天然气地球科学 ›› 2020, Vol. 31 ›› Issue (11): 1593–1602.doi: 10.11764/j.issn.1672-1926.2020.04.028

• 非常规天然气 • 上一篇    下一篇

四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素

陈斐然(),魏祥峰,刘珠江,敖明冲,燕继红   

  1. 中国石化勘探分公司勘探研究院,四川 成都 610041
  • 收稿日期:2020-01-06 修回日期:2020-04-21 出版日期:2020-11-10 发布日期:2020-11-24
  • 作者简介:陈斐然(1988-),男,湖南新宁人,博士,主要从事非常规油气地质研究.E-mail:feiran.ktnf@sinopec.com.
  • 基金资助:
    国家科技重大专项“页岩气区带目标评价与勘探技术”(2017ZX05036)

Pore development characteristics and main controlling factors of the Permian marine-continent transitional shale in the Sichuan Basin

Fei-ran CHEN(),Xiang-feng WEI,Zhu-jiang LIU,Ming-chong AO,Ji-hong YAN   

  1. Exploration Company,SINOPEC,Chengdu 610041,China
  • Received:2020-01-06 Revised:2020-04-21 Online:2020-11-10 Published:2020-11-24

摘要:

为明确四川盆地二叠系龙潭组(吴家坪组)沉积期不同沉积相带页岩孔隙结构特征及发育主控因素,以綦江地区DYS1井岩心及利川地区沙溪剖面露头样品为研究对象,综合运用氩离子抛光扫描电镜、低温液氮—压汞联合测试、氮气吸附及聚焦离子束三维扫描(3D?FIB?SEM)等试验分析,对页岩孔隙发育程度和形态结构进行定量表征。研究表明:①处于潮坪潟湖相的DYS1井龙潭组页岩气层主要发育煤及与之相邻的暗色泥页岩,孔隙类型主要发育平行板状、夹板状微裂缝和黏土矿物孔,见有机质结构孔,但相对不太发育,孔径多小于50 nm,分布为多峰型,孔隙连通性中等。②处于深水陆棚相的利川沙溪剖面吴家坪组以暗色页岩为主,孔隙类型则以墨水瓶状沥青质有机孔为主,孔径多小于50 nm,分布为单峰型,孔隙连通性相对较好。③明确了有机质类型、TOC含量、矿物成分是影响龙潭组、吴家坪组孔隙发育的主控因素,其中深水陆棚相发育Ⅱ1型干酪根类型的页岩,TOC、硅质矿物含量与孔体积存在较好的正相关性,有机质孔更发育,潮坪—潟湖相发育Ⅲ型干酪根类型的煤和页岩,黏土矿物含量和TOC呈正向关耦合关系,与孔体积呈较好正相关性,其中黏土矿物影响更大,有机质孔相对占比小。

关键词: 四川盆地, 龙潭组/吴家坪组, 页岩气层, 孔隙结构, 发育特征, 主控因素

Abstract:

In order to clarify the pore structure characteristics and main controlling factors of shale in different sedimentary facies belts of the Permian Longtan Formation (Wujiaping Formation) in the Sichuan Basin, we performed scanning electron microscopy(SEM), mercury intrusion, nitrogen adsorption isotherm and three-dimensional focused ion beam (3D-FIB) analyses on cores in Well DYS1 of Qijiang area and the outcrop samples of the Lichuan Shaxi section, which allows us to classify the pore types, numbers and structures. The results show: (1) The tidal flat lagoon phase shale of the Longtan Formation in the Well DYS1 mainly developed coal and adjacent dark mud shale. The pore types are mainly parallel plate, splint micro cracks and clay mineral pores. The organic structure pores are relatively undeveloped, the pore size is less than 50nm, the distribution is multimodal, and the pore connectivity is medium. (2) The Wujiaping Formation of the Lichuan Shaxi section in the deep-water shed is dominated by dark shale, and the pore type is mainly composed of ink-like asphaltic organic pores. The pore size is less than 50 nm, the distribution is unimodal, and the pore connectivity is relatively good. (3) It is clear that the organic matter type, TOC content and mineral composition are the main controlling factors affecting the pore development of Longtan Formation and Wujiaping Formation. The deep shale developed kerogen type II1, the TOC and siliceous mineral content have a good positive correlation with the pore volume, and the organic pores are more developed. The tidal flat-lagoon phase coal and shale develop type III kerogen, clay mineral content and TOC are positively coupled, and positively correlated with pore volume, but clay minerals have greater influence, and organic matter pores have a smaller proportion.

Key words: Sichuan Basin, Longtan Formation/Wujiaping Formation, Shale gas layer, Pore Structure, Developmental characteristics, Main controlling factorsFoundation item:The National Science and Technology Major Project (Grand No. 2017ZX05036).

