天然气地球科学 ›› 2020, Vol. 31 ›› Issue (9): 1239–1249.doi: 10.11764/j.issn.1672-1926.2020.04.026

• 天然气地质学 • 上一篇    下一篇

川东南回龙场地区小河坝组砂岩元素特征及古环境意义

张昭丰1(),王良军2(),张立强1(),黎承银2   

  1. 1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
    2.中国石化勘探分公司,四川 成都 610041
  • 收稿日期:2019-10-31 修回日期:2020-04-02 出版日期:2020-09-10 发布日期:2020-09-04
  • 通讯作者: 王良军,张立强 E-mail:zzf17568932380@163.com;wanglj.ktnf@sinopec.com;liqiangzhangwxm@163.com
  • 作者简介:张昭丰(1996-),男,山东济宁人,硕士,主要从事元素地球化学及储层地质研究.E-mail:zzf17568932380@163.com.
  • 基金资助:
    国家科技重大专项(2016ZX05002-004);中国科学院战略先导科技专项(XDA14010202);中国石油天然气股份有限公司重大科技专项(ZD2019-183-001)

The element characteristics and paleoenvironmental significance of Xiaoheba Formation sandstone in Huilongchang area, southeastern Sichuan Basin

Zhao-feng ZHANG1(),Liang-jun WANG2(),Li-qiang ZHANG1(),Cheng-yin LI2   

  1. 1.School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
    2.SINOPEC Exploration Company, Chengdu 610041, China
  • Received:2019-10-31 Revised:2020-04-02 Online:2020-09-10 Published:2020-09-04
  • Contact: Liang-jun WANG,Li-qiang ZHANG E-mail:zzf17568932380@163.com;wanglj.ktnf@sinopec.com;liqiangzhangwxm@163.com

摘要:

川东南志留系小河坝组具有良好的生储盖组合,勘探前景较好,但小河坝组的沉积学和地球化学等基础研究薄弱,制约了目的层系的油气勘探。以川东南回龙场地区为例,系统采集了研究区小河坝组101个样品,利用常量及微量元素分析了小河坝组古沉积环境及其演化特征。结果表明,小河坝组主要形成于淡水—微咸水、温暖潮湿、弱氧化—弱还原的浅水三角洲沉积环境;纵向上,海平面变化表现为2个海侵—海退旋回,自下而上划分为X1、X2、X3和X4共4段。X1、X3段为海侵体系域(TST),气候温暖湿润,古盐度较低,水体还原性强,古水深较深;X2、X4段为高水位体系域(HST),气候干燥炎热,古盐度较高,水体还原性弱,古水深较浅。

关键词: 川东南, 小河坝组, 元素分析, 沉积环境

Abstract:

The Silurian Xiaoheba Formation in the southeastern Sichuan Basin has a good source-reservoir-seal assemblage and excellent geological conditions for hydrocarbon preservation. However, fundamental geochemical and sedimentological studies of Xiaoheba Formation are limited, and exploration activity is restricted. To solve this problem, 101 samples were collected from Huilongchang section in southeast Sichuan Basin, and palaeosedimentary environment and evolutionary characteristics were analyzed by using major and trace elements. The analytical results show that the Xiaoheba Formation was mainly formed in the shallow water delta within freshwater-brackish seawater, under a warm, humid, and weakly oxidized-weakly reduced condition. The sea level change of Xiaoheba Formation was divided into two transgression-regression cycles, which was divided into four sections X1, X2, X3 and X4 from bottom to top. X1 and X3 sections were transgressive system tracts (TST), with warm and humid climate, lower paleosalinity, strong water reducibility and upper paleo water depth. X2 and X4 sections were high system tracts (HST), with dry and hot climate, high paleosalinity, weak water reducibility and shallower paleo water depth.

Key words: Southeast Sichuan Basin, Xiaoheba Formation, Elemental analysis, Sedimentary environmentFoundation items:The National Science and Technology Major Project (Grant No. 2016ZX05002-004), The Chinese Academy of Sciences Strategic Leading Science and Technology Project(Grant No. XDA14010202), The Science and Technology Major Projects of China National Petroleum Corporation (Grant No. ZD2019-183-001).

