天然气地球科学 ›› 2020, Vol. 31 ›› Issue (9): 1306–1315.doi: 10.11764/j.issn.1672-1926.2020.05.013

• 天然气地球化学 • 上一篇    下一篇

渤海湾盆地冀中坳陷上古生界煤系烃源岩地球化学特征与生烃演化

郭萍()   

  1. 长江大学工程技术学院 资源勘查工程学院,湖北 荆州 434020
  • 收稿日期:2020-03-03 修回日期:2020-05-12 出版日期:2020-09-10 发布日期:2020-09-04
  • 作者简介:郭萍(1982-),女,湖北荆州人,讲师,主要从事储层地质、勘探开发、污水处理方面的研究. E-mail:563882796@qq.com.
  • 基金资助:
    中国石油华北油田分公司校企合作项目(HBYT-YJY-2017-JS-01);长江大学工程技术学院院级科研基金项目(2019KY04)

Geochemical characteristics and hydrocarbon generation evolution of Upper Paleozoic coal measures in Jizhong Depression, Bohai Bay Basin

Ping GUO()   

  1. College of Engineering Technology, College of Resource Exploration and Engineering, Yangtze University, Jingzhou 434020, China
  • Received:2020-03-03 Revised:2020-05-12 Online:2020-09-10 Published:2020-09-04

摘要:

为深化渤海湾盆地冀中坳陷上古生界煤系烃源岩地质认识,以有机地球化学实验作为研究手段,分析了上古生界煤系烃源岩有机地球化学特征及其生烃能力,利用埋藏史—热史分析,探讨了生烃演化过程。研究结果显示,霸县凹陷的文安地区、武清凹陷和大城凸起上古生界烃源岩有机质丰度最高,其次是廊固凹陷北部地区,深县凹陷、束鹿凹陷相对较低;冀中坳陷东北部上古生界煤层显微组分以文安地区壳质组含量为最高,平均达29.1%,壳质组含量大于20%的样品数占样品总数的80%以上;生烃热演化经历了低成熟阶段、二次成熟阶段、高成熟凝析油湿气阶段和过成熟干气阶段;在白垩纪末,煤系烃源岩埋藏深度约为1 200~2 000 m,RO值为0.5%~0.7%,达到一次生烃状态;在古近纪末,煤系烃源岩最大埋深>7 000 m,超过中生界最大古埋藏深度或古温度,开始二次生烃,资源潜力较好。

关键词: 煤系烃源岩, 古生界, 地球化学特征, 生烃演化, 冀中坳陷

Abstract:

In order to deepen the geological understanding of the source rocks of the Upper Paleozoic coal measures in Jizhong Depression of Bohai Bay Basin, the organic geochemical experiment is used as the research method to analyze the geological characteristics of the source rocks of the Upper Paleozoic coal measures in Jizhong Depression, evaluate the hydrocarbon generating capacity, and discuss the hydrocarbon generating evolution process by using the burial history-thermal history analysis and regional geological background. The results show that the organic carbon abundance of Upper Paleozoic source rocks in Suqiao Wen'an area, Wuqing Depression and Dacheng Uplift of Baxian Depression is the highest, followed by Hexiwu structural belt in Langgu Depression, and Shenxian and Shulu depressions are relatively low; the content of Upper Paleozoic coal macerals in the northeast of Jizhong Depression is the highest in Suqiao area, with an average of 29.1%, and the content of crust is more than 20%. The number of samples accounts for more than 80% of the total number of samples; the thermal evolution of hydrocarbon generation has experienced low maturity stage, secondary maturity stage, high maturity condensate wet gas stage and over mature dry gas stage; the burial depth of source rock of coal measures at the end of Cretaceous was about 1 200-2 000 m, and RO was 0.5%-0.7%, reaching the evolution state of primary hydrocarbon generation stage; the maximum burial depth of source rock of coal measures in Paleogene was more than 7 000 m, exceeding the maximum burial depth or paleotemperature in Mesozoic, the secondary hydrocarbon generation begins, and it has superior resource potential.

Key words: Coal measures source rock, Paleozoic, Geochemical characteristics, Hydrocarbon generation and evolution, Jizhong DepressionFoundation items:The Cooperation Project between Universities and Enterprises of PetroChina North China Oilfield Company(Grant No. HBYT?YJY?2017?JS?01), The Institute Level Research Fund Project of College of Engineering and Technology of Changjiang University(Grant No. 2019KY04).