中图分类号: 

  • TE121.1+3

图1

四川盆地及周缘龙潭组/吴家坪组沉积相平面特征"

图2

綦江东溪地区DYS1井龙潭组页岩气综合剖面"

图3

DYS1井龙潭组孔隙度与TOC相关性"

表1

DYS1井龙潭组与龙马溪组不同岩性覆压孔隙度数据"

岩性(层系)不同覆压条件孔隙度/%孔隙度/%
5 MPa10 MPa20 MPa30 MPa40 MPa50 MPa减少量压实率
煤(龙潭组)9.408.918.598.368.187.951.4515.43
炭质泥页岩(龙潭组)6.906.476.045.825.685.531.3719.86
白云质泥岩(龙潭组)5.074.804.694.584.534.480.5911.64
硅质页岩(龙马溪组)6.736.286.055.825.655.591.1416.94

图4

DYS1井龙潭组与龙马溪组不同岩性覆压孔隙度变化"

图5

龙潭组和吴家坪组泥页岩不同类型孔隙特征(a)黏土矿物孔、微裂隙,炭质泥岩,DYS1井,井深2 969.11 m;(b)黏土矿物孔、微裂隙,炭质泥岩,DYS1井,井深2 988.61 m;(c)高等植物残片中生物结构孔,炭质泥岩,DYS1井,井深2 971.86 m;(d)高等植物内发育的气孔,炭质泥岩,DYS1井,井深2 969.11 m;(e)发育大量有机孔,吴家坪组,利川沙溪;(f)蜂窝状有机孔隙,吴家坪组,利川沙溪"

图6

龙潭组和吴家坪组不同页岩孔径分布特征"

图7

氮气“脱附回线”分类及其孔隙类型(De Boer:A1-A5,IUPAC:B1-B4)"

图8

龙潭组和吴家坪组不同页岩氮气吸附—脱附曲线"

图9

四川盆地龙潭组和吴家坪组页岩FIB-SEM三维结构分析(a)—(c)DYS1井龙潭组;(d)—(f)利川沙溪吴家坪组; 灰色为矿物,蓝色为有机质,红色为孔缝"

图10

龙潭组DYS1井(a)和吴家坪组利川剖面(b)有机显微组分饼状图"

图11

四川盆地龙潭组(吴家坪组)页岩矿物组分含量"

图12

DYS1井龙潭组黏土矿物含量[(a)—(c)]利川沙溪吴家坪组硅质矿物含量[(d)—(f)]与孔容及TOC相关性"

图13

DYS1井龙潭组[(a)—(c)]利川沙溪吴家坪组[(d)—(f)]页岩TOC与孔容相关性"

