天然气地球科学 ›› 2020, Vol. 31 ›› Issue (6): 745–760.doi: 10.11764/j.issn.1672-1926.2020.05.016

• 天然气地质学 •    下一篇

中国页岩气地质和地球化学研究的若干问题

戴金星(),董大忠(),倪云燕(),洪峰,张素荣,张延玲,丁麟   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2020-05-10 修回日期:2020-05-21 出版日期:2020-06-10 发布日期:2020-06-17
  • 通讯作者: 董大忠,倪云燕 E-mail:djx@petrochina.com.cn;ddz@petrochina.com.cn;niyy@petrochina.com.cn
  • 作者简介:戴金星(1935-),男,浙江温州人,中国科学院院士,教授级高级工程师,主要从事天然气地质与地球化学研究.E-mail: djx@petrochina.com.cn.
  • 基金资助:
    国家自然科学基金(41472120);中国石油天然气股份有限公司科技项目(2013B-0601);国家科技重大专项(2017ZX05035);国家科技重大专项(2016ZX05003-002)

Some essential geological and geochemical issues about shale gas research in China

Jin-xing DAI(),Da-zhong DONG(),Yun-yan NI(),Feng HONG,Su-rong ZHANG,Yan-ling ZHANG,Lin DING   

  1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
  • Received:2020-05-10 Revised:2020-05-21 Online:2020-06-10 Published:2020-06-17
  • Contact: Da-zhong DONG,Yun-yan NI E-mail:djx@petrochina.com.cn;ddz@petrochina.com.cn;niyy@petrochina.com.cn

摘要:

近年来,中国页岩气研究和工业化生产获得极大发展,丰富了中国天然气地质学理论和增加了国内天然气生产供应。今后页岩气在中国天然气工业中要上更大台阶,研究解决以下4个地质和地球化学问题意义重大:①中国要突破当前单一的经济页岩气层组。美国已在29个盆地发现至少30套经济页岩气层组,但中国仅有一个盆地(四川盆地)发现1套经济页岩气层组(五峰组—龙马溪组),需要突破当前单一层组。②经济页岩气层组的RO区间值及气田的RO段值。中国经济页岩气层组的RO区间值为3.31%,气田的RO段值为2.34%,两值均较小;美国的气层组RO区间值为4.1%,气田RO段值为3.5%,两值均较大。美国一些腐泥型页岩气田发现在RO值为1.0%~1.3%的生油窗高阶段内,中国要注意处于该段值中的页岩气田勘探;同时要开辟煤系泥页岩气勘探。③气田的持续高产期。世界首个商业化开发的页岩气大气田(Barnett)实际生产显示,年产量达100×108 m3的高产期预测约为20年。中国页岩气田开发尚处在建产阶段。④断裂在页岩气保存与开发中的作用。断裂对页岩气的富集与否具双重性。美国页岩气盆地构造稳定而断裂较少,而中国页岩气盆地构造活跃且断裂发育。总体上断裂对中国页岩气弊大于利,断裂使连续分布的五峰组—龙马溪组碎块化,限制了气田面积。

关键词: 中国, 页岩气, 经济页岩气层组, 勘探, 断裂, 地球化学

Abstract:

Recently, shale gas research and industrial production in China have been greatly developed, which has enriched the theory of natural gas geology in China and increased the supply of domestic natural gas production. In the future, shale gas will obtain great achievements among the developments of natural gas industry in China. The following four geological and geochemical issues about the exploration and research of shale gas has great

significance

(1) China has to break through the single economic shale gas formation. The United States found at least 30 sets of economic shale gas formations in 29 basins. To date, only one basin in China (Sichuan Basin) has found one set of economic shale gas formation (Wufeng-Longmaxi formations). (2) Interval RO value of the economic shale gas formations and segment RO value of the gas fields. The interval RO values are 3.31% for the economic shale gas formation in China and 4.1% for that in USA; the segment RO values are 2.34% for the gas fields in China and 3.5% for that in USA. The former values are small and the latter values are big. A number of shale gas fields derived from sapropelic sources in the United States were found in the oil generation window with RO of 1.0%-1.3%. So shale gas exploration in China also needs to pay attention to this stage. At the same time, attentions should be paid to the exploration of shale gas derived from humic sources. (3) The continuous high-yield period of gas field. The world's first commercially developed shale gas field (Barnett) shows a high-yield forecast of 100×108 m3 per year of about 20 years.Development of shale gas field in China is still in the construction stage. (4) The role of fracture in shale gas preservation and development. The fault has dual effect on the enrichment of shale gas. In the United States, tectonic in the shale gas basin is stable and faults are few, while in China structures in the shale gas basin are active and faults are developed. Therefore, faults have more harm than good to the shale gas in China, which caused the fragmentation of the continuously distributed Wufeng-Longmaxi formations, limiting the area of gas field.

