天然气地球科学 ›› 2020, Vol. 31 ›› Issue (9): 1294–1305.doi: 10.11764/j.issn.1672-1926.2020.05.008

• 天然气地球化学 • 上一篇    下一篇

川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义

牛强1(),张焕旭2,3(),朱地4,徐志尧2,3,仰云峰2,3,丁安徐5,高和群5,张立生1   

  1. 1.中国石化工程公司胜利地质录井公司,山东 东营 257000
    2.苏州冠德能源科技有限公司,江苏 苏州 215004
    3.苏州加州能源与环境研究院有限公司,江苏 苏州 215004
    4.齐鲁工业大学(山东省科学院),山东省科学院能源研究所,山东省生物质气化技术重点实验室,山东 济南 250000
    5.中国石化华东油气田分公司,江苏 扬州 225000
  • 收稿日期:2020-01-06 修回日期:2020-05-19 出版日期:2020-09-10 发布日期:2020-09-04
  • 通讯作者: 张焕旭 E-mail:slniq@126.com;huanxu_zhang@sina.com
  • 作者简介:牛强(1975-),男,山东广饶人,高级工程师,博士,主要从事综合地质、录井技术应用推广等研究.E-mail:slniq@126.com.
  • 基金资助:
    国家科技重大专项“地震与井筒精细勘探关键技术”(2016ZX05006-002);中国石油勘探开发研究院科学研究与技术开发项目“古老层系页岩气同位素实时检测及含气性模型”(2018ycq01)

Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin

Qiang NIU1(),Huan-xu ZHANG2,3(),Di ZHU4,Zhi-yao XU2,3,Yun-feng YANG2,3,An-xu DING5,He-qun GAO5,Li-sheng ZHANG1   

  1. 1.Geological Logging Company, SINOPEC Shengli Petroleum Engineering Co. Ltd. , Dongying 257000, China
    2.Suzhou Grand Energy Technology Co. Ltd. , Suzhou 215004, China
    3.Suzhou California Energy and Environment Research Institute Co. Ltd. , Suzhou 215004, China
    4.Energy Institute, Qilu University of Technology (Shandong Academy of Sciences),Shandong Provincial Key Laboratory of Biomass Gasification Technology, Ji’nan 250000, China
    5.SINOPEC East China Oil and Gas Company, Yangzhou 225000, China
  • Received:2020-01-06 Revised:2020-05-19 Online:2020-09-10 Published:2020-09-04
  • Contact: Huan-xu ZHANG E-mail:slniq@126.com;huanxu_zhang@sina.com

摘要:

为了更详尽地分析不同深度段五峰组—龙马溪组页岩气的碳同位素特征以及页岩气的成藏富集规律,选取川东南地区3口典型页岩气评价井开展了页岩气碳同位素录井工作。在钻探现场连续取样并检测泥浆气的碳同位素值,并以DY5井为例检测了岩屑释气过程中的碳同位素变化。基于碳同位素录井数据,综合分析了五峰组—龙马溪组页岩气的碳同位素平面分布及纵向变化特征、碳同位素倒转特征和岩屑释气过程中的碳同位素分馏特征。综合分析认为:四川盆地五峰组—龙马溪组页岩气碳同位素值由盆地周缘向中心逐渐变轻,这一变化规律主要受控于页岩的热演化程度;川东南3口井的泥浆气碳同位素的纵向变化及倒转特征具有一定共性,表明其具有相近的页岩气富集规律;DY5井的岩屑罐顶气越靠近地质甜点区域同位素分馏越明显且岩屑释气量越大,反映该段页岩气具有初始地层压力高、含气量大、纳米孔隙更发育等特征。

关键词: 页岩气, 碳同位素录井, 碳同位素倒转, 页岩气富集规律, 碳同位素分馏

Abstract:

In order to analyze the carbon isotope characteristics of shale gas from the Wufeng-Longmaxi formations at different depths in more detail, and research the shale gas accumulation, three typical shale gas evaluation wells in southeastern Sichuan Basin were selected to carry out carbon isotope logging. The carbon isotope of mud gas was continuously sampled and measured with drilling, and the carbon isotope change during the gas release from cuttings was also measured. Based on data obtained from the isotope logging, the carbon isotope distribution and vertical variation, as well as the carbon isotope reversal and carbon isotope fractionation of shale gas are comprehensively analyzed, which reveals that the carbon isotope value of Wufeng-Longmaxi shale gas in the Sichuan Basin gradually decreases from the margin to the center of the basin, and this change is mainly controlled by the maturity of the organic matter. The carbon isotope characteristics of shale gas of these three wells have certain commonality, which indicates that shale gas accumulation rules were similar in this area. In sweet point, the carbon isotope fractionation of the top gas of the cuttings jar is much greater, and the amount of gas released from the cuttings is higher, reflecting this section has high initial pressure, large gas content, and more nano pores.

