天然气地球科学 ›› 2020, Vol. 31 ›› Issue (9): 1250–1260.doi: 10.11764/j.issn.1672-1926.2020.05.017

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地盒8段致密砂岩储层溶蚀模拟实验

郭壘1,2(),李程善3,范立勇4,康锐4,张英1,2,陆应新1,2,张明峰1,吕成福1()   

  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.中国石油长庆油田分公司勘探事业部,陕西 西安 710018
    4.中国石油长庆油田分公司勘探开发研究院, 陕西 西安 710018
  • 收稿日期:2020-04-26 修回日期:2020-05-21 出版日期:2020-09-10 发布日期:2020-09-04
  • 通讯作者: 吕成福 E-mail:thepost@163.com;bailu2005@163.com
  • 作者简介:郭壘(1994-),男,甘肃会宁人,硕士研究生,主要从事储层沉积学研究.E-mail: thepost@163.com.
  • 基金资助:
    国家自然科学基金(41972155)

Experimental study on dissolution simulation of tight sandstone reservoir in the He 8 Member of Ordos Basin, China

Lei GUO1,2(),Cheng-shan LI3,Li-yong FAN4,Rui KANG4,Ying ZHANG1,2,Ying-xing LU1,2,Ming-feng ZHANG1,Cheng-fu LÜ1()   

  1. 1.Northwest Institute of Eco?Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Department of Exploration,PetroChina Changqing Oilfield Company,Xi’an 710018,China
    4.Exploration & Development Research Institute,PetroChina Changqing Oilfield Company,Xi’an 710018,China
  • Received:2020-04-26 Revised:2020-05-21 Online:2020-09-10 Published:2020-09-04
  • Contact: Cheng-fu Lü E-mail:thepost@163.com;bailu2005@163.com

摘要:

鄂尔多斯盆地二叠系石盒子组盒8段致密砂岩储层发生过强烈溶蚀改造,形成了广泛的次生孔隙。但是地质条件下砂岩内长石矿物、方解石胶结物的溶蚀过程及储层效应还有待深入研究。采用封闭体系下的温压共控岩溶模拟方法,结合电感耦合等离子体发射光谱仪、X?射线衍射仪、偏光显微镜和扫描电镜等测试分析,对盒8段致密储层砂岩开展不同温压条件下,含钙岩屑砂岩和长石质岩屑砂岩在乙酸溶液中溶蚀规律研究。实验结果显示:温度升高使长石溶蚀速度增快、溶蚀量增加,但是Al3+迁移量先增大再减小,所以深层砂岩中Al3+很难被迁移出来;方解石溶蚀速率远快于长石,对储层次生孔隙贡献更大;温度升高方解石溶蚀量先增大再减小,压力会抑制方解石溶蚀并且比温度的影响更大。盒8段砂岩三叠纪晚期至白垩纪早期方解石和长石发生了溶蚀作用,这是次生孔隙生成的主要时期,随后砂岩继续深埋时,温度压力升高使方解石发生沉淀;白垩纪中期以后储层抬升使温度、压力不断降低,部分方解石会发生溶蚀。

关键词: 乙酸, 方解石, 长石, 水岩反应, 石盒子组

Abstract:

The tight sandstone reservoir in 8th member of the Permian Shihezi Formation in the Ordos Basin has undergone intense dissolution and transformation, forming a wide range of secondary pores. However, the dissolution process and reservoir effect of feldspar minerals and calcite cement in sandstone under geological conditions have yet to be further studied. In this paper, the method that temperature and pressure co-controlled the dissolution simulation experiment under closed system was adopted, and the dissolution law of calcium-bearing litharenite and feldspathic litharenite in acetic acid solution was studied under different temperature and pressure conditions by means of test and analysis of inductively coupled plasma emission spectrometer, X-ray diffractometer, polarizing light microscope and scanning electron microscope. The experimental results show that the temperature increases the dissolution rate and the dissolution amount of feldspar, but the amount of Al3+ migration first increases and then decreases, so it is difficult for Al3+ to be migrated out of the deep sandstone. Calcite dissolves much faster than feldspar and contributes more to the pore formation. As the temperature increases, the calcite dissolution first increases and then decreases, and the pressure inhibits calcite dissolution and has a greater effect than temperature. Calcite and feldspar of He 8 Member dissolved in the Late Triassic to the early cretaceous, which was the main period of secondary pore formation. After the Middle Cretaceous, the reservoir uplifted and the temperature and pressure decreased continuously, and caused some calcite to dissolve away.