中图分类号: 

  • TE122

图1

研究区构造位置(据文献[24-25]修改)"

图2

不同类型砂岩元素与小河坝组砂岩元素平均值的比值折线图"

表1

元素的相关系数"

BaZrSrRbZnCuNiCoFeMnCrTiUThCaKAl
Ba1.00-0.230.850.390.670.590.700.330.720.420.48-0.020.130.420.07-0.030.23
Zr1.000.22-0.60-0.22-0.16-0.12-0.23-0.20-0.010.000.480.00-0.180.220.30-0.60
Sr1.00-0.09-0.15-0.58-0.11-0.24-0.130.020.010.230.060.040.720.01-0.04
Rb1.000.050.110.070.310.16-0.030.190.140.240.31-0.140.750.10
Zn1.000.740.850.590.860.740.530.010.060.200.05-0.310.25
Cu1.000.710.690.760.590.450.03-0.010.130.08-0.270.21
Ni1.000.180.950.640.55-0.020.050.190.00-0.280.33
Co1.000.710.530.25-0.24-0.29-0.06-0.12-0.14-0.04
Fe1.000.770.53-0.080.040.24-0.06-0.250.30
Mn1.000.490.380.050.040.09-0.260.13
Cr1.000.53-0.05-0.030.07-0.090.32
Ti1.00-0.07-0.20-0.040.370.32
U1.000.76-0.010.190.05
Th1.000.070.150.08
Ca1.00-0.23-0.09
K1.000.31
Al1.00

图3

回龙场剖面元素含量随深度变化"

表2

回龙场剖面小河坝组元素含量及元素比值"

元素X1段X2段X3段X4段
及比值最小值最大值平均值最小值最大值平均值最小值最大值平均值最小值最大值平均值最小值最大值平均值
Ba/%472.523 035.691 174.29627.071 232.95962.80685.002 321.131 050.16457.181 103.09907.47457.183 035.691 029.91
Zr/%117.40270.52185.56192.69463.35274.67119.85452.35188.06118.02378.74237.75117.40463.35228.53
Sr/%30.85196.0153.7753.0585.7762.0237.77161.1457.0731.1658.5450.1630.85196.0156.99
Rb/%19.57178.12138.4676.72154.69115.3594.60182.81137.8026.57205.63124.4119.57205.63124.58
Zn/%41.57724.70128.9643.01141.9567.0249.64293.5999.9932.78103.8175.4132.78724.7091.72
Cu/%15.85164.9437.2412.0669.5925.2616.3492.2733.8612.4537.7324.7512.06164.9430.07
U/%2.106.804.372.706.704.743.506.204.712.004.503.842.006.804.51
Th/%10.3026.9020.0017.6024.0020.7014.2026.9021.778.0022.6015.998.0026.9020.05
Ti/10-60.070.250.130.091.580.280.070.470.180.071.210.410.071.580.28
Fe/10-60.8426.903.941.529.152.531.985.162.991.113.872.730.8426.903.04
Mn/10-60.012.380.310.012.340.210.021.150.240.020.770.260.012.380.25
Ca/10-60.114.350.530.136.200.500.221.660.550.100.420.230.106.200.49
K/10-60.282.041.400.532.511.801.122.121.630.953.111.750.283.111.65
Al/10-60.063.892.500.076.174.180.101.242.420.167.053.530.067.053.16
(Sr/Ba)/%1.0216.835.074.988.816.483.507.935.394.178.585.721.0216.835.77
(Sr/Ca)/%0.334.091.440.144.301.810.352.221.511.305.232.450.145.231.73
(Sr/Cu)/%18.70539.97186.50101.84516.92288.8062.73548.47201.8082.59422.33225.2018.70548.47234.69
Fe/Mn2.68203.1669.130.79151.5654.202.28169.8857.301.89130.9037.090.79203.1656.39
(Cu/Zn)/%9.7963.5534.2223.5055.3436.7121.7151.4034.2717.51115.1036.559.79115.1035.55
&U/%61.2293.5681.2259.78100.5079.0668.2990.5085.8764.7998.7078.5159.78100.5081.17
(Rb/K)/%0.272.240.910.391.710.690.491.190.970.281.180.740.272.240.80
(Zr/Al)/%0.3442.017.290.5437.266.601.3615.607.430.5413.856.70.3442.017.01
(Zr/Rb)/%68.16715.38212.94130.51421.99242.7265.56444.22147.1080.97503.24196.9265.56715.38210.61

