四川盆地寒武系洗象池组储层特征及天然气勘探潜力[J]. 天然气地球科学, 2020, 31(6): 773-785.
[3] 林煜, 李春梅, 顾雯, 罗文军, 王志勇, 郁智, 张佳, 别静, 李雯琪. 深层碳酸盐岩小尺度缝洞储集体地震精细刻画[J]. 天然气地球科学, 2020, 31(12): 1792-1801.
[4] 李政宏,张立强,陈曦,赵海涛,晋倩倩. 缝洞型碳酸盐岩储层测井识别——以塔中东部良里塔格组良二段为例[J]. 天然气地球科学, 2019, 30(12): 1805-1814.
[5] 王帅, 王甘露, 秦政, 高泽远, 罗腾. 黔北地区茅口组古岩溶储层稀土元素地球化学特征[J]. 天然气地球科学, 2019, 30(1): 143-150.
[6] 胡鑫, 丁晓琪, 梁昌健, 朱颖, 刘璇, 徐小宇, 陈乙莱. 鄂尔多斯盆地富县地区马五段喀斯特储层发育规律[J]. 天然气地球科学, 2018, 29(12): 1748-1756.
[7] 张林,万玉金,杨洪志,苏云河,张满郎. 四川盆地高石梯构造灯影组四段溶蚀孔洞型储层类型及组合模式[J]. 天然气地球科学, 2017, 28(8): 1191-1198.
[8] 丁博钊,张光荣,陈康,耿玮,朱兴卉,范畅. 四川盆地高石梯地区震旦系岩溶塌陷储集体成因及意义[J]. 天然气地球科学, 2017, 28(8): 1211-1218.
[9] 杨瑞召,金圣林,杨敏,罗誉鑫,孟张武,邓丽君. 塔里木盆地塔河油田不同岩溶塌陷类型地震响应特征与识别[J]. 天然气地球科学, 2017, 28(3): 391-396.
[10] 王建民, 王佳媛. 古岩溶地貌与古岩溶储层岩溶效应分析——以鄂尔多斯盆地东部奥陶系风化壳为例[J]. 天然气地球科学, 2016, 27(8): 1388-1398.
[11] 韩长城, 林承焰, 任丽华, 鲁新便, 魏婷, 张宪国. 塔里木盆地塔河10区奥陶系断裂特征及对岩溶储层的控制作用[J]. 天然气地球科学, 2016, 27(5): 790-798.
[12] 王琪, 许勇, 刘新社, 马东旭, 马晓峰, 李树同. 岩溶背景下的优质天然气储层形成机理及主控因素——以鄂尔多斯盆地奥陶系马家沟组马五41储层为例[J]. 天然气地球科学, 2016, 27(12): 2103-2114.
[13] 张德民, 鲍志东, 郝雁, 杨飞, 陈敏, 仲向云. 塔里木盆地牙哈_英买力寒武系潜山区优质储层形成模式[J]. 天然气地球科学, 2016, 27(10): 1797-1807.
[14] 张道锋,刘新社,高星,崔子岳,闫小雄. 鄂尔多斯盆地西部奥陶系海相碳酸盐岩地质特征与成藏模式研究[J]. 天然气地球科学, 2016, 27(1): 92-101.
[15] 王宏斌,张虎权,杨丽莎,郑多明,姚清洲,代冬冬. 塔里木盆地哈拉哈塘地区潜山岩溶带油气成藏关键因素[J]. 天然气地球科学, 2015, 26(S1): 72-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!