Key words: Shale gas, Isotope logging, Reversal of carbon isotope, Shale gas accumulation rules, Carbon isotope fractionationFoundation items:The National Science and Technology Major Project(Grant No. 2016ZX05006-002), The Scientific Research and Technological Development Project of RIPED(Grant No. 2018ycq01)

中图分类号: 

  • TE122.2+13

图1

川东南地区五峰组—龙马溪页岩地层划分方案"

表1

四川盆地不同地区五峰组—龙马溪组页岩气碳同位素值统计"

地区井号湿度/%δ13C/‰δ13C平均值/‰数据来源
CH4C2H6C3H8CH4C2H6C3H8
威远W2010.48-37.3-38.2-36.0-39.5-43.5[14]
W2010.48-36.9-37.9
W201-H30.37-35.6-39.4
W201-H30.36-35.4-40.8
W201-H10.34-35.1-38.7
W201-H10.37-35.4-37.9
W2020.70-36.9-42.8-43.5
W2030.58-35.7-40.4
富顺—永川L1010.24-33.2-33.1-33.0-35.0-39.4[14]
Y201-H20.34-33.8-36.0-39.4
H201-H0.69-32.0-35.9
南川阳春沟构造SY30.9-34.7-35.1-32.0-34.4本文
SY32.2-33.1-36.2
SY32.4-34.2-35.6
SY32.6-35.0-35.5
南川平桥南构造JY10-10-29.9-32.9-29.8-32.95本文
JY10-10-29.9-33.0
JY10-10-29.8-33.2
JY10-10-29.8-32.7
焦石JY1HF-30.1-35.5-30.2-34.6-36.7[15]
JY1HF-30.6-34.1-36.3
JY1-3HF-29.4-34.5-36.3
JY1-3HF-29.5-34.6-35.0
JY4HF-31.2-35.1-36.3
JY6-2HF-30.3-34.3
JY6-2HF-30.0-34.3
JY7-2HF-29.1-33.9-37.1
JY9-2HF-30.0-34.4-37.5
JY10-2HF-31.9-35.1
JY12-30.69-30.3-34.7-38.4
JY84-20.2-30.9-33.0-30.0-33.1本文
JY84-20.4-29.5-33.0
JY84-20.1-32.0-32.9
JY84-30.2-28.6-33.3
JY84-30.2-29.8-33.1
JY84-30.2-29.3-33.1
丁山DY50.9-29.2-33.0-29.3-33.5本文
DY50.4-29.9-33.8
DY50.2-28.5-35.0
DY50.4-29.6-32.0
长宁—昭通Z1040.53-26.7-31.7-33.1-28.0-33.2-35.2[16]
YSL1-1H0.48-27.4-31.6-33.2
NH2-10.53-28.7-33.8-35.4
NH2-20.48-28.9-34.0
NH3-10.55-27.6-32.3-35.0
NH3-20.46-28.9-33.4-36.0
NH3-60.53-29.4-33.1-35.1
YH1-30.61-27.7-32.8-36.0
YH1-50.50-26.8-33.1-35.7
N201-H10.51-27.0-34.3
N201-H10.54-27.8-34.1
N2110.35-28.4-33.8-36.2

图2

四川盆地不同区块五峰组—龙马溪组页岩气甲烷碳同位素值与笔石等效镜质体反射率统计注:不同区块页岩的成熟度数据引用自文献[5-7],甲烷碳同位素数据取自表1"

图3

国内外典型页岩气碳同位素倒转特征统计(a)为δ13C1-δ13C2与δ13C2-δ13C3交会图,反映五峰组—龙马溪组页岩气区块都具有同位素倒转的特征;(b)δ13C2与δ13C1的交会图,反映不同地区五峰组—龙马溪组页岩气的甲烷、乙烷碳同位素倒转程度有所差别;图中北美数据文献来自[10,17-22],国内数据取自表1"

图4

页岩气碳同位素倒转阶段示意(据文献[13])"