Key words: Acetic acid, Calcite, Feldspar, Water-rock reaction, Shihezi FormationFoundation item:The National Natural Science Foundation of China(Grant No. 41972155)

中图分类号: 

  • TE122.2+3

图1

盒8段砂岩岩溶模拟前后的矿物与孔隙特征(a)含钙岩屑砂岩,正交光;(b)含钙岩屑砂岩,单偏光;(c)长石质岩屑砂岩,正交光;(d)长石质岩屑砂岩,单偏光;(e)含钙岩屑砂岩,120 ℃/35 MPa,变质岩岩屑残骸,残存方解石,单偏光;(f)含钙岩屑砂岩,120 ℃/35 MPa,微斜长石残骸,单偏光;(g)长石质岩屑砂岩,150 ℃/40 MPa,微斜长石残骸,单偏光;(h)长石质岩屑砂岩,150 ℃/40 MPa,花岗岩岩屑残骸,单偏光;(i)、(j)含钙岩屑砂岩中钠长石溶蚀及高岭石,SEM;(k)、(l)长石质岩屑砂岩中钾长石溶蚀及高岭石,SEM"

表1

模拟实验初始样品的孔隙度和矿物含量"

岩性

样品柱

/个

孔隙度/%矿物含量/%
最小值最大值石英钾长石斜长石方解石锐钛矿黏土总量
含钙岩屑砂岩1214.5814.9990.82.81.42.80.81.4
长石质岩屑砂岩518.6918.9377.66.65.20.61.38.7

图2

岩溶模拟样品的X-射线衍射图谱特征"

图3

不同温度压力条件下溶蚀孔隙增加量"

图4

不同温度压力条件下反应液中的离子含量"

图5

不同温度压力条件下反应液中的Ca2+含量"

图6

含钙岩屑砂岩不同温度条件下的离子浓度"

图7

盒8段砂岩在酸性环境中的矿物转化过程(埋藏史据文献[23]略修改)"