表3

微量元素环境标志"

环境指标比值范围指示环境参考文献
Sr/Ba<1陆相[30]
>1海相
Sr/Ca<0.2陆相[31]
>0.2海相
Sr/Cu1.3~5温湿气候[32]
>5干热气候
Fe/Mn高值温湿气候[33]
低值干热气候
&U>1氧化环境[35]
<1还原环境
Cn/Zn高值氧化环境[36]
低值还原环境
Rb/K高值水体较深[26]
低值水体较浅
Zr/Al高值水体较深[37]
低值水体较浅

图4

古环境指标交会图"

图5

小河坝组古环境特征综合评价"

1 邓平.微量元素在油气勘探中的应用[J].石油勘探与开发,1993,20(1):27-32.
DENG P. The application of trace amount of elements in the exploration of oil and gas[J]. Petroleum Exploration and Development, 1993, 20(1): 27-32.
2 邓宏文,钱凯.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993:4-28.
DENG H W, QIAN K. Sedimentary Geochemistry and Environmental Analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 4-28.
3 郑一丁,雷裕红,张立强,等.鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J].天然气地球科学,2015,26(7):1395-1404.
ZHENG Y D, LEI Y H, ZHANG L Q, et al. Characteristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404.
4 JIN Z, LI F, CAO J, et al. Geochemistry of Daihai lake sediments, Inner Mongolia, north China: Implications for provenance,sedimentary sorting,and catchment weathering[J]. Geo-morphology, 2006, 80(3): 147-163.
5 乔世海,李玉宏,郭望,等.陕西铜川地区延长组长7油页岩无机地球化学特征及古环境恢复[J].石油实验地质,2019,41(1):121-126.
QIAO S H, LI Y H, GUO W,et al. Inorganic geochemical characteristics and paleoenvironment of Chang 7 oil shale in Yanchang Formation, Tongchuan area, Shaanxi Province[J]. Petroleum Geology & Experiment, 2019, 41(1): 121-126.
6 陈波,程鑫,谈笑哲,等.元素地球化学分析法在沉积环境判别中的应用——以冷湖地区上干柴沟组为例[J].西安石油大学学报:自然科学版,2019,34(2):31-38.
CHEN B, CHENG X, TAN X Z, et al. Application of elemental geochemical analysis in determination of sedimentary environment: A case study of Shangganchaigou Formation in Lenghu region[J]. Journal of Xi’an Shiyou University:Natural Science Edition, 2019, 34(2): 31-38.
7 KALNICKY D J, SINGHVI R. Field portable XRF analysis of environmental samples[J]. Journal of Hazardous Materials, 2001, 83(1): 93-122.
8 陆安祥,王纪华,潘立刚,等.便携式X-射线荧光光谱测定土壤中Cr, Cu, Zn, Pb和As的研究[J].光谱学与光谱分析,2010,30(10):2848-2852.
LU A X, WANG J H, PAN L G, et al. Determination of Cr, Cu, Zn, Pb and As in soil by field portable X-Ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2848-2852.
9 孔芹,陈磊,汪灵.非金属矿二级标样配制及其粉末样品的XRF分析方法[J].光谱学与光谱分析,2012,32(5):1405-1409.
KONG Q, CHEN L, WANG L. Preparation of sub-standard samples and XRF analytical method of powder non-metallic minerals[J].Spectroscopy and Spectral Analysis,2012,32(5): 1405-1409.
10 HIGUERAS P, OYARZUN R, IRAIZOZ J M, et al. Low-cost geochemical surveys for environmental studies in developing countries: Testing a field portable XRF instrument under quasi-realistic conditions[J]. Journal of Geochemical Exploration, 2012, 113(none): 0-12.
11 林延畅,葛良全,赖万昌.新一代手提式多元素X荧光仪在地质普查中的应用[J].物探与化探,2002,26(4):325-328.
LIN Y C, GE L Q, LAI W C. The application of portable multi-element XRF analyzer to geological survey[J]. Geophysical and Geochemical Exploration, 2002, 26(4): 325-328.