Key words: China, Shale gas, Economic shale gas formation, Exploration, Fault, GeochemistryFoundation items: The National Natural Science Foundation of China (Grant No. 41472120), The Major Science and Technology Projects of China National Petroleum Corporation(Grant No. 2013B-0601), The National Science and Technology Major Project of China (Grant Nos. 2017ZX05035, 2016ZX05003-002).

中图分类号: 

  • TE132.2

图1

四川盆地及其毗邻南缘地区五峰组—龙马溪组和页岩气田分布特征"

图2

中国主要富有机质黑色页岩分布特征"

表1

中国主要盆地或地区重要页岩和经济页岩气层组有关参数"

沉积类型盆地或地区页岩地层时代面积/km2厚度/mTOC/%有机质类型热成熟度(RO)/%
海相华北地区平凉组O2p15 00050~392.40.10~2.17I—II0.57~1.5
洪水庄组Pt3jx>20 00040~1000.95~12.83I1.10
下马岭组Pt3jx>20 00050~1700.85~24.30I0.60~1.65
四川盆地及南方地区旧司组C1j97 12550~5000.61~15.90I—II1.34~2.22
应堂组—罗富组D2-3y—D2-3l236 35550~1 1130.53~12.10I—II0.99~2.03
五峰组—龙马溪组O3w—S1l389 84023~8470.41~25.73I—II1.60~4.91
筇竹寺组1q873 55520~4650.35~22.15I1.28~5.20
陡山沱组Z2d290 32510~2330.58~12.00I2.00~4.50
塔里木盆地印干组O3y99 1780~1200.50~4.40I—II0.80~3.40
萨尔干组O2-3s101 1250~1600.61~4.65I—II1.20~4.60
玉尔吐斯组1y130 2080~2000.50~14.21I—II1.20~5.00
羌塘盆地布曲组J2b79 83025~4000.30~9.831.79~2.40
夏里组J2x114 20078~7130.13~26.120.69~2.03
肖茶卡组T3x141 960100~7470.11~13.451.13~5.35
海陆过渡相四川盆地梁山组—龙潭组P1l—P2l18 90020~1700.50~12.551.80~3.00
滇东—鄂西龙潭组P2l132 00020~2000.35~6.502.00~3.00
中—下扬子龙潭组P2l65 70020~6000.10~12.001.30~3.00
华南地区龙潭组P2l84 40050~6000.10~10.002.00~4.00
鄂尔多斯盆地山西组P2sh250 00030~1800.50~31.000.60~3.00
太原组P1t250 00030~1800.50~36.790.60~3.00
本溪组C2b250 00030~1800.50~25.000.60~3.00
渤海湾盆地二叠系P200 00020~1600.50~3.000.50~2.60
石炭系C200 00020~1800.50~3.000.50~2.80
准噶尔盆地滴水泉组—巴山组C1d—C2b50 000120~3000.17~26.761.6~2.626
陆相松辽盆地青一段K1q1184 67350~5000.40~4.50Ⅰ—Ⅱ0.50~1.50
青二段、青三段K1q2-3164 53825~3600.20~1.800.50~1.40
渤海湾盆地沙一段E3s18 81650~2500.80~27.3020.70~1.80
沙三段E3s38 87410~6000.50~13.80Ⅰ—Ⅱ10.40~2.00
沙四段E3s47 91110~4000.80~16.7010.60~3.00
四川盆地须家河组T3x141 80050~3001.00~4.00Ⅲ+Ⅱ21.60~3.60
T3x345 00020~1001.50~8.001.20~3.60
T3x563 90010~2001.00~9.001.20~3.30
自流井组J1-2zh90 00040~1800.80~2.00Ⅰ—Ⅱ10.60~1.60
鄂尔多斯盆地长7段T3ch737 00010~450.30~36.22Ⅰ—Ⅱ10.60~1.16
长9段T3ch914 00010~150.36~11.30Ⅰ—Ⅱ10.90~1.30
吐哈盆地西山窑组J2x18 870100~6000.50~20.000.40~1.6
八道湾组+三工河组J1b-s20 050100~6000.50~20.000.50~1.80
塔里木盆地克孜勒努尔组J2k130 48050~7001.90~15.860.60~1.60
阳霞组J1y83 40040~1202.50~20.000.40~1.60
塔里奇克组T3t125 500100~60015.50~23.70/
黄山街组T3h133 450200~5501.00~30.000.60~2.80
准噶尔盆地西山窑组J2x90 50025~2500.50~20.000.50~2.30
三工河组J1s93 43025~2400.50~31.000.50~2.40
八道湾组J1b97 10050~3500.60~35.000.50~2.50
乌尔禾组P2-3w63 40050~4500.70~12.08Ⅰ—Ⅱ10.80~1.00
夏子街组P2x57 20050~1500.41~10.80Ⅰ—Ⅱ10.56~1.31
风城组P1f31 80050~3000.47~21.00Ⅰ—Ⅱ10.54~1.41