1 MORAD S, KETZER J M, DE ROS L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins[J].Sedimentology, 2000, 47:95-120.
2 张永旺,曾溅辉,张善文,等.长石溶解模拟实验研究综述[J].地质科技情报, 2009, 28(1) :31-37.
ZHANG Y W, ZENG J H, ZHANG S W, et al. A review of experimental study on dissolution simulation of feldspar[J].Geological Science and Technology Information,2009,28(1): 31-37.
3 吕成福,李小燕,陈国俊,等.酒东坳陷下白垩统砂岩中碳酸盐胶结物特征与储层物性[J].沉积学报,2011,29(6):1138-1144.
LV C F, LI X Y, CHEN G J, et al. Characteristics of carbonate cements and reservoir quality of the Lower Cretaceous sandstone in Jiudong Sag[J].Acta Sedimentologica Sinica,2011, 29(6): 1138-1144.
4 向廷生,蔡春芳,付华娥,等. 不同温度、羧酸溶液中长石溶解模拟实验[J].沉积学报, 2004, 22(4):597-602.
XIANG T S, CAI C F, FU H E, et al. Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Al anion with carboxylic acid in aqueous solution[J].Acta Sedimentologica Sinica, 2004, 22(4): 597-602.
5 黄可可,黄思静,佟宏鹏,等. 长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报, 2009, 28(4): 474-482.
HUANG K K, HUANG S J, TONG H P, et al. Thermodynamic calculation of feldspar dissolution and its significance on research of clastic reservoir [J] .Geological Bulletin of China, 2009, 28(4):474-482.
6 赖兴运,于炳松,陈军元,等. 碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用 [J] .中国科学:D辑, 2004, 34(1) :45-53.
LAI X Y, YU B S, CHEN J Y, et,al. Thermodynamic conditions for the dissolution of clastic rock skeleton particles and its application in Kela 2 gas field[J].Science in China: Series D, 2004, 34(1): 45-53.
7 SURDAM R C,CROSSEY L J,HAGEN E S.Organnic inorganic interactions and sandstone diagenesis [J].AAPG Bulletin,1989, 73(1): 1-23.
8 BJØRKUM P A, WALDERHAUG O P, NADEAU D H. Thermally driven porosity reduction: Impact on basin subsidence[J].Geological Society, 2001,188(1):85-392.
9 范明,蒋小琼,刘伟新,等. 不同温度条件下CO2 水溶液对碳酸盐岩的溶蚀作用[J].沉积学报, 2007, 25(6): 825-830.
FAN M, JIANG X Q, LIU W X, et al. Dissolution of carbonate rocks by CO2 solution under the different temperature[J].Acta Sedimentologica Sinica, 2007, 25(6): 825-830.
10 佘敏,寿建峰,沈安江,等.从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J].地球化学,2014,43(3):276-286.
SHE M, SHOU J F, SHEN A J, et al.Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigenesis to deep burial environments[J].Geochimica, 2014,43(3): 276-286.
11 佘敏,寿建峰,沈安江,等. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J].石油勘探与开发, 2016, 43(4): 564-572.
SHE M, SHOU J F, SHEN A J, et al. Experimental simulation of dissolution law and porosity evolution of carbonate rock[J].Petroleum Exploration and Development, 2016, 43(4): 564-572.
12 王炜,黄康俊,鲍征宇,等.不同类型鲕粒灰岩储集层溶解动力学特征[J].石油勘探与开发, 2011, 38(4): 495-502.
WANG W, HUANG K J, BAO Z Y, et al. Dissolution kinetics of different types of oolitic limestones in northeastern Sichuan Basin[J].Petroleum Exploration and Development, 2011, 38(4): 495-502.
13 蒋小琼,王恕一,范明,等. 埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究[J].石油实验地质, 2008, 20(6) :643-647.
JIANG X Q, WANG S Y, FAN M, et al. Study of simulation experiment for carbonate rocks dissolution in buril diagenetic environment[J].Petroleum Geology & Experiment, 2008, 20(6): 643-647.
14 邢俊涛,李美蓉,远光辉,等. 乙酸溶蚀方解石的影响因素及特征分析[J].科学技术与工程, 2018, 18(12) :180-185.
XING J T,LI M R,YUAN G H,et al. Dissolution factors of calcite and characteristic analysis in acetic acid[J].Science Technology and Engineering, 2018, 18(12): 180-185.
15 杨俊杰,黄月明,张文正,等.乙酸对长石砂岩溶蚀作用的实验模拟[J].石油勘探与开发, 1995,22(4): 82-86,113-114.
YANG J J, HUANG Y M, ZHANG W Z, et al Experimental simulation of acetic acid on dissolution of feldspar sandstone [J].Petroleum Exploration and Development,1995,22(4):82-86,113-114.
16 杨俊杰,黄思静,张文正,等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J].沉积学报, 1995, 13(4):49-54.
YANG J J, HUANG Y M, ZHANG W Z, et al. Experimental simulation of dissoution for carbonate with different composition under the conditions from epigenesis to burial diagenesis environment[J].Acta Sedimentologica Sinica, 1995,13(4): 49-54.
17 崔振昂, 鲍征宇, 张天付,等. 埋藏条件下碳酸盐岩溶解动力学实验研究[J].石油天然气学报, 2007,29(3):230-233.
CUI Z A, BAO Z Y, ZHANG T F, et al.Experimental study on dynamics of carbonate karst solution under burial condition [J] .Journal of Oil and Gas Technology,2007.29(3): 230-233.