图5

甲烷、乙烷和丙烷碳同位素值随湿度变化特征(a)δ13C1与湿度的关系;(b)δ13C2与湿度的关系;(c)δ13C3与湿度的关系"

图6

碳同位素录井现场工作示意"

图7

泥浆气碳同位素录井剖面"

图8

赫南特阶有机质碳同位素曲线对比图(据文献[26],有修改)"

图9

DY5井岩屑罐顶气碳同位素分馏特征剖面"

1 吴伟,罗超,张鉴,等.油型气乙烷碳同位素演化规律与成因[J].石油学报, 2016,37(12): 1463-1471.
WU W, LUO C, ZHANG J, et al. Evolution law and genesis of ethane carbon isotope of oil type gas[J]. Acta Petrolei Sinica, 2016,37(12): 1463-1471.
2 郭彤楼,刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例[J].天然气地球科学,2013,24(4):643-651.
GUO T L, LIU R B. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in Well JY1 as an example[J]. Natural Gas Geoscience, 2013,24(4):643-651.
3 CHEN X,RONG J Y,CHARLES E M, et al. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, south China,with a global correlation[J]. Geological Magazine,2000,137(6):623-650.
4 牟传龙,周恳恳,梁薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532.
MU C L, ZHOU K K, LIANG W, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the middle-upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011,85(4):526-532.
5 高波.四川盆地龙马溪组页岩气地球化学特征及其地质意义[J].天然气地球科学,2015, 26(6): 1173-1182.
GAO B. Geochemical characteristics of shale gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and its geological significance[J]. Natural Gas Geoscience, 2015, 26(6): 1173-1182.
6 王晔,邱楠生,仰云峰,等.四川盆地五峰组—龙马溪组页岩成熟度研究[J].地球科学,2019,44(3):953-971.
WANG Y, QIU N S, YANG Y F, et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J]. Earth Science,2019,44(3):953-971.
7 仰云峰.川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用[J].石油实验地质,2016,38(4):466-472.
YANG Y F, Application of bitumen and graptolite reflectance in the Silurian Longmaxi shale, southeastern Sichuan Basin[J].Petroleum Geology and Experiment, 2016,38(4):466-472.
8 金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘, 2016, 23(1):1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers,2016, 23(1):1-10.
9 戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003,24(1):1-6.
DAI J X, XIA X Y, QIN S F, et al. Causation of partly reversed orders of δ13C in biogenic alkane gas in China[J]. Oil and Gas Geology, 2003,24(1):1-6.
10 BURRUSS R C, LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry, 2010, 41(12):1285-1296.
11 张同伟,王先彬,陈践发,等.天然气运移的气体组分的地球化学示踪[J].沉积学报,1999,17(4): 130-135.
ZHANG T W, WANG X B, CHEN J F, et al. Chemical composition of gases as a geochemical tracer of natural gas migration[J]. Acta Sedimentologica Sinica,1999,17(4): 130-135.
12 TANG Y C, PERRY J K, JENDEN P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta,2000,64(15):2673-2687.
13 XIA X Y, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology,2013,339 (2):205-212.
14 DAI J, ZOU C, LIAO S, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J].Organic Geochemistry,2014,74:3-12.
15 刘若冰. 中国首个大型页岩气田典型特征[J]. 天然气地球科学,2015, 26(8): 1488-1498.
LIU R B. Typical features of the first giant shale gas field in China[J]. Natural Gas Geoscience, 2015, 26(8): 1488-1498.
16 冯子齐,刘丹,黄士鹏,等.四川盆地长宁地区志留系页岩气碳同位素组成[J].石油勘探与开发, 2016,43(5):705-713.
FENG Z Q, LIU D, HUANG S P, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin[J]. Petroleum Exploration and Development, 2016,43(5):705-713.
17 ZUMBERGE J, FERWORN K J, BROWN S. Isotopic reversal(‘rollover’)in shale gases produced from the Mississippian Barnett and Fayetteville Formations[J].Marine and Petroleum Geology, 2012, 31(1):43-52.
18 TILLEY B, MUEHLENBACHS K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems[J].Chemical Geology,2013, 339(15):194-204.
19 RODRIGUEZ N D, PHILP R P. Geochemical characterization of gases from the Mississippian Barnett Shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2010, 94(11):1641-1656.
20 OSBORN S G, MCINTOSH J C. Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin[J]. Applied Geochemistry, 2010, 25(3):456-471.
21 MARTINI A M, WALTER L M, MCINTOSH J C. Identification of microbial and thermogenic gas components from Upper Devonian black shale cores, Illinois and Michigan Basins[J]. AAPG Bulletin, 2008, 92(3):327-339.