中图分类号: 

  • TE122.1+13

图1

冀中坳陷构造单元"

图2

冀中坳陷上古生界石炭系—二叠系地层综合柱状图"

表1

冀中坳陷石炭系—二叠系煤系烃源岩有机质丰度综合数据"

地区岩性有机碳/%

S1+S2)/

(mg/g)

氯仿沥青“A”/%总烃/(μg/g)综合评价
霸县凹陷煤层16.50~68.0150.14(65)59.09~300.15111.50(53)0.54~4.532.05(4)1565.00~7681.004796.00(6)好烃源岩
炭质泥岩1.11~29.5415.43(51)18.94~98.6334.57(48)0.19~0.610.20(5)112.00~891.00588.00(5)
暗色泥岩0.05~4.602.65(85)1.81~8.303.05(85)0.01~0.500.10(7)58.00~601.00296.00(7)
廊固凹陷煤层2.21~89.3241.02(16)19.82~88.5350.05(13)0.31~3.441.14(4)2137.00~9035.005390.00(4)较好烃源岩
炭质泥岩2.16~19.4614.85(6)9.05~39.8522.50(4)0.56(1)1738.00(1)
暗色泥岩0.02~3.061.36(21)1.02~4.942.23(13)0.01~0.140.07(2)95.00~899.00497.00(2)
武清凹陷煤层5.21~110.2256.11(6)64.33~290.75130.50(6)0.11~5.143.44(3)228.00~1835.001062.98(4)好烃源岩
炭质泥岩1.21~18.5414.41(2)8.05~59.1136.86(2)
暗色泥岩0.02~4.461.65(15)0.12~5.041.65(15)0.01~0.340.05(7)45.00~418.00244.75(7)中等烃源岩
大城凸起煤层3.21~120.2254.47(21)24.44~210.1186.67(18)0.49~5.933.00(13)4841.00~9567.007251.00(10)好烃源岩
炭质泥岩1.32~16.648.29(8)3.92~17.9610.89(8)0.09~0.920.23(5)325.00~2003.00965.00(3)
暗色泥岩0.06~5.532.10(47)2.12~12.966.04(34)0.01~0.840.09(23)89.00~853.00458.00(5)
束鹿凹陷煤层2.36~87.6124.39(7)13.57~120.0140.28(7)958.00(1)中等烃源岩
暗色泥岩0.15~5.502.03(38)0.62~4.562.89(37)59.00~725.00407.00(6)

表2

石炭系—二叠系煤系生气岩质量"

岩性干酪根H/C沥青“A”1460/1600/(cm-1)饱和烃/芳香烃Cp/Corg /%

(5α-C27)

/(5α-C29)

(5α-C28)

/(5α-C29)

Pr/Ph干酪根镜下观察
0.64(1)0.83(3)0.55(5)10.00(11)0.78(3)0.57(3)1.35(5)III (1)
炭质泥岩0.61(1)0.83(1)0.80(3)9.20(9)0.91(5)0.56(5)1.21(6)III (1)
深灰泥岩0.50(1)1.93(5)0.62(3)8.40(19)0.94(7)0.60(7)0.96(2)III (1)

图3

苏桥地区石炭系煤层有机质热演化剖面"

图4

冀中坳陷东北部石炭系—二叠系煤系烃源岩埋藏—热演化史"

图5

石炭系煤系埋藏深度[(a)中生代末埋深;(b)现今埋深]"

图6

侵入岩与石炭系—二叠系煤系源岩热演化关系"