图3

美国主要页岩气盆地气田分布[7]"

表2

美国中、东部主要盆地经济页岩气层组相关参数"

盆地

经济页岩

气层组

时代面积/(104 km2深度/m净厚度/mTOC/%有机质类型RO/%2018年产气量/(108 m3/a)1,8,9
阿巴拉契亚OhioD34.14600~1 5009~300~4.7I—II0.4~1.334(1999年)
MarcellusD22.5914~4 51115~613.0~12.0II、Ⅲ1.5~3.02 152
UticaO31.32 50030~502.5II2.2651
二叠WolfcampP17.42 500~3 00060~2 1502.0~9.0I、II10.7~1.5934
阿科马FayettevilleC12.3457~2 5916~614.0~9.8I、II11.2~4.5142
WoodfordD31.21 220~4 27037~671.0~14.0I、II11.1~3.0368
福特沃斯BarnettC11.71 981~2 59115~602.0~6.0II11.1~2.1340
路易斯安那HaynesvilleJ2.33 048~4 51161~910.7~6.2I、II12.2~3.2736
西湾Eagle FordK20.31 220~4 270614.3II0.5~2.0566
阿纳达科WoodfordD30.183 500~4 420604.0~7.0II1.1~3.5375
密执安AntrimD10.3183~67121~371.0~2.0I0.4~0.622
伊利诺斯New AlbanyD3-C111.13180~1 50030~1221.0~25.0II0.4~0.88.5(2011年)
威利斯顿BakkenD3-C11.691 370~2 29020~5010.0~20.0II0.7~1.3243

表3

美国主要经济页岩气层组及其盆地近五年来页岩气年产量和储量[1,9]"

盆地经济页岩气层组20142015201620172018
产量储量产量储量产量储量产量储量产量储量
/(1012 m3)
AppalachianMarcellus0.138 82.392 80.164 22.058 60.178 42.381 40.195 43.505 60.215 23.825 6
Fort WorthBarnett0.051 70.688 80.045 30.482 00.039 60.475 70.034 00.543 70.034 00.487 0
Western GulfEagle Ford0.053 30.669 80.062 30.555 80.059 50.642 80.053 80.775 90.056 60.872 2
Texas-Louisiana SaltHaynesville/Bossier0.039 60.470 10.039 60.362 60.042 50.368 10.051 01.016 60.073 61.265 8
Arkoma,Anadarko,S.OKWoodford0.024 00.470 00.028 30.526 00.031 10.572 00.036 80.637 10.036 80.606 0
ArkomaFayetteville0.029 30.330 70.026 10.202 20.019 80.178 40.017 00.201 00.014 20.169 9
AppalachianUtica/Pt.Pleasant0.012 50.180 80.028 30.352 00.040 00.438 90.048 10.750 40.065 10.676 8
Permian BasinWolfcamp,Cline0.008 50.085 70.048 10.540 90.062 30.903 30.093 41.322 4
WillistonBakken/Three Forks0.019 80.288 80.025 50.339 8
小计0.349 25.203 00.402 64.624 90.459 05.598 20.518 28.622 40.614 49.565 5
其他页岩气0.031 50.451 50.028 10.347 50.022 30.342 60.008 20.096 40.010 00.122 8
美国所有页岩气0.380 75.654 50.430 74.972 40.481 35.940 80.526 48.718 80.624 49.688 3