12 宋文海.川东南下志留统小河坝砂岩含气地质条件论述——一个未来的勘探区块[J].天然气勘探与开发,1998,21(2):1-5.
SONG W H. Discussion on gas bearing geological conditions of Xiaoheba sandstone of Lower Silurian in Southeast Sichuan: A future exploration block[J]. Natural Gas Exploration and Development, 1998, 21(2): 1-5.
13 朱志军,陈洪德.川东南地区志留系小河坝组砂岩特征及物源分析[J].吉林大学学报:地球科学版,2012,42(6):1590-1600.
ZHU Z J, CHEN H D. Sandstone characteristics and provenance analysis of the sandstone in Silurian Xiaoheba Formation in southeastern Sichuan Province, China[J]. Journal of Jilin University:Geoscience Edition, 2012,42(6): 1590-1600.
14 胡东风,王良军,施泽进,等.四川盆地东南部小河坝组优质储层的形成机制[J].成都理工大学学报:自然科学版,2017,44(5):543-552.
HU D F, WANG L J, SHI Z J, et al. Study on the formation mechanism of high-quality reservoir of Xiaoheba Formation in southeast Sichuan Basin, China[J]. Journal of Chengdu University of Science and Technology:Science & Technology Edition, 2017,44(5): 543-552.
15 王勇,施泽进,刘亚伟,等.鄂西渝东地区石柱复向斜志留系小河坝组致密砂岩成岩作用[J].石油与天然气地质,2011,32(1):75-82, 90.
WANG Y, SHI Z J, LIU Y W, et al. Diagenesis of tight sandstone in the Silurian Xiaoheba Formation of the Shizhu Synclnoyium western Hubei-eastern Chongqing area[J]. Oil & Gas Geology, 2011,32(1): 75-82, 90.
16 张欣平,张纯臣,王大任.湘西北地区志留系泥盆系的痕迹化石[J].湖南地质,1986,5(2):49-61.
ZHANG X P, ZHANG C C, WANG D R. The trace fossils of Silurian and Devonian systems of the northwestern region, Hunan Province[J]. Hunan Geology, 1986, 5(2): 49-61.
17 朱志军,陈洪德.川东南地区早志留世晚期沉积特征及沉积模式分析[J].中国地质,2012,39(1):64-76.
ZHU Z J,CHEN H D. An analysis of sedimentary characte-ristics and model of Silurian Xiaoheba Formation in southeastern Sichuan Province[J]. Geology in China, 2012, 39(1): 64-76.
18 王正和,谭钦银,何利,等.川东南—黔北志留系石牛栏组沉积与层序地层[J].石油与天然气地质,2013,34(4):499-507.
WANG Z H, TAN Q Y, HE L, et al. Deposition and sequence stratigraphy of the Silurian Shiniulan Formation in southeastern Sichuan-northern Guizhou Province [J]. Oil & Gas Geology, 2013, 34(4): 499-507.
19 周恳恳.中上扬子及其东南缘中奥陶世—早志留世沉积特征与岩相古地理演化[D].北京:中国地质科学院,2015.
ZHOU K K. Middle Ordovician-Early Silurian Lithofacies Paleogeography of Middle-Upper Yangtze and Its Southeastern Margin[D]. Beijing: Chinese Academy of Geosciences, 2015.
20 杨振武,纪凡.渝东鄂西地区志留系盆地沉积充填及储层发育特征[J].石油天然气学报,2009,31(4):166-169, 428.
YANG Z W, JI F. The characteristics of sedimentary and packing and reserves development for Silurian Basin in the east Chongqing and west Hubei area[J]. Journal of Oil and Gas Technology, 2009, 31(4): 166-169, 428.
21 王国茹,陈洪德,朱志军,等.川东南—湘西地区志留系小河坝组砂岩稀土元素特征及其地质意义[J].石油实验地质,2010,32(5):487-495.
WANG G R, CHEN H D, ZHU Z J, et al. The characteristics and geological implications of rare earth elements in sandstone of Lower Silurian Xiaoheba Formation in the southeastern Sichuan-western Hunan[J]. Petroleum Geology & Experiment, 2010, 32(5): 487-495.
22 何利,谭钦银,王瑞华,等.川东南早志留世石牛栏期沉积相、沉积模式及其演化[J].矿物岩石,2013,33(4):96-106.