1 KUN Y, YI W J, JIN Q, et al. Burial and thermal evolution of coal-bearing strata and its mechanisms in the southern North China Basin since the Late Paleozoic[J]. International Journal of Coal Geology, 2018, 198(10):100-115.
2 戴金星, 秦胜飞, 陶士振, 等. 中国天然气工业发展趋势和天然气地学理论重要进展[J]. 天然气地球科学, 2005, 16(2): 127-142.
DAI J X, QIN S F, TAO S Z, et al. Developing trends of natural gas industry and the significant progress on natural gas geological theories in China[J].Natural Gas Geoscience, 2005, 16(2): 127-142.
3 赵长毅,李永新,王居峰,等.渤海湾盆地天然气成因类型与勘探潜力分析[J].天然气地球科学,2019,30(6):783-789.
ZHAO C Y, LI Y X, WANG J F, et al. Genetic types and exploration potential of natural gas in Bohai Bay Basin[J]. Natural Gas Geoscience, 2019, 30(6): 783-789.
4 贾承造, 张永峰, 赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业, 2014, 34(2): 1-11.
JIA C Z, ZHANG Y F, ZHAO X. Prospects of and challenges to natural gas industry development in China[J]. Natural Gas Industry, 2014, 34(2): 1-11.
5 陈新军,胡宗全,李淑筠.华北南部地区上古生界晚期生烃潜力研究[J].天然气地球科学, 2011, 22(4): 610-617.
CHEN X J, HU Z Q, LI S J. Later hydrocarbon generation potential of Upper Paleozoic source rock in southern North China[J]. Natural Gas Geoscience, 2011, 22(4): 610-617.
6 LIU N, QIU N S, CHANG J, et al. Hydrocarbon migration and accumulation of the Suqiao buried-hill zone in Wen’an Slope, Jizhong Subbasin, Bohai Bay Basin, China[J]. Marine & Petroleum Geology, 2017, 86(11):512-525.
7 廖前进, 于学敏, 何咏梅, 等. 大港探区上古生界煤系烃源岩特征及资源潜力[J]. 天然气地球科学, 2003, 14(4): 250-253.
LIAO Q J, YU X M, HE Y M, et al. The characteristics and resource potential of coal-bearing formations in Upper Paleozoic in Dagang Oilfield[J]. Natural Gas Geoscience, 2003, 14(4): 250-253.
8 朱炎铭, 王晓辉, 张聪, 等. 东濮凹陷石炭—二叠系煤系烃源岩的生烃演化[J]. 石油学报, 2007, 28(6): 27-31.
ZHU Y M, WANG X H, ZHANG C, et al. Hydrocarbon-generation evolution of the Permo-Carboniferous coal measure in Dongpu Depression[J]. Acta Petrolei Sinica, 2007, 28(6): 27-31.
9 范昆, 张林炎, 黄臣军, 等. 济阳坳陷上古生界烃源岩二次生烃特征[J]. 天然气地球科学, 2008, 19(1): 23-28.
FAN K, ZHANG L Y, HUANG C J, et al. Secondary hydrocarbon-generation characteristics of Upper Paleozoic source Fock in Jiyang Depression[J]. Natural Gas Geoscience, 2008, 19(1): 23-28.
10 冯阵东, 程秀申, 王生朗, 等. 鲁西地区上古生界煤系烃源岩生烃潜力[J]. 天然气工业, 2013, 33(2): 17-21.
FENG Z D, CHENG X S, WANG S L, et al. Hydrocarbon generation potential of the Upper Paleozoic coal measure source rocks in the Luxi area, western Shandong,China[J]. Natural Gas Industry, 2013, 33(2): 17-21.
11 孙耀庭, 徐守余, 张世奇, 等. 渤海湾盆地临清坳陷西部中生界烃源岩生烃演化[J]. 天然气地球科学, 2015, 26(10): 1910-1916.
SUN Y T, XU S Y, ZHANG S Q, et al. Evolution of the Mesozoic source rocks in the west Linqing Depression[J]. Natural Gas Geoscience, 2015, 26(10): 1910-1916.
12 胡洪瑾, 蒋有录, 刘景东, 等. 东濮凹陷石炭—二叠系煤系烃源岩生气演化及潜力分析 [J]. 地球科学, 2018, 43(2): 610-621.
HU H J, JIANG Y L, LIU J D, et al. Gas generation evolution and potential analysis of Carboniferous-Permian Coal-measured source rocks in Dongpu Depression[J]. Earth Science, 2018, 43(2): 610-621.
13 周立宏, 滑双君, 孙超囡, 等. 大港油田上古生界煤系烃源岩地球化学特征与二次成烃 [J]. 石油与天然气地质, 2017, 38(6): 1043-1051.