1 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3):24-37.
GUO X S, HU D F, WEI Z H, et al. Discovery and exploration of Fuling shale gas field [J]. Petroleum Exploration of China, 2016, 21 (3): 24-37.
2 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4):481-491.
GUO X S, HU D F, LI Y P, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44 (4): 481-491.
3 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1):1-6.
WANG Z G. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6.
4 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218.
GUO X S. Rules of two-factor enrichiment for marine shale gas in southern China :Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica, 2014,88(7):1209-1218.
5 郭旭升, 胡东风, 李宇平, 等. 海相和湖相页岩气富集机理分析与思考:以四川盆地龙马溪组和自流井组大安寨段为例[J]. 地学前缘, 2016, 23(2):18-28.
GUO X S, HU D F, LI Y P, et al. Analyses and thoughts on accumulation mechanisms of marine and lacustrine shale gas: A case study in shales of Longmaxi Formation and Da anzhai Section of Ziliujing Formation in Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2): 18-28.
6 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6):17-23.
HU D F, ZHANG H R, NI K, et al. Main controlling factors for gas preservation conditions of marine shale in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34 (6): 17-23.
7 魏祥峰, 黄静, 李宇平, 等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质, 2014, 41(3):970-981.
WEI X F, HUANG J, LI Y P, et al. The main controlling factors for the enrichment and high production of Da’anzhai member continental shale gas in Yuanba area[J]. Chinese Geology, 2014, 41 (3): 970-981.
8 郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018, 38(10):11-18.
GUO X S, HU D F, LIU R B, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38 (10): 11-18.
9 刘光祥, 金之钧, 邓模,等. 川东地区上二叠统龙潭组页岩气勘探潜力[J]. 石油与天然气地质, 2015, 36(3):481-487.
LIU G X, JIN Z J, DENG M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Oil & Gas Geology, 2015, 36 (3): 481-487.
10 曹清古, 刘光祥, 张长江, 等. 四川盆地晚二叠世龙潭期沉积环境及其源控作用分析[J]. 石油实验地质, 2013, 35(1):36-41.
CAO Q G, LIU G X, ZHANG C J, et al. Sedimentary environment and its controlling on source rocks during late Permian in Sichuan Basin[J]. Petroleum Geology & Experiment, 2013, 35 (1): 36-41.
11 王濡岳, 丁文龙, 龚大建, 等. 渝东南—黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素[J]. 石油学报, 2016, 37(7):832-845,877.
WANG R Y, DING W L, GONG D J, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation,southeastern Chong-qing-northern Guizhou area[J]. Acta Petrolei Sinica, 2016, 37(7): 832-845,877.
12 魏祥峰, 刘若冰, 张廷山, 等. 页岩气储层微观孔隙结构特征及发育控制因素——以川南—黔北XX地区龙马溪组为例[J]. 天然气地球科学, 2013, 24(5):1048-1059.
WEI X F, LIU R B, ZHANG T S, et al. Micro-pores structure characteristics and development control factors of shale gas reservoirs: A case of Longmaxi Formation in XX area of southern Sichuan and northern Guizhou[J]. Natural Gas Geoscience, 2013, 24 (5): 1048-1059.
13 BROEKHOFF J C P, BOER J H.Studies on pore systems in catalysts: XII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores[J]. Journal of Catalysis, 1968, 10(4):377-390.
14 罗超, 刘树根, 孙玮, 等. 鄂西—渝东地区下寒武统牛蹄塘组黑色页岩孔隙结构特征[J]. 东北石油大学学报, 2014, 38(2):8-17.
LUO C, LIU S G, SUN W, et al. Pore structure characterization of black shale in the Lower Cambrian Niutitang Formation in western Hubei and eastern Chongqing area[J]. Journal of Northeast Petroleum University, 2014, 38 (2): 8-17.
15 刘伟新, 鲍芳, 俞凌杰, 等. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38(4):453-459.
LIU W X, BAO F, YU L J, et al. Micro-pore structure and connectivity of the Silurian Longmaxi shales, southeast Sichuan area[J]. Petroleum Geology & Experiment,2016,38(4): 453-459.
16 MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2):177-200.
17 BARKER C. Calculated volume and pressure changes during the cracking of oil and gas in reservoirs[J]. AAPG Bulletin, 1990, 74(8):1254-1261.
18 张廷山. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报, 2014, 88(9):1728-1740.
ZHANG T S. Characteristics and mechanisms of the micro-pores in the Early Paleozoic marine shale, southern Sichuan Basin[J]. Chinese Journal of Geology, 2014, 88(9): 1728-1740.
[1] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[2] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[3] 肖富森, 韦腾强, 王小娟, 关旭, 吴长江, 洪海涛. 四川盆地川中—川西地区沙溪庙组层序地层特征[J]. 天然气地球科学, 2020, 31(9): 1216-1224.
[4] 刘世明, 唐书恒, 霍婷, 谭富荣, 刘达成, 王金喜. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
[5] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[6] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[7] 石书缘, 王铜山, 刘伟, 姜华, 李秋芬, 刘鑫, 曾乙洋, 邹翔, 胡丽. 四川盆地寒武系洗象池组储层特征及天然气勘探潜力[J]. 天然气地球科学, 2020, 31(6): 773-785.
[8] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[9] 陈爱章, 刘文锋, 谢天寿, 王怀武, 齐洪岩, 周隶华, 陈轩, 孙德强, 朱丹萍. 火山岩孔缝型油气藏产能特征及控制因素[J]. 天然气地球科学, 2020, 31(6): 877-889.
[10] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[11] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[12] 周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[13] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[14] 李长海, 赵伦, 刘波, 陈强, 陆成和, 孔悦. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学, 2020, 31(3): 402-416.
[15] 王毅, 李俊飞, 彭家琼, 魏璞, 唐宏, 张顺存, 郭晖. 准噶尔盆地SN31井区白垩系清一段一砂组沉积相及储层主控因素分析[J]. 天然气地球科学, 2020, 31(2): 194-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于俊峰;夏斌;许静;. 对渤海湾盆地张扭、压扭性构造的一点认识[J]. 天然气地球科学, 2006, 17(4): 473 -476 .
[2] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390 -393 .
[3] 王万春,刘文汇, 刘全有. 浅层混源天然气判识的碳同位素地球化学分析[J]. 天然气地球科学, 2003, 14(6): 469 -473 .
[4] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[5] 陶明信, ;解光新 . “煤层气的形成演化、成因类型及资源贡献”课题研究进展[J]. 天然气地球科学, 2008, 19(06): 894 -896 .
[6] 刘建锋 彭军 周康 殷孝梅 唐勇 刘金库. 川中—川南过渡带须家河组二段高分辨率层序地层学研究[J]. 天然气地球科学, 2009, 20(2): 199 -203 .
[7] 陈宗清. 论四川盆地中二叠统栖霞组天然气勘探[J]. 天然气地球科学, 2009, 20(3): 325 -334 .
[8] 李艳丽. 页岩气储量计算方法探讨[J]. 天然气地球科学, 2009, 20(3): 466 -470 .
[9] 郭振华, 赵彦超. 大牛地气田盒2段致密砂岩气层测井评价[J]. 天然气地球科学, 2010, 21(1): 87 -94 .
[10] 王明艳, 郭建华, 旷理雄, 朱锐. 湘中坳陷涟源凹陷烃源岩油气地球化学特征[J]. 天然气地球科学, 2010, 21(5): 721 -726 .