HE L, TAN Q Y, WANG R H, et al. Sedimentary facies, sedimentary models and evolution of the Shiniulan Formation of Early Silurian in the southeastern Sichuan[J]. Journal of Mi-neralogy and Petrology, 2013, 33(4): 96-106.
23 刘树根,马文辛,LUBA J,等.四川盆地东部地区下志留统龙马溪组页岩储层特征[J].岩石学报,2011,27(8):2239-2252.
LIU S G, MA W X, LUBA J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252.
24 赵建华,金之钧,金振奎,等.四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J].石油学报,2016,37(5):572-586.
ZHAO J H, JIN Z J, JIN Z K,et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formaion,Sichuan Basin[J].Acta Petrolei Sinica,2016,37(5):572-586.
25 王良军,张文凯,胡晓文,等.川东南志留系小河坝组致密砂岩储层孔隙结构[J].成都理工大学学报:自然科学版,2019,46(1):70-79.
WANG L J, ZHANG W K, HU X W, et al. Pore structures of the Xiaoheba Formation tight sandstone reservoirs in southeastern Sichuan Basin, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2019, 46(1): 70-79.
26 刘英俊.元素地球化学[M].北京:科学出版社,1984:1-110.
LIU Y J. Element Geochemistry[M]. Beijing: Science Press, 1984: 1-110.
27 王随继,黄杏珍,妥进才,等.泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J].沉积学报,1997,15(1):65-70.
WANG S J, HUANG X Z, TUO J C, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang Depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 65-70.
28 刘田,冯明友,王兴志,等.渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J].天然气地球科学,2019,30(5):740-750.
LIU T, FENG M Y, WANG X Z, et al. Elemental geochemical characteristics and limit on sedimentary environment in the Late Ordovician Wufengian Period in the Wuxi area, NE Chongqing[J].Natural Gas Geoscience,2019, 30(5):740-750.
29 钱利军,陈洪德,林良彪,等.四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J].沉积学报,2012,30(6):1061-1071.
QIAN L J, CHEN H D, LIN L B, et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation,western margin of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1061-1071.
30 王爱华.不同形态锶钡比的沉积环境判别效果比较[J].沉积学报,1996,14(4):169-174.
WANG A H. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different exising forms[J]. Acta Sedimentologica Sinica, 1996, 14(4): 169-17.
31 马宝林. 塔里木沉积岩形成演化与油气[M].北京:科学出版社,1991.
MA B L. Formation and Evolution of Tarim Sedimentary Rocks and Oil and Gas[M]. Beijing:Science Press, 1991.
32 莱尔曼.湖泊的化学地质学和物理学[M].北京:地质出版社,1989.
LEMAN A. The Lacustrine Chemistry’ Geology and Physics[M]. Beijing: Geological Publishing House, 1989.
33 李春荣,陈开远.潜江凹陷潜江组元素演化特征及其古气候意义[J].石油地质与工程,2007,21(6):18-21, 10.
LI C R, CHEN K Y. Evolutional characteristics and their paleoclimate significance of elements in the Qianjiang Formation, Qianjiang Depression[J]. Petroleum Geology and Engineering, 2007, 21(6): 18-21, 10.
34 WIGNALL P B, TWITCHETT R J. Oceanic Anoxia and the End Permian Mass Extinction[J].Science,1996,272(5265): 1155-1158.
35 吴朝东,杨承运,陈其英.湘西黑色岩系地球化学特征和成因意义[J].岩石矿物学杂志,1999,18(1):28-29,31-41.