表4

五峰组—龙马溪组页岩气田相关井RO值"

气田地质储量/(108 m3井号井深/mRO/%气田地质储量/(108 m3井号井深/mRO/%
长宁—昭通1 361.8宁2112 313~2 3413.2威远威2022 5912.4
宁2012 463.1~2 5003.15~3.62威2043 519.3~3 5362.4~2.5
宁2032 130~2 4003.15~3.24自2013 659.3~3 6712.1~2.2
昭1011 700~1 7604.08~4.44自2023 628.3~3 648.22.3~2.4
昭1042 035~2 0373.4涪陵6 008.14焦页12 408~2 4162.9
昭1042 117.53.3焦页8—22 6223.1
YSL1-1H2 002~2 0283.2焦页42 609.353.85
YS1092 180~2 2102.18~3.8焦页12 395~2 535.32.57~3.78
威远1 838.95威2011 520~1 5232.1焦页12 370~2 4162.20~3.06

图4

中国和美国主要经济页岩气层组及其气田RO对比"

图5

Fort Worth盆地Barnett页岩成熟度[21]"

图6

鄂尔多斯盆地长7段RO(%)等值线"

图7

美国Fort Worth 盆地Barnett页岩气田地质剖面(剖面位置见图5)[35]"

图8

美国Fort Worth盆地Barnett页岩气田产量统计直方图[36,39,40]"

表5

Barnett页岩1990—2019年页岩气产量与钻井数统计[36,39,40]"

时间/年19801981198219831984198519861987198819891990199119921993199419951996199719981999
当年钻井数/口0101611847920181427427656747277
累计钻井数/口011281927313847678599126168244300374446523
产量/(108 m3123346891113
时间/年20002001200220032004200520062007200820092010201120122013201420152016201720182019
当年钻井数/口1095177899388771 0851 6062 5602 9211 6371 8041 0251 5311 5061 002850602513461453
累计钻井数/口6321 1491 9382 8763 7534 8386 4449 00411 92513 56215 36616 39117 92219 42820 43021 28021 88222 39522 85623 309
产量/(108 m31933537490121171266398440458511521480444381324293271249

图9

Barnett页岩气田1995—2030年(预计)投产井数与产量变化[41]"

图10

四川盆地涪陵页岩气田焦石坝背斜构造变形带划分(据文献[4]补充)"