22 STRAPOC D, MASTALERZ M, SCHIMMELMANN A, et al. Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian), eastern Illinois Basin[J]. AAPG Bulletin, 2010, 94(11):1713-1740.
23 WU S, DEEV A, HAUGHT M, et al. Hollow waveguide quantum cascade laser spectrometer as an online microliter sensor for gas chromatography[J]. Journal of Chromatography A,2008, 1188 (2):327-330.
24 田辉,肖贤明,李贤庆,等.海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J].地球化学, 2007,36(1) : 71-77.
TIAN H, XIAO X M, LI Q X, et al.Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases[J]. Geochimica, 2007,36(1):71-77.
25 张家政,朱地,慈兴华,等.湖北宜昌地区鄂阳页2井牛蹄塘组和陡山沱组页岩气随钻碳同位素特征及勘探意义[J].石油学报,2019,40(11):1346-1357.
ZHANG J Z,ZHU D, CI X H, et al. Isotope logging of Niutitang and Doushantuo shale during Eyangye-2 well drilling and the revelation for shale gas exploration[J]. Acta Petrolei Sinica, 2019,40(11):1346-1357.
26 陈超.川南—黔北地区晚奥陶世—早志留世地史转折期古海洋、古气候演变及烃源岩成因机制研究[D].北京:中国地质大学,2018.
CHEN C. Research on Paleoceanography, Paleoclimate and Formation Mechanism of Source Rock during Geologic Transition Period from Late Ordovician to Early Silurian in Southern Sichuan Province - Northern Guizhou Province, South China[D]. Beijing: Geology University of China,2018.
27 BERGSTRÖM S M, ERIKSSON M E, YOUNG S A, et al. Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: A refined integration with the graptolite and conodont zone successions[J]. GFF, 2014, 136(2): 355-386.
28 BERGSTRÖMS M, SALTZMAN M M, SCHMITZ B. First record of theHirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications[J]. Geological Magazine, 2006, 143(5): 657-678.
29 MUNNECKEA, ZHANG Y, LIU X, et al. Stable carbon isotope stratigraphy in the Ordovician of South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1-4): 17-43.
30 FAN J, PENG P A, MELCHIN M J. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 276(1-4): 160-169.
31 SALTZMAN M R, YOUNG S A. Long-lived glaciation in the Late Ordovician Isotopic and sequence-stratigraphic evidence from western Laurentia[J].Geology,2005, 33(2): 109.
32 高玉巧,高和群,何希鹏,等.四川盆地东南部页岩气同位素分馏特征及对产能的指示意义[J].石油实验地质,2019,41(6):865-870.
GAO Y Q, GAO H Q, HE X P, et al. Methane isotope fractionation characteristics of shale gas and its significance as a productivity indicator[J]. Petroleum Geology and Experiment, 2019,41(6):865-870.
33 孟强, 王晓锋, 王香增, 等. 页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J]. 天然气地球科学, 2015, 26(2): 333-340.
MENG Q, WANG X F, WANG X Z, et al. Variation of carbon isotopic composition of Alkanes during the shale gas desorption process and its geological significance: A case study of Chang 7 shale of Yanchang Formation in Yishan Slope southeast of Ordos Basin[J]. Natural Gas Geoscience, 2015,26(2):333-340.
34 XIA X, TANG Y C. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 2012(77): 489-503
[1] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[2] 李腾飞, 田辉, 肖贤明, 程鹏, 王星, 伍耀文, 吴子瑾. 样品粒径对高过成熟度页岩低压气体吸附实验结果的影响[J]. 天然气地球科学, 2020, 31(9): 1271-1284.
[3] 陈璐, 胡志明, 熊伟, 端祥刚, 常进. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293.
[4] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[5] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
[6] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[7] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[8] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[9] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[10] 彭泽阳, 龙胜祥, 张永贵, 卢婷, 王濡岳. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834.
[11] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
[12] 丁麟, 程峰, 于荣泽, 邵昭媛, 刘佳琪, 刘官贺. 北美地区页岩气水平井井距现状及发展趋势[J]. 天然气地球科学, 2020, 31(4): 559-566.
[13] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[14] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[15] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!