18 SURDAM R C, CROSSEY C. Integrated diagenetic modeling: A process-oriented approach for clastic systems[J].Annual Review of Earth and Planetary Sciences.1987,15(1): 141-170.
19 SMITH J T, EHRENBERG S N. Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs: Relationship to inorganic chemical equilibrium[J].Marine and Petroleum Geology, 1989, 6(2): 129-135.
20 BJØRLYKKE K. Clay mineral diagenesis in sedimentary basins: A key to the prediction of rock properties. Examples from the north Sea Basin[J].Clay Minerals, 1998, 33(1):15-34.
21 GLUYAS J, LEONARD A. Diagenesis of the Rotliegend Sandstone: The answer ain't blow in'in the wind[J].Marine and Petroleum Geology. 1995, 12(5): 491-497.
22 远光辉, 操应长, 杨田,等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J].地学前缘, 2013, 20(5) :207-219.
YUAN G H, CAO Y C, YANG T, et al. Porosity enhangcement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservior[J].Earth Science Frontiers,2013,20(5): 207-219.
23 刘锐娥,吴浩,魏新善,等.砂岩储层中长石的异常分布及成因——以鄂尔多斯盆地二叠系石盒子组8段为例 [J] .中国矿业大学学报, 2017, 46(1) :96-105.
LIU R E, WU H, WEI X S, et al. Anomaly distribution and genesis of feldspar in the 8th Member sandstone reservoir of Shihezi Formation,Permian,Ordos Basin [J] .Journal of China University of Mining & Technology,2017, 46(1): 96-105.
24 魏新善,肖红平,刘锐娥,等.热异常酸洗作用与鄂尔多斯盆地上古生界长石消失事件[J].地质学报,2017, 91(9): 2139-2149.
WEI X S, XIAO H P, LIU R E, et al. Pickling of thermal anomalies and the disappearance of feldspar in the Upper Paleozoic in the Ordos Basin[J].Acta Geologica Sinica,2017, 91(9): 2139-2149.
25 张文正,杨华,解丽琴,等.鄂尔多斯盆地上古生界煤成气低孔渗储集层次生孔隙形成机理-乙酸溶液对钙长石、铁镁暗色矿物溶蚀的模拟实验[J].石油勘探与开发,2019, 36(3) :383-391.
ZHANG W Z, YANG H, XIE L Q, et al. Secondary porosity formation of Upper Paleozoic low porosity-permeability coal-formed gas reservoirs, Ordos Basin:Simulation on dissolution of anorthite and dark-colored femic minerals in acetic acid solution[J].Petrolueum Exploration and Development,2019, 36(3): 383-391.
26 远光辉. 成岩过程中长石和碳酸盐矿物溶蚀机理及其物性响应[D].青岛:中国石油大学(华东),2015.
YUAN G H. Dissolution Mechanism and Physical Response of Feldspar and Carbonate Minerals During Diagenesis[D].Qingdao: China University of Petroleum (East China),2015.
27 高胜利, 任战利. 鄂尔多斯盆地剥蚀厚度恢复及其对上古生界烃源岩热演化程度的影响[J].石油与天然气地质, 2006, 27(2): 180-186.
GAO S L, REN Z L. Restoration of eroded thickness and its influence on thermal evolution of Upper Paleozoic source rocks in Ordos Basin[J].Oil and Gas Geology, 2006, 27(2): 180-186.
28 李杪,侯云东,罗静兰,等. 致密砂岩储层埋藏-成岩-油气充注演化过程与孔隙演化定量分析 [J] .石油与天然气地质, 2016, 37(6) :882-892.
LI M, HOU Y D, LUO J L, et al. Burial,diagenesis,hydrocarbon charging evolution process and quantitative analysis of porosity evolution:A case study from He 8 tight sand gas reservoir of the Upper Paleozoic in Eastern Ordos Basin [J] .Oil and Gas Geology,2016, 37(6): 882-892.
[1] 李慧莉, 尤东华, 韩俊, 钱一雄, 沙旭光, 席斌斌. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125.
[2] 唐海忠, 魏军, 周在华, 肖文华, 俞海东, 魏浩元. 酒泉盆地营尔凹陷深层下沟组砂岩方解石胶结物特征[J]. 天然气地球科学, 2019, 30(5): 652-661.
[3] 高阳, 王志章, 易士威, 佘源琦, 林世国, 李明鹏, 张春林, . 鄂尔多斯盆地天环地区盒8段致密砂岩岩石矿物特征及其对储层质量的影响[J]. 天然气地球科学, 2019, 30(3): 344-352.
[4] 刘琴琴, 陈桂华, 陈晓智, 祝彦贺, 杨小峰. 鄂尔多斯盆地L地区上古生界上石盒子组物源特征及其对储层的控制作用[J]. 天然气地球科学, 2018, 29(8): 1094-1101.
[5] 马东旭, 许勇, 吕剑文, 吉鸿杰, 妥成荣, 郝乐伟, 苏龙, 王琪. 鄂尔多斯盆地临兴地区下石盒子组物源特征及其与储层关系[J]. 天然气地球科学, 2016, 27(7): 1215-1224.
[6] 庞河清,匡建超,罗桂滨,廖开贵,蔡左花,王众,邓美洲. 川西新场气田须二气藏水体动态分布与水化学特征[J]. 天然气地球科学, 2012, 23(1): 190-197.
[7] 张鼐, 赵宗举, 肖中尧, 张宝民, 张宝收, 陈延贵, 邢永亮, 赵瑞华. 塔中Ⅰ号坡折带奥陶系裂缝方解石烃包裹体特征及成藏[J]. 天然气地球科学, 2010, 21(3): 389-396.
[8] 贺艳祥, 张伟, 胡作维, 兰叶芳, 黄培培. 鄂尔多斯盆地姬塬地区长8油层组砂岩中长石的溶解作用对储层物性的影响[J]. 天然气地球科学, 2010, 21(3): 482-488.
[9] 李振宏, 郑聪斌. 鄂尔多斯盆地东部奥陶系储层特征及控制因素[J]. 天然气地球科学, 2004, 15(6): 604-609.
[10] 孙省利,郑建京,刘文汇, 陈践发. 地壳热水流体在油气形成过程中的作用[J]. 天然气地球科学, 2004, 15(5): 519-523.
[11] 孙省利;陈践发;刘文汇;郑建京;. 热水流体作用与油气的形成[J]. 天然气地球科学, 2003, 14(3): 215-219.
[12] 韩应钧; . 龙门山南段前缘古构造演化与大中型气藏[J]. 天然气地球科学, 1993, 4(1): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[3] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[4] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[5] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[6] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[9] 张宝,包建平,江凤梅. 三塘湖盆地侏罗系煤岩倾油倾气性探讨[J]. 天然气地球科学, 2006, 17(2): 183 -186 .
[10] 尹太举,张昌民,王寿平,李中超 . 濮53块开发概念模拟[J]. 天然气地球科学, 2006, 17(2): 201 -205 .