1 U.S.Energy information Administration. U.S. Crude oil and natural gas proved reserves, Year-end 2018[E/OL](2019-11-28), .
2 孙赞东,贾承造,李相方,等. 非常规油气勘探与开发(上、下册)[M].北京:石油工业出版社,2011:69-75,865-871,876-888,1103-1108.
SUN Z D,JIA C Z,LI X F,et al. Unconventional Oil & Gas Exploration and Development: Volume Ⅰ、Ⅱ[M]. Beijing: Petroleum Industry Press, 2011:69-75,865-871,876-888,1103-1108.
3 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458.
JIN Z J,BAI Z R,GAO B, et al. Has China ushered in the shale oil and gas revolution?[J].Oil & Gas Geology, 2019, 40(3): 451-458.
4 马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.
MA Y S, CAI X Y, ZHAO P R. China’s shale gas exploration and development: Understanding and practice[J].Petroleum Exploration and Development, 2018, 45(4): 561-574.
5 DAI J,ZOU C,DONG D, et al. Geochemical characteristics of marine and terrestrial shale gas in China[J].Marine and Petroleum Geology, 2016, 26: 444-463.
6 张君峰,许浩,周志,等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-889.
ZHANG J F,XU H,ZHOU Z,et al. Geological characteristics of shale gas reservoir in Yichang area,western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-889.
7 EIA. Shale gas and oil plays, North America[EB/OL]. 2020-03-24.).
8 黎茂稳,马晓潇,蒋启贵,等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019,26(1):13-28.
LI M W,MA X X,JIANG Q G,et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019,26(1):13-28.
9 EIA. U.S.Energy information Administration. U.S. Crude oil and natural gas proved reserves, Year-end 2016[EB/OL].(2018-05-16) .
10 DAI J X, NI Y Y, LIAO F R, et al. The significance of coal-derived gas in major gas producing countries[J]. Petroleum Exploration and Development, 2019,46(3):435-450.
11 李国玉,金之钧. 新编世界含油气盆地图集(下册)[M]. 北京:石油工业出版社,2005:599-641.
LI G Y, JIN Z J. New: World Atlas of Oil and Gas Basin: Volume Ⅱ[M]. Beijing: Petroleum Industry Press, 2005: 599-641.
12 胡曦. 渝东地区下志留统龙马溪组页岩地质特征研究[D].成都:西南石油大学, 2016.
HU X. Geological Characteristics of Shale of the Lower Silurian Longmaxi Formation in Eastern Chongqing[D]. Chengdu:Southwest Petroleum University, 2016.
13 王晔,邱楠生,仰云峰,等. 四川盆地五峰-龙马溪组页岩成熟度研究[J]. 地球科学, 2019,44(3):953-971.
WANG Y,QIU N S,YANG Y F,et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J].Earth Science, 2019,44(3):953-971.
14 DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74:3-12.
15 FENG Z, HAO F, DONG D. et al.Geochemical anomalies in the Lower Silurian shale gas from the Sichuan Basin, China: Insights from a ragleigh-type fractionation model[J]. Organic Geochemistry, 2020,142: 103981.
16 ZUMBERGE J, FERWORN K, BROWN S. Isotopic reversal(rollover) in shale gases produced from the Mississppian Barnett and Fayetteille formations[J]. Marine and Petroleum Geology, 2012, 31:43-52.
17 ZAGORSKI W A, WRIGHTSTONE G R, BOWMAN D G. The Appalachian Basin Marcellus gas play:Its history of development, geologic controls on production, and future potential as a world-class reservoir[M]//BREYER J A. Shale reservoirs-Giant resources for the 21st Century: AAPG Memoir 97. Tulsa: American Association of Petroleum Geologists, 2012:172-200.
18 MARTNI A M, WALTER L M, MCLNTOSH J C. Indentification of microbial and thermogenic gas components from Upper Devonian black shale cores, Lllinois and Michigan Basin[J]. AAPG Bulletin, 2008, 92:327-339.
19 程克明, 王铁冠, 钟宁宁, 等. 煤成烃地球化学[M]. 北京: 科学出版社, 1995: 105-108.
CHENG K M, WANG T G, ZHONG N N, et al. Source Rocks Geochemistry[M]. Beijing: Science Press, 1995: 105-108.
20 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. Verlag Berlin Heidelberg, New York:Springer, 1984: 135-137.
21 HILL R J,JARVIE D M,ZUMBERGE J,et al. Oil and gas geochemistry and petroleum systems of the Foet Worth Basin[J].AAPG Bulletin, 2007,91:445-473.
22 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
QIU Z, ZOU C N. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