WU C D, YANG C Y, CHEN Q Y. The origin and geochemical characteristics of Upper Sinain-Lower Cambrian black shales in Western Hunan[J]. Acta Petrrologica et Mineralogica, 1999, 18(1): 28-29, 31-41.
36 DYPVIK H, HARRIS N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios[J]. Chemical Geology, 2001, 181(1): 131-146.
37 席胜利,郑聪斌,李振宏.鄂尔多斯盆地西缘奥陶系地球化学特征及其沉积环境意义[J].古地理学报,2004,6(2):196-206.
XI S L, ZHENG C N, LI Z H. Geochemical characteristics and its sedimentary environment significance of the Ordovician in the western margin of Ordos Basin[J]. Journal of Palaeogeography, 2004, 6(2): 196-206.
38 陈诗越,王苏民,金章东,等.青藏高原中部湖泊沉积物中Zr/Rb值及其环境意义[J].海洋地质与第四纪地质,2003,23(4):35-38.
CHEN S Y, WANG S M, JIN Z D, et al. Variation of Zr/Rb ratios in lacustrine sediments of the central Tibetan Plateau and its environmental implications[J]. Marine Geology & Quaternary Geology, 2003, 23(4): 35-38.
[1] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[2] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[3] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[4] 杨威, 魏国齐, 李德江, 刘满仓, 谢武仁, 金惠, 沈珏红, 郝翠果, 王小丹. 四川盆地志留系小河坝组砂岩油气地质特征与勘探方向[J]. 天然气地球科学, 2020, 31(1): 1-12.
[5] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[6] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[7] 胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5): 605-615.
[8] 钟洪洋, 张道勇, 肖明国, 徐耀辉, . 洞庭盆地第四系极浅层天然气成因类型及地质意义[J]. 天然气地球科学, 2019, 30(3): 361-369.
[9] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[10] 韩盛博,李伍. 上扬子区龙马溪组页岩中黄铁矿成因[J]. 天然气地球科学, 2019, 30(11): 1608-1618.
[11] 梁兴,陈科洛,张廷山,张朝,张介辉,舒红林. 沉积环境对页岩孔隙的控制作用[J]. 天然气地球科学, 2019, 30(10): 1393-1405.
[12] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[13] 申宝剑,秦建中,腾格尔,潘安阳,仰云峰,边立曾. 中国南方海相烃源岩中细菌状化石识别[J]. 天然气地球科学, 2018, 29(4): 510-517.
[14] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[15] 王钊,周新平,李树同,李士祥,邱军利,张文选,王琪. 鄂尔多斯盆地吴起地区长9段和长10段原油地球化学特征对比[J]. 天然气地球科学, 2017, 28(9): 1385-1395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘洪军, 秦黎明, 张枝焕. 准噶尔盆地西北部和什托落盖盆地侏罗系烃源岩芳烃分布特征及地球化学意义[J]. 天然气地球科学, 2012, 23(6): 1104 -1115 .
[2] 张焕旭,陈世加,王力,邹贤利,黄囿霖,姚宜同,占盼. 油气分段捕获原理在天然气成藏研究中的应用——以柴达木盆地南翼山和开特米里克地区为例[J]. 天然气地球科学, 2015, 26(10): 1901 -1909 .
[3] 李靖, 李相方, 王香增, 李莹莹, 石军太, 冯东, 彭泽阳, 于鹏亮. “一点法”不同温度吸附曲线预测模型[J]. 天然气地球科学, 2016, 27(6): 1116 -1127 .
[4] 付爽, 庞雷, 许学龙, 曹元婷, 刘振宇, 张顺存, . 准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素[J]. 天然气地球科学, 2019, 30(4): 468 -477 .
[5] 殷建国, 郭晖, 吴志雄, 史基安, 琚宜文, 张明峰. 柴达木盆地北缘马仙地区路乐河组风成砂岩识别及沉积相模式[J]. 天然气地球科学, 2020, 31(6): 786 -799 .
[6] 马继胜 蔡亚 胡振秦 卢冲 王伟. 沁水盆地榆社区块太原组煤系页岩中的水含量及其对孔隙特征的影响[J]. 天然气地球科学, , (): 0 .
[7] 李腾 吴财芳. 甲烷吸附前后高煤级煤孔隙结构的粒径效应[J]. 天然气地球科学, 0, (): 0 .
[8] 于萍, 张瑜, 闫建萍, 邵德勇, 张六六, 罗欢, 乔博, 张同伟. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7): 1016 -1027 .
[9] 梁刚, 甘军, 游君君, 李兴, 雷明珠. 琼东南盆地低熟煤型气地球化学特征及勘探前景[J]. 天然气地球科学, 2020, 31(7): 895 -903 .
[10] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904 -914 .