ZHOU L G, HUA S J, SUN C N, et al. Geochemical characteristics and secondary hydrocarbon generation of coal-measure source rocks in Upper Paleozoic of Dagang Oilfield[J]. Oil & Gas Geology, 2017, 38(6): 1043-1051.
14 ZHANG J N, ZHOU J S, FU L X, et al. Karstification of Ordovician carbonate reservoirs in Huanghua Depression and its control factors[J]. Carbonates and Evaporites,2020,35(3):1-16.
15 张津宁, 周建生, 肖敦清, 等. 黄骅坳陷中生代构造运动对上古生界煤系烃源岩生烃演化的控制[J]. 天然气工业, 2019, 39(9): 1-10.
ZHANG J N, ZHOU J S, XIAO D Q, et al. Control of the Mesozoic tectonic movement on the hydrocarbon generation and evolution of Upper Paleozoic coal-measure source rocks in the Huanghua Depression, Bohai Bay Basin[J]. Natural Gas Industry, 2019, 39(9): 1-10.
16 张津宁, 周建生, 付立新, 等. 港北潜山内幕天然气成藏地质特征与成藏过程[J].中国矿业大学学报, 2019, 48(5): 1-12.
ZHANG J N, ZHOU J S, FU L X, et al. Geological characteristics and accumulation process of natural gas reservoirs in Gangbei buried hill, Huanghua Depression[J]. Journal of China University of Mining & Technology, 2019, 48(5): 1-12.
17 金凤鸣, 王鑫, 李宏军, 等. 渤海湾盆地黄骅坳陷乌马营潜山内幕原生油气藏形成特征[J]. 石油勘探与开发, 2019, 46(3): 521-529.
JIN F M, WANG X, LI H J, et al. Formation of the primary petroleum reservoir in Wumaying inner buried-hill of Huanghua Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(3): 521-529.
18 赵贤正, 金强, 张亮, 等. 渤海湾盆地冀中坳陷北部石炭—二叠系煤成油气成藏条件及勘探前景 [J]. 石油实验地质, 2010, 32(5): 459-464.
ZHAO X Z, JIN Q, ZHANG L, et al. Accumulation conditions and perspectives of coal-derived hydrocarbon of carboniferous-permian in northern Jizhong Depression, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2010, 32(5): 459-464.
19 ZHAO X Z, ZHANG L P, JIN F M, et al. Hydrocarbon charging and accumulation history in the Niudong Buried Hill Field in the Baxian Depression, eastern China [J]. Marine & Petroleum Geology, 2017, 88(12):342-358.
20 张松航, 梁宏斌, 唐书恒, 等. 冀中坳陷东北部石炭—二叠系烃源岩热史及成熟史模拟[J]. 高校地质学报, 2014, 20(3): 454-463.
ZHANG S H, LIANG H B, TANG S H, et al. Simulation of the thermal and maturity history of Carboniferous-Permian source rock in the northeast of Jizhong Depression[J]. Geological Journal of China Universities, 2014, 20(3): 454-463.
21 陈世悦, 马帅, 贾贝贝,等. 渤海湾盆地石炭—二叠系含煤岩系沉积环境及其展布规律[J].煤炭学报, 2018, 43(S2): 513-523.
CHEN S Y, MA S, JIA B B, et al. Sedimentary environment and distribution law of Carboniferous-Permian coal-bearing series in Bohai Bay Basin[J]. Journal of China Coal Society, 2018, 43(S2): 513-523.
22 尘福艳, 丁文龙, 钱铮, 等. 冀中坳陷石炭—二叠系烃源岩埋藏-生烃史控制因素[J]. 断块油气田, 2013, 20(2): 145-149.
CHEN F Y, DING W L, QIAN Z, et al. Control factors of burial-hydrocarbon generation history of Carboniferous-Permian source rocks in Jizhong Depression[J]. Fault-Block Oil and Gas Field, 2013, 20(2): 145-149.
23 ZHAO X Z, JIN F M, WANG Q, et al. Buried-hill play, Jizhong subbasin, Bohai Bay Basin: A review and future prospectivity [J]. AAPG Bulletin, 2015, 99(1): 1-26.
24 钱铮, 张松航, 梁宏斌, 等. 冀中坳陷东北部石炭—二叠系烃源岩生烃潜力评价[J]. 吉林大学学报:地球科学版, 2015, 45(5): 1332-1341.
QIAN Z, ZHANG S H, LIANG H B, et al. Hydrocarbon evaluation of Carboniferous-Permian rocks in northeast Jizhong Depression[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(5): 1332-1341.