23 邱振, 邹才能, 王红岩, 等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
QIU Z, ZOU C N, WANG H Y, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
24 戴金星, 倪云燕, 黄士鹏, 等. 煤成气研究对中国天然气工业发展的重要意义[J]. 天然气地球科学, 2014, 25(1): 1-22.
DAI J X, NI Y Y, HUANG S P, et al. Significant function of coal-derived gas study for natural gas industry development in China[J]. Natural Gas Geoscience, 2014, 25(1): 1-22.
25 戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报, 2018, 63(14): 1291-1305.
DAI J X. Coal-derived gas theory and its discrimination[J]. Chinese Science Bulletin, 2018, 63(14): 1291-1305.
26 戴金星, 陈践发, 钟宁宁, 等. 中国大气田及其气源[M]. 北京: 科学出版社, 2003: 73-93.
DAI J X, CHEN J F, ZHONG N N, et al. Large Gas Fields and Their Gas Sources in China[M]. Beijing: Science Press, 2003: 73-93.
27 康竹林,傅诚德,崔淑芬,等. 中国大中型气田概论[M].北京:石油工业出版社,2000.
KANG Z L, FU C D, ZHAI S F, et al. Introduction of Large-medium Gas Fields in China[M]. Beijing: Petroleum Industry Press,2000.
28 邹才能,董大忠,王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016,43(2): 166-178.
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016,43(2): 166-178.
29 付金华. 鄂尔多斯盆地致密油勘探理论与技术[M]. 北京: 科学出版社, 2018: 165-166.
FU J H. Exploration Theory and Technology of Tight Oil in the Ordos Basin[M]. Beijing: Science Press, 2018: 165-166.
30 DAI J X, QIN S F, HU G Y, et al. Major progress in the natural gas exploration and development in the past seven decades in China[J]. Petroleum Exploration and Development, 2019,46(6): 1100-1110.
31 NI Y, LIAO F, GAO J. et al. Hydrogen isotopes of hydrocarbon gases from different organic facies of the Zhongba Gas Field, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 179:776-786.
32 QIN S, ZHANG Y, ZHAO C, et al. Geochemical evidence for in situ accumulation of tight gas in Xujiahe Formation coal measures in the central Sichuan Basin,China[J]. International Journal of Coal Geology, 2018,196: 173-784.
33 郭旭升,胡东风,刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018,38(10): 11-18.
GUO X S,HU D F,LIU R B,et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(10): 11-18.
34 邹才能. 非常规油气地质学[M].北京:地质出版社, 2013:159-161.
ZOU C N. Unconventional Petroleum Geology[M]. Beijing: Geological Publishing House, 2013:159-161.
35 POLLASTRO R M, JARVIE D M, Hill R J, et al. Geologic framework of the Mississippian Barnett shale, Barnett Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas[J]. A APG Bulletin, 2007, 91(4): 405-436.
36 MOHAMED O A, ROGER M S. Lithofacies and sequence stratigraphy of the Barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96 (1): 1-22.
37 CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
38 POLLASTRO R M. Total petroleum system assessment of undiscovered resources in the giant Barnett shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 551-578.
39 U.S. Energy Information Administration. Drilling Productivity Report [EB/OL]. (2020-02-23) [2020-02-28]. .
40 U.S. Energy Information Administration.Technology drives natural gas production growth from shale gas formations[EB/OL]. (2011-06)[2020-02-28]. .
41 BROWNING J, GULEN G. Barnett Shale Reserves and Production Forecast[EB/OL]. (2013-06)[2020-02-28]. .
42 李建忠,李登华,董大忠,等. 中美页岩气成藏条件、分布特征差异研究与启示[J]. 中国工程科学, 2012,14(6): 56-63.
LI J Z,LI D H,DONG D Z,et al. Comparison and enlightenment on formation condition and distribution characteristics of shale gas between China and U.S.[J]. Strategic Study of CAE, 2012,14(6): 56-63.
43 李昌伟,陶士振,董大忠,等. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学, 2015,26(5): 986-1000.
LI C W,TAO S Z,DONG D Z,et al. Comparison of the formation condition of shale gas between domestic and abroad and favorable areas evaluation[J]. Natural Gas Geoscience, 2015,26(5): 986-1000.
44 吕延防,万军,沙子萱,等.被断裂破坏的盖层封闭能力评价方法及其应用[J].地质科学,2008,43(1):162-174.
LU Y F,WAN J,SHA Z X,et al. Evaluation method for seal ability of caprock destructed by faulting and its application[J]. Chinese Journal of Geology, 2008,43(1):162-174.