25 ZHOU L H, FU L X, LOU D, et al. Structural anatomy and dynamics of evolution of the Qikou Sag, Bohai Bay Basin: Implications for the destruction of North China craton[J]. Journal of Asian Earth Sciences,2012,47(6):91-106.
26 王鑫, 蒋有录, 曹兰柱, 等. 富油凹陷洼槽区古压力演化特征及影响因素——以冀中坳陷饶阳凹陷为例 [J]. 中国矿业大学学报, 2017, 46(3): 586-595.
WANG X, JIANG Y L, CAO L Z, et al. Characteristics of paleopressure evolution and its influencing factors in sub-sags of hydrocarbon-bearing sag: A case study of Raoyang sag in Jizhong Depression[J]. Journal of China University of Mining & Technology, 2017, 46(3): 586-595.
27 何生, 陈荣书, 兰廷泽. 冀中文安斜坡石炭—二叠纪煤系特征及岩浆热力成烃作用[J]. 地球科学, 1992(6): 699-708.
HE S, CHEN R S, LAN T Z. Coal formation characteristics of Carboniferous-Permian and magmatic thermal power hydrocarbon generating in Wenan slope, Jizhong Depression[J]. Earth Science, 1992(6): 699-708.
[1] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[2] 李斌, 梅文华, 李琪琪, 卓勤功, 鲁雪松, 郭强. 四川盆地西北部前陆盆地构造演化对古生界海相油气成藏的影响[J]. 天然气地球科学, 2020, 31(7): 993-1003.
[3] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[4] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[5] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
[6] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
[7] 熊小峰, 郭潇潇, 朱继田, 郭明刚, 李兴. 南海西部深水区气田天然气地球化学特征差异及其成因[J]. 天然气地球科学, 2019, 30(7): 1053-1062.
[8] 周国晓, 魏国齐, 胡国艺. 四川盆地龙岗与元坝气田陆相油气系统差异[J]. 天然气地球科学, 2019, 30(6): 809-818.
[9] 吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 2019, 30(6): 819-827.
[10] 李剑, 郝爱胜, 齐雪宁, 陈旋, 国建英, 冉启贵, 李志生, 谢增业, 曾旭, 李谨, 王瑀, 刘如红, . 中国西北地区侏罗系煤成气地球化学特征与勘探潜力[J]. 天然气地球科学, 2019, 30(6): 866-879.
[11] 高永亮, 文志刚, 李威. 湖相富有机质细粒沉积岩地球化学特征及其对致密油气成藏的影响——以鄂尔多斯盆地陇东地区延长组长7段为例[J]. 天然气地球科学, 2019, 30(5): 729-739.
[12] 刘晓鹏, 赵会涛, 闫小雄, 贾亚妮, . 克拉通盆地致密气成藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J]. 天然气地球科学, 2019, 30(3): 331-343.
[13] 唐友军, 郑磊, 李永飞, 郜晓勇, 宗文明, 孙求实, 何大祥. 凌源—宁城盆地牛营子坳陷侏罗系海房沟组烃源岩芳烃地球化学特征及其地质意义[J]. 天然气地球科学, 2019, 30(3): 433-446.
[14] 于聪, 胡国艺, 陈瑞银. 不同煤系烃源岩热解气地球化学差异及其在苏里格气田的应用[J]. 天然气地球科学, 2019, 30(1): 133-142.
[15] 陈斐然, 张义杰, 朱光有, 张宝收, 卢玉红, 张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Khene;DiamalEddline;冯筠;. 跨国输气管道建设中的挑战性问题――以阿尔及利亚―意大利和马格里布―欧洲项目为例[J]. 天然气地球科学, 1997, 8(5-6): 19 -25 .
[2] 刘全有;刘文汇;孟仟祥;. 塔里木盆地煤岩在不同介质条件下热模拟实验中烷烃系列有机地球化学特征[J]. 天然气地球科学, 2006, 17(3): 313 -318 .
[3] 刘树根,孙玮,李智武,邓宾,刘顺. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏[J]. 天然气地球科学, 2008, 19(3): 293 -300 .
[4] 滑双君;李会慎;翟桂云;王莉;肖枚;. 沧县隆起大港探区煤层气勘探前景分析[J]. 天然气地球科学, 2003, 14(4): 323 -326 .
[5] 闫林;胡永乐;冉启全;张睿达;孙圆辉 . 松辽盆地徐家围子断陷兴城地区营城组一段火山岩特征及火山喷发模式[J]. 天然气地球科学, 2008, 19(06): 821 -825 .
[6] 王振升;丁一萍;王照华;董萍;赵仕民 . 利用三维可视化技术解释复杂断裂构造[J]. 天然气地球科学, 2008, 19(06): 844 -848 .
[7] 李荣西,刘建朝,魏刚峰,赵法锁. 渭河盆地地热水水溶烃类天然气成因与来源研究[J]. 天然气地球科学, 2009, 20(5): 774 -780 .
[8] 郑军卫, 张志强, 孙德强, 李小燕. 油气资源科技发展特点与趋势[J]. 天然气地球科学, 2012, 23(3): 407 -412 .
[9] 胡安平,李秀芝,蒋义敏,胡圆圆,张杰. 碳酸盐岩储层微区地球化学分析技术的发展及应用[J]. 天然气地球科学, 2014, 25(1): 116 -123 .
[10] 张兆辉,高楚桥,高永德. 用数值模拟法开展裂缝型储层电阻率控制因素研究[J]. 天然气地球科学, 2014, 25(2): 252 -258 .