45 翟刚毅,王玉芳,包书景,等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017,42(7): 1057-1066.
ZHAI G Y,WANG Y F,BAO S J,et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017,42(7): 1057-1066.
46 庞河清,熊亮,魏力民,等. 川南深层页岩气富集高产主要地质因素分析——以威荣页岩气田为例[J]. 天然气工业, 2019,39(增刊1): 78-84.
PANG H Q, XIONG L, WEI L M, et al. Main geological analysis of the deep shale gas with high yield in south Sichuan:A case of Weirong shale Gas Field[J]. Natural Gas Industry, 2019, 39(Supplentent): 78-84.
47 赵文韬,荆铁亚,吴斌,等. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018,29(9): 1333-1344.
ZHAO W T,JING T Y,WU B,et al. Controlling mechanism of faults on the preservation conditions of shale gas:A case study of Wufeng-Longmaxi Formations in southeast Chongqing[J]. Natural Gas Geoscience, 2018,29(9): 1333-1344.
48 王志刚. 涪陵大型海相页岩气田成藏条件及高效勘探开发关键技术[J]. 石油学报, 2019, 40(3): 370-382.
WANG Z G. Reservoir formation condition and key efficient exploration & development technologies for marine shale gas fields in Fuling area, south China[J]. Acta Petrolei Sinica, 2019, 40(3): 370-382.
49 郭旭升,胡东风,魏志红,等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37.
GUO X S,HU D F,WEI Z H,et al. Discovery and exploration of Fuling shale Gas Field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. .
50 王红军,马锋. 全球非常规油气资源评价[M].北京:石油工业出版社,2017:91-167.
WANG H J,MA F. Assessment of Global Unconventional Oil and Gas Resources[M]. Beijing: Petroleum Industry Press, 2017: 91-167.
51 Bowker K A. Barnett Shale gas production, Fort Worth Basin:Issues and discussion[J]. AAPG Bulletin, 2007,91(4):523-533.
52 李波. 北美页岩气成藏机理研究[J]. 中国石油和化工标准与质量,2016(13):94-95.
LI B. Study on shale gas accumulation mechanism in North America[J].China Petroleum and Chemical Standards and Quality,2016(13):94-95.
53 Reza Rezace(澳).页岩气基础研究[M]. 董大忠,邱振,等译.北京:科学出版社,2018:320-348.
Rezace Reza. Fundamenttals of Gas Shale Reservoirs[M]. DONG D Z,QUI Z,et al. Translated. Beijing:Science Press,2018:320-348.
54 DANIEL J KR, BUSTIN R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
55 刘树根,曾祥亮,黄文明,等. 四川盆地页岩气藏和连续型—非连续型气藏基本特征[J]. 成都理工大学学报:自然科学版,2009,36(6): 578-592.
LIU S G,ZENG X L,HUANG W M,et al. Basic characteristics of shale and continuous-discontinuous transition gas reservoirs in Sichuan Basin, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2009,36(6): 578-592.
56 舒逸,陆永潮,包汉勇,等. 四川盆地涪陵页岩气田3 种典型页岩气保存类型[J]. 地质勘探, 2018,38(3): 31-40.
SHU Y,LU Y C,BAO H Y,et al. Three typical types of shale gas preservation in the Fuling shale Gas Field,Sichuan Basin[J]. Natural Gas Industry, 2018,38(3): 31-40.
57 唐鑫. 川南地区龙马溪组页岩气成藏的构造控制[D]. 徐州:中国矿业大学, 2018: 127-152.
TANG X. Tectonic Control of Shale Gas Accumulation in Longmaxi Formation in Southern Sichuan Basin[D].Xuzhou:China University of Mining and Technology,2018: 127-152.
[1] 刘洪林,王怀厂,张辉,赵伟波,刘燕,刘德勋,周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[2] 彭泽阳,龙胜祥,张永贵,卢婷,王濡岳. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834.
[3] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[4] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[5] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[6] 王珊, 曹颖辉, 张亚金, 杜德道, 徐兆辉, 杨敏, 赵一民. 塔里木盆地古城地区奥陶系鹰三段硅质岩地球化学特征及成因[J]. 天然气地球科学, 2020, 31(5): 710-720.
[7] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[8] 朱明, 梁则亮, 马健, 庞志超, 王俊, 焦悦. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律[J]. 天然气地球科学, 2020, 31(4): 488-497.
[9] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
[10] 丁麟, 程峰, 于荣泽, 邵昭媛, 刘佳琪, 刘官贺. 北美地区页岩气水平井井距现状及发展趋势[J]. 天然气地球科学, 2020, 31(4): 559-566.
[11] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[12] 田光荣, 白亚东, 裴明利, 李红哲, 孙秀建, 马峰. 柴达木盆地阿尔金山前东段输导体系及其控藏作用[J]. 天然气地球科学, 2020, 31(3): 348-357.
[13] 王倩茹, 陶士振, 关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学, 2020, 31(3): 417-427.
[14] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[15] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!